河南省南阳市三中2019年秋季华东师大版九年级上册第二次月考数学 试卷无答案
2019-2020年九年级数学上学期第二次月考试题华东师大版

D ACBE2019-2020年九年级数学上学期第二次月考试题华东师大版一、选择题(本大题共8小题,每小题3分,共24分) 1.下列计算正确的是 ( ) (A4=± (B)1= (C4= (D )2632=⋅2. 一元二次方程230x x -=的解是 ( ) (A )0x = (B )1203x x ==, (C )1210,3x x ==(D )13x =3.关于x 的一元二次方程x 2+4x +k =0有两个实数根,则k 的取值范围是(A )4k -≤. (B )4k -≥. (C )4k ≤. (D )4k >. 4.若将方程289x x -=化为()225x k+=,则k 的值是 ( )(A ) 4. (B ) 4-. (C )8. (D )8-. 5.如图,在ABC △中,点D 、E 分别是AB 、AC 的中点,则下列结论不正确...的是( ) (A )2BC DE =.(B )AD DE AC BC = (C )AD ABAE AC=.(D )4ABC ADE S S =△△.(第5题) (第7题) 6.在Rt △ABC 中,∠C =90°,若AB =5,cos B =45,则AC 等于 ( ) (A )125. (B )3 . (C )4 . (D )5. 7. 如图,由二次函数2y ax bx c =++的图象可知,不等式20ax bx c ++<的解集是 (A )31x -<<. (B )1x >. (C )3x <-或1x >. (D )3x <-.8.如图,直线6+=kx y (k <0)与y 轴、x 轴分别交于点A 、B ,平行于x 轴的直线CD 与y 轴、线段AB 分别交于点C 、D .若21=DB AD ,则点C 的坐标为 ( ) (A )(0,2). (B )(0,3). (C )(0,4). (D )(0,6) 二、填空题(本大题共6小题,每小题3分,共18分)(第8题)xy BAC DOBAC9.(填“>”、“=”或“<”) 10.计算:×= .11.若m 是方程2320x x --=的一个解,则262m m -的值为 . 12.抛物线232y x =--x 的对称轴是直线 . 13.二次函数y =225x x +-的最小值是 .14.如图,抛物线2(0)y ax bx c a =++<的对称轴是过点(1,0)且平行于y 轴的直线,若点P (3,0)在该抛物线上,则a b c -+的值为 . (第14题)三、解答题(本大题有10小题,共78分)15.(6分)2cos30°. 16.(6分)解方程:(4)20x x -+=. 17.(6分)如图,在边长为1的小正方形组成的网格上有一个 △ABC (顶点A 、B 、C 均在格点上).(1)请在这个网格上画一个△A 1B 1C 1(顶点A 1、B 1、C 1都在格点上), 使△A 1B 1C 1与△ABC 相似,且它们的相似比为2;(2)直接写出△A 1B 1C 1的周长是 . (第17题) 18.(7分)将直尺摆放在三角板上,使直尺与三角板的边分别交于点D 、E 、F 、G ,如图①所示.已知∠CGD =42. (1)求∠CEF 的度数.(2)将直尺向下平移,使直尺的边缘通过点B ,交AC 于点H ,如图②所示.点H 、B 的读数分别为4、13.4,求BC 的长(精确到0.1)【参考数据:sin42︒=0.67,cos42︒=0.74,tan42︒=0.90】19.(7分)2011年,某厂投入600万元用于研制新产品的开发,计划以后每年以相同的增N M FEABC D长率投资,2013年投入1176万元用于研制新产品的开发.求该厂投入资金的年平均增长率. 20.(7分)如图菱形ABCD 中,点M 、N 在BD 上,ME ⊥BC 于E ,NF ⊥AB 于F .若NF =NM =4,ME =6.(1)求证:△BFN ∽△BEM . (2)求BN 的长.21.(8分)某中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x 米.(1)用含x 的代数式表示平行于墙的一边的长为 米,x 的取值范围为 ;(2)这个苗圃园的面积为88平方米时,求x 的值;22.(9分)如图,在平面直角坐标系中,抛物线c bx x y ++-=2经过点(1,5)、(4,2).P 是抛物线上x 轴上方一点,且在对称轴右侧,过点P 作PM ⊥x 轴于点M . (1)求这条抛物线所对应的函数关系式. (2)当OM=PM 时,求点P 的横坐标.(第21题)(第22题)23.(10分)【问题探究】如图①,在△ABC 中,D 、E 分别为边BC 、AB 的中点,∠DAC =40°,∠DAB =70°,AD=5cm ,求AC 的长.【方法拓展】如图②,在△ABC 中,D 为BC 边上的一点,且21DC BD ,∠DAC =120°,∠DAB =30°,AD=6cm ,求AC 的长.24.(12分)如图,在平面直角坐标系中,抛物线k x y +=22-21-)(与y 轴交于点A(0,1),过点A 和x 轴平行的直线与抛物线的另一个交点是点B ,P 为抛物线上一点(点P 不与A 、B 重合),设点P 的横坐标为m ,△PAB 的面积为S.(1)求k 的值; (2)求B 点坐标;(3)求S 与m 之间的函数关系式; (4)当S =4时,直接写出m 的值.(第24题)(第23题)图①图②参考答案一、选择题1. D2.C3.C4.B5.B6.B7.C8.C 二、填空题9. > 10.10 11.4 12.x=-3113.-6 14.0 三、解答题 15. 原式=32232-33=×(6分) 16. X=22± (6分)17. (1)图略 (3分) (2) 10226+(6分) 18. (1)48° (3分) (2)7.0 (7分) 19. 设该厂投入资金的年平均增长率为x.117616002=+)(x (3分)4.2-1=x (舍) 402=x % (7分) 答:(略)20. (1)证明:略 (3分) (2)BN=8 (7分)21. (1)(30-2x ), x ≤6<15 (4分)(2) x(30-2x)=88,111=x 42=x (舍) (8分)22.(1)∵抛物线c bx x y ++-=2经过点(1,5)、(4,2),∴⎩⎨⎧=++-=++-.2416,51c b c b ∴⎩⎨⎧==.2,4c b∴这条抛物线所对应的函数关系式为242y x x =-++. (4分) (2)设点P 的坐标为(m ,242m m -++).∵OM = PM ,∴242m m m =-++. (4分)解得132m +=,232m =. (6分) ∵点P 是抛物线上x 轴上方一点,且在对称轴右侧,∴m . (9分) (直接舍去2m 也可)23. (1)10 (4分) (2)18 (10分) 24. (1)k =3 (2分)(2)B (4,1) (5分)(3) 当 0< m <4时 S=m m 4-2+ 当m<0或m> 4时,S=m m 4-2 (9分) (4)2, 222+,22-2 (12分)。
华东师大版九年级数学上册月考测试卷及答案【下载】

华东师大版九年级数学上册月考测试卷及答案【下载】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2019-=( )A .2019B .-2019C .12019D .12019- 2.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-3.如果23a b -=,那么代数式22()2a b a b a a b+-⋅-的值为( ) A .3 B .23 C .33 D .434.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( )A .9天B .11天C .13天D .22天5.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x =的图像上,则1x ,2x ,3x 的大小关系是( )A .123x x x <<B .213x x x <<C .231x x x <<D .321x x x <<6.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( )A .主视图改变,左视图改变B .俯视图不变,左视图不变C .俯视图改变,左视图改变D .主视图改变,左视图不变7.如图,快艇从P 处向正北航行到A 处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为( )A .北偏东30°B .北偏东80°C .北偏西30°D .北偏西50°8.如图,A ,B 是反比例函数y=4x 在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则△OAB 的面积是( )A .4B .3C .2D .19.如图,在矩形ABCD 中,点E 是边BC 的中点,AE ⊥BD ,垂足为F ,则tan ∠BDE 的值是( )A .24B .14C .13D .2310.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分) 1.81的平方根是__________.2.分解因式:2x 3﹣6x 2+4x =__________.3.若函数y=mx 2+2x+1的图象与x 轴只有一个公共点,则常数m 的值是_____.4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.如图所示,一次函数y=ax+b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x 的方程ax+b=0的解是__________.6.如图抛物线y=x 2+2x ﹣3与x 轴交于A ,B 两点,与y 轴交于点C ,点P 是抛物线对称轴上任意一点,若点D 、E 、F 分别是BC 、BP 、PC 的中点,连接DE ,DF ,则DE+DF 的最小值为__________.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--2.关于x 的一元二次方程x 2+(2k+1)x+k 2+1=0有两个不等实根12,x x .(1)求实数k 的取值范围.(2)若方程两实根12,x x 满足|x 1|+|x 2|=x 1·x 2,求k 的值.3.如图,Rt △ABC 中,∠ABC=90°,以AB 为直径作⊙O ,点D 为⊙O 上一点,且CD=CB 、连接DO 并延长交CB 的延长线于点E(1)判断直线CD 与⊙O 的位置关系,并说明理由;(2)若BE=4,DE=8,求AC 的长.4.如图,正方形ABCD 中,M 为BC 上一点,F 是AM 的中点,EF ⊥AM ,垂足为F ,交AD 的延长线于点E ,交DC 于点N .(1)求证:△ABM ∽△EFA ;(2)若AB=12,BM=5,求DE 的长.5.为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如图条形统计图:请根据图中信息,解答下列问题:(1)本次调查一共抽取了名居民;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品.6.去年在我县创建“国家文明县城”行动中,某社区计划将面积为23600m的一块空地进行绿化,经投标由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的1.8倍,如果两队各自独立完成面积为2450m区域的绿化时,甲队比乙队少用4天.甲队每天绿化费用是1.05万元,乙队每天绿化费用为0.5万元.(1)求甲、乙两工程队每天各能完成多少面积(单位:2m)的绿化;(2)由于场地原因,两个工程队不能同时进场绿化施工,现在先由甲工程队绿化若干天,剩下的绿化工程由乙工程队完成,要求总工期不超过48天,问应如何安排甲、乙两个工程队的绿化天数才能使总绿化费用最少,最少费用是多少万元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、A4、B5、B6、D7、A8、B9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±32、2x(x﹣1)(x﹣2).3、0或14、10.5、x=26、三、解答题(本大题共6小题,共72分)1、2x2、(1)k﹥34;(2)k=2.3、(1)相切,略;(2)4、(1)略;(2)4.95、(1)50;(2)平均数是8.26;众数为8;中位数为8;(3)需要一等奖奖品100份.6、(1)甲、乙两工程队每天各完成绿化的面积分别是90m2、50m2;(2)甲队先做30天,乙队再做18天,总绿化费用最少,最少费用是40.5万元.。
2019-2020年九年级上学期第二次月考数学试卷

2019 --- 2020学年度第一学期第二次月考九年级数学试卷考试时间:120分钟 试卷满分:120分一.选择 (本题30分)1.从不同方向看一只茶壶(如图所示),你认为俯视图是 ( )2.如图所示sin B 的值为 ( )A .B .C .D .3.古希腊时间,人们认为最美人体的头顶到肚脐至足底的长度之比是215-(约为0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此,此外,最美人体头顶至咽喉的长度与咽喉至肚脐的长度之比为215-,若著名篮球运动员姚明满足上述两个条件,且腿长为1.39米,头顶至咽喉长度为33cm ,则其身高可能是( )A.195cm B 205cm C 215cm D 225cm4.如图,一飞镖游戏板,其中每个小正方形的大小相等,则随意投掷一个飞镖,击中黑色区域的概率是( ) A .38 B .12 C .14 D .135.如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为28,则OH 的长等于( ) A.3.5 B.4 C.7 D.146.若点(-1,1y ),(1,2y ),(4,3y )都在抛物线()m x y +--=22上,则1y ,2y ,3y 的大小关系是( ) A .y1<y2<y3B .y3<y2<y1C .y3<y1<y2D .y1<y3<y27.若G 为BC 中点,EG 交AB 于点F,且EF:FG=2:3,AF:FB= A 2:3 B 2:5 C 1:4 D 1:58.一次函数y =ax +b 和反比例函数y =cx 在同一平面直角坐标系中的图象如图所示,则二次函数y =a (x+b )2+c 的图象大致为 ( )9.点E,F 分别在菱形ABCD 的边AB,AD 上,且AE=DF,BF 交DE 于点G,延长BF 交CD 的延长线于点H,若=2,则的值为( )A .B .C .D .10.如图SZ -6,直线y=x-1与x 轴交于点B,与双曲线y=(x>0)交于点A.过点B 作x 轴的垂线,与双曲线交于点C,连接AC,且AB=AC,则k 的值为 ( )A .2B .3C .4D .6二.填空(共18分)11. _____33432=-+-==yx z y x z y x ,则若12.在一个不透明的袋子里装有黄色、白色乒乓球共40个,除颜色外其他完全相同.小明从这个袋子中随机摸出一球,放回.通过多次摸球实验后发现,摸到黄色球的概率稳定在15%附近,则袋中黄色球可能有 个.13.A 是反比例函数图象上一点,过点A 作AB ⊥y 轴于点B,点C,D 在x 轴上,且BC ∥AD,四边形ABCD 的面积为3,则这个反比例函数的表达式为 .14.二次函数4)3(2-+=x a y 的顶点坐标 ,对称轴直线 ,15.小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x ,乙立方体朝上一面上的数字为y ,这样就确定点P 的一个坐标(x ,y ),那么点P 落在双曲线xy 6=上的概率为 16.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E 、F分别在BC 和CD 上,下列结论:①CE=CF ;②∠AEB=75°;③BE+DF=EF ;④32+=ABCD s 正方形其中正确的序号是 (把你认为正确的都填上).三、解答题(共72分) 17、(本题满分8分)(1)解方程2x 2-4x -1=0. (2) 6tan 230°- sin 60°-2sin 45°.18、(本小题满分8分)四张形状相同的卡片如图所示.将卡片洗匀后背面朝上放置在桌面上,小明先随机抽取一张卡片,记下数字为x;小强再随机抽取一张卡片,记下数字为y.两人在此基础上共同协商一个游戏规则:当x>y 时小明获胜,否则小强获胜. (1)若小明抽取的卡片不放回,求小明获胜的概率;(2)若小明抽取的卡片放回后小强再随机抽取,问他们制定的游戏规则公平吗?请说明理由.19、(本题6分)如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A(2,-4),B(3,-2),C(6,-3). (1)画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)以点M 为位似中心,在网格中画出△A 1B 1C 1的位似图形△A 2B 2C 2,使△A 2B 2C 2与△A 1B 1C 1的相似比为2∶1.写出A2的坐标20.(本题6分)已知关于x 的方程(x -3)(x -2)-p 2=0. (1)求证:无论p 取何值时,方程总有两个不相等的实数根; (2)设方程两实数根分别为x 1,x 2,且满足x 21+x 22=3x 1x 2 ,求实数p 的值.21.(本题6分)如图:小明想测量一颗大树AB 的高度,发现树的影子恰好落在土坡的坡面CD 和地面CB 上,测得CD=5.2m,BC=10m ,斜坡CD 的坡度i=1:2.4,且同一时间测得1米竹杆的影子长为2米,那么树的高度是多少?22.(本小题满分8分)某数学兴趣小组要测量朝阳三中大楼部分楼体的高度①中的CD 部分),在起点A 处测得大楼部分楼体CD 的顶端C 点的仰角为45°,底端D 点的仰角为30°,在同一剖面沿水平地面向前走14米到达B 处,测得顶端C 的仰角为71.6°(如图②所示),(1)求大楼的高度约为多少米?(2)求大楼部分楼体CD 的高度约为多少米?(结果精确到1米,参考数据:tan71.6≈3,2≈1.41,3≈1.73)②23、(本题满分8分)如图,已知在Rt △ABC 中∠ACB= 90°, AC> BC ,CD 是Rt △ABC 的高,E 是AC 的中点,ED 的延长线与CB 的延长线相交于点F 。
第一学期九年级数学第二次月考试卷(含解析)

第一学期九年级数学第二次月考试卷(含解析)一、选择题1.二次函数y =x 2﹣6x 图象的顶点坐标为( ) A .(3,0) B .(﹣3,﹣9)C .(3,﹣9)D .(0,﹣6)2.二次函数y=﹣(x ﹣1)2+5,当m≤x≤n 且mn <0时,y 的最小值为2m ,最大值为2n ,则m+n 的值为( ) A .B .2C .D .3.如图,在Rt ABC ∆中,AC BC =,52AB =,以AB 为斜边向上作Rt ABD ∆,90ADB ∠=︒.连接CD ,若7CD =,则AD 的长度为( )A .32或42B .3或4C .22或42D .2或44.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员小兵每周对各小组合作学习的情况进行了综合评分.下表是其中一周的统计数据: 组 别 1 2 3 4 5 6 7 分 值90959088909285这组数据的中位数和众数分别是 A .88,90 B .90,90 C .88,95 D .90,95 5.已知二次函数y=-x 2+2mx+2,当x<-2时,y 的值随x 的增大而增大,则实数m ( ) A .m=-2B .m>-2C .m≥-2D .m≤-26.如图,在由边长为1的小正方形组成的网格中,点A ,B ,C ,D 都在格点上,点E 在AB 的延长线上,以A 为圆心,AE 为半径画弧,交AD 的延长线于点F ,且弧EF 经过点C ,则扇形AEF 的面积为( )A .58B .58πC .54πD 57.分别写有数字﹣4,0,﹣1,6,9,2的六张卡片,除数字外其它均相同,从中任抽一张,则抽到偶数的概率是()A.16B.13C.12D.238.已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定9.在六张卡片上分别写有13,π,1.5,5,0,2六个数,从中任意抽取一张,卡片上的数为无理数的概率是()A.16B.13C.12D.5610.已知一组数据共有20个数,前面14个数的平均数是10,后面6个数的平均数是15,则这20个数的平均数是()A.23B.1.15C.11.5D.12.511.若圆锥的底面半径为2,母线长为5,则圆锥的侧面积为()A.5πB.10πC.20πD.40π12.一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为()A.19B.13C.12D.2313.不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是()A.13B.14C.15D.1614.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是()A.233π-B.233π-C.3π-D.3π-15.方程x2=4的解是()A.x=2 B.x=﹣2 C.x1=1,x2=4 D.x1=2,x2=﹣2二、填空题16.已知∠A=60°,则tan A=_____.17.如图,将△ABC绕点C顺时针旋转90°得到△EDC,若点A、D、E在同一条直线上,∠ACD=70°,则∠EDC的度数是_____.18.如图,Rt△ABC中,∠C=90°,AC=4,BC=3,点D是AB边上一点(不与A、B重合),若过点D的直线截得的三角形与△ABC相似,并且平分△ABC的周长,则AD的长为____.19.把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是_____.20.若线段AB=10cm,点C是线段AB的黄金分割点,则AC的长为_____cm.(结果保留根号)21.某厂一月份的总产量为500吨,通过技术更新,产量逐月提高,三月份的总产量达到720吨.若平均每月增长率是,则可列方程为__.22.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2r cm=,扇形的圆心角120θ=,则该圆锥的母线长l为___cm.23.一元二次方程x2﹣4=0的解是._________24.一个不透明的口袋中装有若干只除了颜色外其它都完全相同的小球,若袋中有红球6只,且摸出红球的概率为35,则袋中共有小球_____只.25.方程290x的解为________.26.数据1、2、3、2、4的众数是______.27.如图,点C 是以AB 为直径的半圆上一个动点(不与点A 、B 重合),且AC+BC=8,若AB=m (m 为整数),则整数m 的值为______.28.已知关于x 的一元二次方程(m ﹣1)x 2+x+1=0有实数根,则m 的取值范围是 . 29.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)的图像上部分点的横坐标x 和纵 坐标y 的对应值如下表 x … -1 0123 … y…-3 -3 -1 39…关于x 的方程ax 2+bx +c =0一个负数解x 1满足k <x 1<k +1(k 为整数),则k =________.30.如图,在四边形ABCD 中,∠BAD =∠BCD =90°,AB +AD =8cm .当BD 取得最小值时,AC 的最大值为_____cm .三、解答题31.如图,Rt △FHG 中,∠H=90°,FH ∥x 轴,=0.6GHFH,则称Rt △FHG 为准黄金直角三角形(G 在F 的右上方).已知二次函数21y ax bx c =++的图像与x 轴交于A 、B 两点,与y轴交于点E (0,3-),顶点为C (1,4-),点D 为二次函数22(1)0.64(0)y a x m m m =--+->图像的顶点.(1)求二次函数y 1的函数关系式;(2)若准黄金直角三角形的顶点F 与点A 重合、G 落在二次函数y 1的图像上,求点G 的坐标及△FHG 的面积;(3)设一次函数y=mx+m 与函数y 1、y 2的图像对称轴右侧曲线分别交于点P 、Q. 且P 、Q 两点分别与准黄金直角三角形的顶点F 、G 重合,求m 的值并判断以C 、D 、Q 、P 为顶点的四边形形状,请说明理由.32.2019年12月17日,我国第一艘国产航母“山东舰”在海南三亚交付海军.如图,“山东舰”在一次试水测试中,航行至M 处,观测指挥塔P 位于南偏西30方向,在沿正南方向以30海里/小时的速度匀速航行2小时后,到达N 处,再观测指挥塔P 位于南偏西45︒方向,若继续向南航行.求“山东舰”与指挥塔之间的最近距离为多少海里?(结果保留根号)33.解方程:(1)2620x x ++= (2)2(3)3(3)x x x -=-34.如图,在平行四边形ABCD 中,过点B 作BE CD ⊥,垂足为E ,连接AE ,F 为AE 上一点,且BFE C ∠=∠. (1)求证:ABF EAD .(2)若4AB =,3BE =,72AD =,求BF 的长.35.甲、乙、丙三人进行乒乓球比赛.他们通过摸球的方式决定首场比赛的两个选手:在一个不透明的口袋中放入两个红球和一个白球,这些球除颜色外其他都相同,将它们搅匀,三人从中各摸出一个球,摸到红球的两人即为首场比赛选手.求甲、丙两人成为比赛选手的概率.(请用画树状图或列表等方法写出分析过程并给出结果.)四、压轴题36.已知,如图Rt △ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点P 为AC 的中点,Q 从点A 运动到B ,点Q 运动到点B 停止,连接PQ ,取PQ 的中点O ,连接OC ,OB . (1)若△ABC ∽△APQ ,求BQ 的长;(2)在整个运动过程中,点O 的运动路径长_____;(3)以O 为圆心,OQ 长为半径作⊙O ,当⊙O 与AB 相切时,求△COB 的面积.37.如图,AB 是⊙O 的直径,AF 是⊙O 的弦,AE 平分BAF ∠,交⊙O 于点E ,过点E 作直线ED AF ⊥,交AF 的延长线于点D ,交AB 的延长线于点C .(1)求证:CD 是⊙O 的切线; (2)若10,6AB AF ==,求AE 的长.38.翻转类的计算问题在全国各地的中考试卷中出现的频率很大,因此初三(5)班聪慧的小菲同学结合2011年苏州市数学中考卷的倒数第二题对这类问题进行了专门的研究。
九年级上第一学期第二次月考数学试卷

九年级上第一学期第二次月考数学试卷一、选择题1.方程 x 2=4的解是( ) A .x 1=x 2=2B .x 1=x 2=-2C .x 1=2,x 2=-2D .x 1=4,x 2=-42.如图,OA 是⊙O 的半径,弦BC ⊥OA ,D 是优弧BC 上一点,如果∠AOB =58º,那么∠ADC 的度数为( )A .32ºB .29ºC .58ºD .116º3.已知关于x 的函数y =x 2+2mx +1,若x >1时,y 随x 的增大而增大,则m 的取值范围是( ) A .m ≥1B .m ≤1C .m ≥-1D .m ≤-14.已知Rt △ABC 中,∠C=900,AC=2,BC=3,则下列各式中,正确的是( ) A .2sin 3B =; B .2cos 3B =; C .2tan 3B =; D .以上都不对;5.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,点M 是AB 上的一点,点N 是CB 上的一点,43=BM CN ,当∠CAN 与△CMB 中的一个角相等时,则BM 的值为( )A .3或4B .83或4C .83或6D .4或66.如图,⊙O 的直径BA 的延长线与弦DC 的延长线交于点E ,且CE =OB ,已知∠DOB =72°,则∠E 等于( )A .18°B .24°C .30°D .26°7.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =-- 8.已知二次函数y =(a ﹣1)x 2﹣x+a 2﹣1图象经过原点,则a 的取值为( ) A .a =±1B .a =1C .a =﹣1D .无法确定9.下列函数中属于二次函数的是( ) A .y =12x B .y =2x 2-1C .y =23x +D .y =x 2+1x+1 10.将二次函数y =x 2的图象沿y 轴向上平移2个单位长度,再沿x 轴向左平移3个单位长度,所得图象对应的函数表达式为( ) A .y =(x +3)2+2B .y =(x ﹣3)2+2C .y =(x +2)2+3D .y =(x ﹣2)2+311.某同学在解关于x 的方程ax 2+bx +c =0时,只抄对了a =1,b =﹣8,解出其中一个根是x =﹣1.他核对时发现所抄的c 是原方程的c 的相反数,则原方程的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .有一个根是x =1D .不存在实数根12.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .1213.小明同学发现自己一本书的宽与长之比是黄金比约为0.618.已知这本书的长为20cm ,则它的宽约为( ) A .12.36cmB .13.6cmC .32.386cmD .7.64cm14.下列条件中,一定能判断两个等腰三角形相似的是( ) A .都含有一个40°的内角 B .都含有一个50°的内角 C .都含有一个60°的内角D .都含有一个70°的内角15.“一般的,如果二次函数y =ax 2+bx +c 的图象与x 轴有两个公共点,那么一元二次方程ax 2+bx +c =0有两个不相等的实数根.——苏科版《数学》九年级(下册)P 21”参考上述教材中的话,判断方程x 2﹣2x =1x﹣2实数根的情况是 ( ) A .有三个实数根B .有两个实数根C .有一个实数根D .无实数根二、填空题16.已知扇形半径为5cm ,圆心角为60°,则该扇形的弧长为________cm . 17.设x 1、x 2是关于x 的方程x 2+3x -5=0的两个根,则x 1+x 2-x 1•x 2=________. 18.关于x 的方程(m ﹣2)x 2﹣2x +1=0是一元二次方程,则m 满足的条件是_____. 19.如图,△ABC 中,AB >AC ,D ,E 两点分别在边AC ,AB 上,且DE 与BC 不平行.请填上一个你认为合适的条件:_____,使△ADE∽△ABC.(不再添加其他的字母和线段;只填一个条件,多填不给分!)20.如图,点O是△ABC的内切圆的圆心,若∠A=100°,则∠BOC为_____.21.如图,直线y=12x﹣2与x轴、y轴分别交于点A和点B,点C在直线AB上,且点C的纵坐标为﹣1,点D在反比例函数y=kx的图象上,CD平行于y轴,S△OCD=52,则k的值为________.22.如图,已知△ABC是面积为3的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则△AEF的面积等于_____(结果保留根号).23.如图,△ABC中,AB=AC=5,BC=6,AD⊥BC,E、F分别为AC、AD上两动点,连接CF、EF,则CF+EF的最小值为_____.24.甲、乙两人在100米短跑训练中,某5次的平均成绩相等,甲的方差是0.12,乙的方差是0.05,这5次短跑训练成绩较稳定的是_____.(填“甲”或“乙”)25.某服装店搞促销活动,将一种原价为56元的衬衣第一次降价后,销售量仍然不好,又进行第二次降价,两次降价的百分率相同,现售价为31.5元,设降价的百分率为x,则列出方程是______________.26.设二次函数y=x2﹣2x﹣3与x轴的交点为A,B,其顶点坐标为C,则△ABC的面积为_____.27.若一个圆锥的侧面展开图是一个半径为3cm,圆心角为120°的扇形,则该圆锥的底面半径为__________cm.28.一次安全知识测验中,学生得分均为整数,满分10分,这次测验中甲、乙两组学生人数都为6人,成绩如下:甲:7,9,10,8,5,9;乙:9,6,8,10,7,8.(1)请补充完整下面的成绩统计分析表:平均分方差众数中位数甲组89乙组5388(2)甲组学生说他们的众数高于乙组,所以他们的成绩好于乙组,但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出一条支持乙组学生观点的理由_____________________________.29.如图,四边形ABCD中,∠A=∠B=90°,AB=5cm,AD=3cm,BC=2cm,P是AB 上一点,若以P、A、D为顶点的三角形与△PBC相似,则PA=_____cm.30.如图,二次函数y=x(x﹣3)(0≤x≤3)的图象,记为C1,它与x轴交于点O,A1;将C1点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;……若P(2020,m)在这个图象连续旋转后的所得图象上,则m=_____.三、解答题31.在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的顶点A(-3,0),与y轴交于点B (0,4),在第一象限内有一点P(m,n),且满足4m+3n=12.(1)求二次函数解析式.(2)若以点P为圆心的圆与直线AB、x轴相切,求点P的坐标.(3)若点A关于y轴的对称点为点A′,点C在对称轴上,且2∠CBA+∠PA′O=90◦.求点C的坐标.32.如图1,已知抛物线y=﹣x2+bx+c交y轴于点A(0,4),交x轴于点B(4,0),点P是抛物线上一动点,试过点P作x轴的垂线1,再过点A作1的垂线,垂足为Q,连接AP.(1)求抛物线的函数表达式和点C的坐标;(2)若△AQP∽△AOC,求点P的横坐标;(3)如图2,当点P位于抛物线的对称轴的右侧时,若将△APQ沿AP对折,点Q的对应点为点Q′,请直接写出当点Q′落在坐标轴上时点P的坐标.33.抛物线y=﹣x2+bx+c的对称轴为直线x=2,且顶点在x轴上.(1)求b、c的值;(2)画出抛物线的简图并写出它与y轴的交点C的坐标;(3)根据图象直接写出:点C关于直线x=2对称点D的坐标;若E(m,n)为抛物线上一点,则点E关于直线x=2对称点的坐标为(用含m、n的式子表示).34.如图,在▱ABCD中,点E是边AD上一点,延长CE到点F,使∠FBC=∠DCE,且FB与AD相交于点G.(1)求证:∠D=∠F;(2)用直尺和圆规在边AD上作出一点P,使△BPC∽△CDP,并加以证明.(作图要求:保留痕迹,不写作法.)35.如图,点C 是线段AB 上的任意一点(C 点不与A B 、点重合),分别以AC BC 、为边在直线AB 的同侧作等边三角形ACD 和等边三角形BCE ,AE 与CD 相交于点M ,BD 与CE 相交于点N .(1)求证: DB AE =; (2)求证: //MN AB ;(3)若AB 的长为12cm ,当点C 在线段AB 上移动时,是否存在这样的一点C ,使线段MN 的长度最长?若存在,请确定C 点的位置并求出MN 的长;若不存在,请说明理由. 四、压轴题36.已知,如图1,⊙O 是四边形ABCD 的外接圆,连接OC 交对角线BD 于点F ,延长AO 交BD 于点E ,OE=OF.(1)求证:BE=FD ;(2)如图2,若∠EOF=90°,BE=EF ,⊙O 的半径25AO =,求四边形ABCD 的面积; (3)如图3,若AD=BC ;①求证:22•AB CD BC BD +=;②若2•12AB CD AO ==,直接写出CD 的长. 37.在平面直角坐标系xOy 中,对于任意三点A ,B ,C ,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的外延矩形.点A ,B ,C 的所有外延矩形中,面积最小的矩形称为点A ,B ,C 的最佳外延矩形.例如,图中的矩形,,都是点A ,B ,C 的外延矩形,矩形是点A ,B ,C 的最佳外延矩形.(1)如图1,已知A (-2,0),B (4,3),C (0,). ①若,则点A ,B ,C 的最佳外延矩形的面积为 ;②若点A ,B ,C 的最佳外延矩形的面积为24,则的值为 ; (2)如图2,已知点M (6,0),N (0,8).P (,)是抛物线上一点,求点M ,N ,P 的最佳外延矩形面积的最小值,以及此时点P 的横坐标的取值范围;(3)如图3,已知点D (1,1).E (,)是函数的图象上一点,矩形OFEG 是点O ,D ,E 的一个面积最小的最佳外延矩形,⊙H 是矩形OFEG 的外接圆,请直接写出⊙H 的半径r 的取值范围.38.研究发现:当四边形的对角线互相垂直时,该四边形的面积等于对角线乘积的一半,如图1,已知四边形ABCD 内接于O ,对角线AC BD =,且AC BD ⊥.(1)求证:AB CD =; (2)若O 的半径为8,弧BD 的度数为120︒,求四边形ABCD 的面积;(3)如图2,作OM BC ⊥于M ,请猜测OM 与AD 的数量关系,并证明你的结论. 39.翻转类的计算问题在全国各地的中考试卷中出现的频率很大,因此初三(5)班聪慧的小菲同学结合2011年苏州市数学中考卷的倒数第二题对这类问题进行了专门的研究。
2019年秋九年级第二次月考数学试题

2019年秋九年级第二次月考数学试卷一.选择题(共12小题,每小题3分,计36分)1.下列方程中,是一元二次方程的是()A.2x2﹣7=3y+1 B.2x﹣3=0 C.x2﹣=1 D.x2﹣4x+8=02.已知抛物线y=﹣x2+4x+3,则该抛物线的顶点坐标为()A.(1,1)B.(4,11) C.(4,﹣5)D.(﹣4,11)3.点(2,﹣1)关于原点对称的点的坐标为()A.(2,1)B.(﹣2,1)C.(1,﹣2)D.(﹣2,﹣1)4.如图,在⊙O中,C为弦AB上一点,AC=2,BC=6,⊙O的半径为5,则OC=()A . B.4 C.3 D .5.若⊙O的半径等于5cm,P是直线l上的一点,OP=5cm,则直线l与圆的位置关系是()A.相离 B.相切 C.相交 D.相切或相交6.若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>57.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1+x)2=315 B.560(1﹣x)2=315 C.560(1﹣2x)2=315 D.560(1﹣x2)=3158.下列图案是一副扑克牌的四种花色,其中既是轴对称图形又是中心对称图形的是()A .B .C .D .9.如图,将△ABC绕点C顺时针旋转40°得△A′B′C,若AC⊥A′B′,则∠BAC等于()A.50°B.60°C.70°D.80°10.如图,AB是⊙O的直径,CD为弦,CD⊥AB且相交于点E,则下列结论中不成立的是()A.∠A=∠D B .=C.∠ACB=90°D.∠COB=3∠D11.已知二次函数y=x2+bx+c的图象过点A(1,m),B(3,m),若点M(﹣2,y1),N(﹣1,y2),K(8,y3)也在二次函数y=x2+bx+c的图象上,则下列结论正确的是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y212.如图,如果从半径为3cm 的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为()A.2cm B .cm C.4cm D .cm二.填空题(共6小题,每小题3分,计18分)13.方程(x﹣3)2=x﹣3的根是.14.若(x2+y2)2﹣5(x2+y2)﹣6=0,则x2+y2=.15.要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请队参赛.16.抛物线y=﹣x2﹣2x+m,若其顶点在x轴上,则m=.17.如图,在Rt△ABC中,∠C=90°,∠B=70°,△ABC的内切圆⊙O与边AB、BC、CA分别相切于点D、E、F,则∠DEF的度数为°18.已知等腰三角形ABC中,AB=AC,三角形的外接圆半径OB=5cm,圆心O到BC的距离为3cm,则AB的长.三.解答题(共8小题,6、6、7、7、8、10、10、12分,计66分)19.已知x1=1是关于x的方程x2+mx﹣3=0的一个根,求m的值及方程的另一根x2.20.在宽为20m,长为32m的矩形耕地上,修筑同样宽的三条道路,两条纵向,一条横向,横向与纵向互相垂直,(如图),把耕地分成大小相等的六块作试验田,要使实验地面积为570m2,问道路应为多宽?21.如图,AB为⊙O的直径,BE切⊙O于点B,连接AE交⊙O于点C,D是BE的中点.求证:CD是⊙O的切线.22.如图,在10×10的正方形网格中,每个小正方形的边长均为单位1,在方格中作图:(1)作△ABC关于直线MN的轴对称图形△A1B1C1.(2)作△ABC关于点O的中心对称图形△A2B2C2.23.如图,AB是⊙O 的直径,=,连接ED、BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.(1)若OA=CD=2,求阴影部分的面积;(2)求证:DE=DM.24.图中是一副三角板,45°的三角板Rt△DEF的直角顶点D恰好在30°的三角板Rt△ABC斜边AB的中点处,∠A=30°,∠E=45°,∠EDF=∠ACB=90°,DE交AC于点G,GM⊥AB于M.(1)如图①,当DF经过点C时,作CN⊥AB于N,求证:AM=DN;(2)如图②,当DF∥AC时,DF交BC于H,作HN⊥AB于N,(1)的结论仍然成立,请你说明理由.25.某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单位:元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义;(2)求线段AB所表示的y1与x之间的函数表达式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?26.如图,抛物线y=x2﹣2x+c的顶点A在直线l:y=x﹣5上.(1)求抛物线顶点A的坐标;(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD的形状;(3)在直线l上是否存在一点P,使以点P、A、B、D为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.。
学校2019届九年级上学期第二次月考数学试题(答案不完整)

绝密★启用前2018-2019学年第一学期第二次月考九年级数学试题卷I (选择题)一、选择题 (本题共计 12 小题 ,每题 4 分 ,共计48分 , )1. 我国主要银行的商标设计基本上都融入了中国古代钱币的图案,下图所示是我国四大银行的行标图案,其中是轴对称图形而不是中心对称图形的是( )2. 已知点 关于 轴的对称点坐标为 ,则点 关于原点的对称点的坐标为( ) A.3. B.4. C.5. D.3. 下列说法中正确的是( )A.垂直于半径的直线是圆的切线B.圆的切线垂直于半径C.经过半径的外端的直线是圆的切线D.圆的切线垂直于过切点的半径 4. 关于 的方程 的根的情况是( ) A.有两个不相等的实数根 B.有两个相等的实数根 C.有两个实数根D.没有实数根5. 在平面直角坐标系中, 各顶点的坐标分别为: , , ,以 为位似中心, ′ ′与 位似,若 点的对应点 ′的坐标为 ,则 点的对应点 ′坐标为( ) A.B.C. D.6.如图,反比例函数的图象经过矩形 的边 的中点 ,则矩形 的面积为( )7. 如图所示的两个圆盘中,指针落在每一个数上的机会均等,那么指针同时落在偶数的概率是( )A.B.C.D.A.B.C.D.A.B.C.D.8. 如图,在 中, 是 的中点, 交 于点 ,则 与 的面积比为( )9 .如图是二次函数 的图象的一部分,对称轴是直线 .① ; ② ; ③不等式 的解集是 ;④若 , 是抛物线上的两点,则 . 上述 个判断中,正确的是( )A.①②B.①②④C.①③④D.②③④10. 如图已知扇形 的半径为 ,圆心角的度数为 ,若将此扇形围成一个圆锥的侧面,则围成的圆锥的底面积为( )11. 如图,直径为 的半圆绕直径 的端点 顺时针旋转 ,点 的对应点为 ′,则图中阴影部分的面积是( )A.π B.π C.π D. πA.B.C.D.A. πB. πC. πD. π12. 函数和在第一象限内的图象如图所示,点是的图象上一动点,作轴于点,交的图象于点,作轴于点,交的图象于点,给出如下结论:①与的面积相等;②与始终相等;③四边形的面积大小不会发生变化;④,其中正确的结论序号是()A.①②③B.②③④C.①③④D.①②④卷II(非选择题)二、填空题(本题共计 6 小题,每题 4 分,共计24分,)13. 二次函数配方后为,则________.14. 已知双曲线经过点,那么等于________.15. 如图,要使与△DAC相似,则只需添加一个适当的条件是________(填一个即可)(15题图)16. 已知是的内接三角形,且,,则的直径等于________.17. 如图,在中,在上,、交于,若,且,则________.(17图)(18图)18.如图,正比例函数的图象与反比例函数在第一象限的图象交于点,过点作轴的垂线,垂足为点,且的面积为.若点为反比例函数在第一象限图象上的一点,点在轴上,且使最小,则点的坐标为________.三、解答题(19题8分,20,21题10分;22,23,24 题12分;25题14分,共计78分)19.在一个不透明的袋子中装有仅颜色不同的个小球,其中红球个,黑球个.先从袋中取出个红球,再从袋子中随机摸出个球,将“摸出黑球”记为事件,填空:若为必然事件,则的值为________,若为随机事件,则的取值为________;若从袋中随机摸出个球,正好红球、黑球各个,画树状图或列表求这个事件的概率.20.如图,是抛物线形拱桥,当拱顶离水面米时,水面宽米.若水面下降米,则水面宽度将增加多少米?21.如图,一次函数的图象与反比例函数的图象交于点,,交轴于点,交轴于点.求反比例函数和一次函数的表达式;连接,,求的面积;根据图象,直接写出时的取值范围.22.22.在钝角三角形中,,,动点从点出发到点止,动点从点出发到点止,点运动的速度为,点运动的速度为,如果两点同时开始运动,那么,若AD=AE,求值.若△ADE和△ABC相似,求的值.23. 已知:三个顶点的坐标分别为,,.(1)画出关于轴对称的;(2)以点为位似中心,将放大为原来的倍,得到,请在网格中画出,并写出点的坐标.24. 已知:如图是的外接圆,,和的延长线交于点,且.求证:是的切线;若,,求的半径.25.如图,已知抛物线的对称轴为直线,且抛物线经过,两点,与轴交于点.若直线经过、两点,求直线和抛物线的解析式;在抛物线的对称轴上找一点,使点到点的距离与到点的距离之和最小,求出点的坐标;设点为抛物线的对称轴上的一个动点,求使为直角三角形的点的坐标.19.(1) 3 2(2)画树状图得:∵共有种等可能的结果,从袋中随机摸出个球,正好红球、黑球各个的有种情况,∴从袋中随机摸出个球,正好红球、黑球各个的概率为:.20.解:建立平面直角坐标系,设横轴通过,纵轴通过中点且通过点,则通过画图可得知为原点,抛物线以轴为对称轴,且经过,两点,和可求出为的一半米,抛物线顶点坐标为,通过以上条件可设顶点式,其中可通过代入点坐标,到抛物线解析式得出:,所以抛物线解析式为,当水面下降米,通过抛物线在图上的观察可转化为:当时,对应的抛物线上两点之间的距离,也就是直线与抛物线相交的两点之间的距离,可以通过把代入抛物线解析式得出:,解得:,所以水面宽度增加到米,比原先的宽度当然是增加了米.21,反比例函数的表达式是,一次函数的表达式是;解:∵把代入得:,∴,,∴,,答:的面积是;解:根据图象和、的坐标得出时的取值范围是:或.23.24.(1)证明:连接.∵,∴.又∵是的弦,∴垂直平分.∴.又∵,∴.∴.∴是的切线.(2)解:设.∵,是的切线,∴.∵,∴,∴由勾股定理求出:.又∵是的切线,∴.∴,.∴,∴.∴该圆的半径是.25.(1)依题意得:,解之得:,∴抛物线解析式为∵对称轴为,且抛物线经过,∴把、分别代入直线,得,解之得:,∴直线的解析式为;(2)设直线与对称轴的交点为,则此时的值最小.把代入直线得,,∴,即当点到点的距离与到点的距离之和最小时的坐标为;(3)设,又∵,,∴,,,①若点为直角顶点,则即:解之得:;②若点为直角顶点,则即:解之得:,③若点为直角顶点,则即:解之得:,;综上所述的坐标为或或或.。
九年级上册第二次月考数学试题 (含答案) (精选5套试题) (1)

九年级上学期第二次月考数学试卷一、选择题(每小题3分,共30分)1.下列关于x的方程:①ax2+bx+c=0;②3(x﹣9)2﹣(x+1)2=1;③x+3=;④(a2+a+1)x2﹣a=0;⑤=x﹣1,其中一元二次方程的个数是()A.1 B.2 C.3 D.42.用配方法解一元二次方程x2﹣4x=5时,此方程可变形为()A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=9 3.下面图形中是中心对称但不是轴对称图形的是()A.平行四边形B.长方形C.菱形D.正方形4.菱形具有而矩形不具有的性质是()A.对角相等B.四边相等C.对角线互相平分D.四角相等5.目前我国建立了比较完善的经济困难学生资助体系.某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A.438(1+x)2=389 B.389(1+x)2=438C.389(1+2x)2=438 D.438(1+2x)2=3896.如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是()A.24 B.16 C.4D.27.已知:如图,在矩形ABCD中,E,F,G,H分别为边AB,BC,CD,DA的中点.若AB=2,AD=4,则图中阴影部分的面积为()A.3 B.4 C.6 D.88.三角形的两边长分别为2和6,第三边是方程x2﹣10x+21=0的解,则第三边的长为()A.7 B.3 C.7或3 D.无法确定9.下列说法错误的是()A.一组对边平行且一组对角相等的四边形是平行四边形B.每组邻边都相等的四边形是菱形C.对角线互相垂直的平行四边形是正方形D.四个角都相等的四边形是矩形10.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12D.16二、填空题(每小题3分,共27分)11.将方程(x+1)2=2x化成一般形式为,其二次项是,一次项是,常数项是.12.若一元二次方程ax2﹣bx﹣2016=0有一根为x=﹣1,则a+b=.13.已知四边形ABCD中,∠A=∠B=∠C=90°,若添加一个条件即可判定该四边形是正方形,那么这个条件可以是.14.若关于x的一元二次方程mx2+3x﹣4=0有实数根,则m.15.如图,在矩形ABCD中,对角线AC与BD相交于O点,且AB=OA=2cm,则BD的长为cm,BC的长为cm.16.如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的度数是度.17.菱形两条对角线长度比为1:,则菱形较小的内角的度数为度.18.已知菱形ABCD的边长为6,∠A=60°,如果点P是菱形内一点,且PB=PD=2,那么AP的长为.19.如图:矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为.三、解答题(共43分)20.解下列方程:(1)x2﹣18=7x(用配方法解)(2)4x(x﹣1)=1(用配方法解)(3)2x2﹣4x﹣1=0 (用公式法解)(4)(2﹣3x)+(3x﹣2)2=0 (用因式法解)21.如图,在△ABC中,AD平分∠BAC,DE∥AC,DF∥A B.求证:四边形AEDF是菱形.22.关于x的方程kx2+(k+2)x+=0有两个不相等的实数根;(1)求k的取值范围;(2)是否存在实数k,使方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,请说明理由.23.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.24.某商场在“五•一”节里实行让利销售,全部商品一律按九折销售.这样每天所获得的利润恰是销售收入的,如果第一天的销售收入是4万元,并且每天的销售收入都有增长,第三天的利润是1.25万元.(1)求第三天的销售收入是多少万元?(2)求第二天和第三天销售收入平均每天的增长率是多少?四.附加题:(附加题20分)25.分别把带有指针的圆形转盘A、B分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.(1)试用列表或画树状图的方法,求欢欢获胜的概率;(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.26.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t 秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.参考答案与试题解析一、选择题(每小题3分,共30分)1.下列关于x的方程:①ax2+bx+c=0;②3(x﹣9)2﹣(x+1)2=1;③x+3=;④(a2+a+1)x2﹣a=0;⑤=x﹣1,其中一元二次方程的个数是()A.1 B.2 C.3 D.4【考点】一元二次方程的定义.【分析】根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.【解答】解:①当a=0时,ax2+bx+c=0是一元一次方程;②3(x﹣9)2﹣(x+1)2=1是一元二次方程;③x+3=是分式方程;④(a2+a+1)x2﹣a=0是一元二次方程;⑤=x﹣1是无理方程,故选:B.2.用配方法解一元二次方程x2﹣4x=5时,此方程可变形为()A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=9【考点】解一元二次方程-配方法.【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.【解答】解:∵x2﹣4x=5,∴x2﹣4x+4=5+4,∴(x﹣2)2=9.故选D.3.下面图形中是中心对称但不是轴对称图形的是()A.平行四边形B.长方形C.菱形 D.正方形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、平行四边形是中心对称但不是轴对称图形,故本选项正确;B、长方形是中心对称也是轴对称图形,故本选项错误;C、菱形是中心对称也是轴对称图形,故本选项错误;D、正方形是中心对称也是轴对称图形,故本选项错误.故选A.4.菱形具有而矩形不具有的性质是()A.对角相等 B.四边相等C.对角线互相平分D.四角相等【考点】矩形的性质;菱形的性质.【分析】菱形和矩形都是平行四边形,具有平行四边形的所有性质,菱形还具有独特的性质:四边相等,对角线垂直;矩形具有独特的性质:对角线相等,邻边互相垂直.【解答】解:A、对角相等,菱形和矩形都具有的性质,故A错误;B、四边相等,菱形的性质,矩形不具有的性质,故B正确;C、对角线互相平分,菱形和矩形都具有的性质,故C错误;D、四角相等,矩形的性质,菱形不具有的性质,故D错误;故选:B.5.目前我国建立了比较完善的经济困难学生资助体系.某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元,设每半年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A.438(1+x)2=389 B.389(1+x)2=438 C.389(1+2x)2=438 D.438(1+2x)2=389 【考点】由实际问题抽象出一元二次方程.【分析】先用含x的代数式表示去年下半年发放给每个经济困难学生的钱数,再表示出今年上半年发放的钱数,令其等于438即可列出方程.【解答】解:设每半年发放的资助金额的平均增长率为x,则去年下半年发放给每个经济困难学生389(1+x)元,今年上半年发放给每个经济困难学生389(1+x)2元,由题意,得:389(1+x)2=438.故选B.6.如图,菱形ABCD的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD的周长是()A.24 B.16 C.4D.2【考点】菱形的性质;勾股定理.【分析】由菱形ABCD的两条对角线相交于O,AC=6,BD=4,即可得AC⊥BD,求得OA 与OB的长,然后利用勾股定理,求得AB的长,继而求得答案.【解答】解:∵四边形ABCD是菱形,AC=6,BD=4,∴AC⊥BD,OA=AC=3,OB=BD=2,AB=BC=CD=AD,∴在Rt△AOB中,AB==,∴菱形的周长是:4AB=4.故选:C.7.已知:如图,在矩形ABCD中,E,F,G,H分别为边AB,BC,CD,DA的中点.若AB=2,AD=4,则图中阴影部分的面积为()A.3 B.4 C.6 D.8【考点】矩形的性质;三角形中位线定理.【分析】阴影部分的面积等于矩形面积减去四个直角三角形的面积.【解答】解:矩形的面积=2×4=8;S=×1×2=1;△AEF∴阴影部分的面积=8﹣1×4=4.故选B.8.三角形的两边长分别为2和6,第三边是方程x2﹣10x+21=0的解,则第三边的长为()A.7 B.3 C.7或3 D.无法确定【考点】解一元二次方程-因式分解法;三角形三边关系.【分析】将已知的方程x2﹣10x+21=0左边分解因式,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解得到原方程的解为3或7,利用三角形的两边之和大于第三边进行判断,得到满足题意的第三边的长.【解答】解:x2﹣10x+21=0,因式分解得:(x﹣3)(x﹣7)=0,解得:x1=3,x2=7,∵三角形的第三边是x2﹣10x+21=0的解,∴三角形的第三边为3或7,当三角形第三边为3时,2+3<6,不能构成三角形,舍去;当三角形第三边为7时,三角形三边分别为2,6,7,能构成三角形,则第三边的长为7.故选A9.下列说法错误的是()A.一组对边平行且一组对角相等的四边形是平行四边形B.每组邻边都相等的四边形是菱形C.对角线互相垂直的平行四边形是正方形D.四个角都相等的四边形是矩形【考点】多边形.【分析】分别利用平行四边形、矩形、菱形、正方形的判定方法进而得出即可.【解答】解;A、一组对边平行且一组对角相等的四边形是平行四边形,首先由两直线平行,同旁内角互补及等角的补角相等得出另一组对角相等,然后根据两组对角分别相等的四边形是平行四边形可知是个真命题,正确,不合题意;B、每组邻边都相等的四边形是菱形,正确,不合题意;C、对角线互相垂直的平行四边形是菱形,故此选项错误,符合题意;D、四个角都相等的四边形是矩形,正确,不合题意;故选:C.10.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12D.16【考点】翻折变换(折叠问题);矩形的性质.【分析】根据平行线的性质和折叠的性质易证得△EFB′是等边三角形,继而可得△A′B′E中,B′E=2A′E,则可求得B′E的长,然后由勾股定理求得A′B′的长,继而求得答案.【解答】解:在矩形ABCD中,∵AD∥BC,∴∠DEF=∠EFB=60°,∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠EFB=∠EFB′=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E=2,AB=A′B′,在△EFB′中,∵∠DEF=∠EFB=∠EB′F=60°∴△EFB′是等边三角形,Rt△A′EB′中,∵∠A′B′E=90°﹣60°=30°,∴B′E=2A′E,而A′E=2,∴B′E=4,∴A′B′=2,即AB=2,∵AE=2,DE=6,∴AD=AE+DE=2+6=8,∴矩形ABCD的面积=AB•AD=2×8=16.故答案为:16.二、填空题(每小题3分,共27分)11.将方程(x+1)2=2x化成一般形式为x2+1=0,其二次项是x2,一次项是0,常数项是1.【考点】一元二次方程的一般形式.【分析】根据完全平方公式,移项、合并同类项,可得答案.【解答】解:(x+1)2=2x化成一般形式是x2+1=0,其二次项是x2,一次项0,常数项为1,故答案为:x2+1=0,x2,0,112.若一元二次方程ax2﹣bx﹣2016=0有一根为x=﹣1,则a+b=2016.【考点】一元二次方程的解.【分析】由方程有一根为﹣1,将x=﹣1代入方程,整理后即可得到a+b的值.【解答】解:把x=﹣1代入一元二次方程ax2﹣bx﹣2016=0得:a+b﹣2015=0,即a+b=2016.故答案是:2016.13.已知四边形ABCD中,∠A=∠B=∠C=90°,若添加一个条件即可判定该四边形是正方形,那么这个条件可以是AB=AD或AC⊥BD等.【考点】正方形的判定;矩形的判定与性质.【分析】由已知可得四边形ABCD是矩形,则可根据有一组邻边相等或对角线互相垂直的矩形是正方形添加条件.【解答】解:由∠A=∠B=∠C=90°可知四边形ABCD是矩形,根据根据有一组邻边相等或对角线互相垂直的矩形是正方形,得到应该添加的条件为:AB=AD或AC⊥BD等.故答案为:AB=AD或AC⊥BD等.14.若关于x的一元二次方程mx2+3x﹣4=0有实数根,则m≥且m≠0.【考点】根的判别式;一元二次方程的定义.【分析】根据一元二次方程的定义和△的意义得到m≠0且△≥0,即32﹣4×m×(﹣4)≥0,求出两个不等式的公共部分即可.【解答】解:∵关于x的一元二次方程mx2+3x﹣4=0有实数根,∴m≠0且△≥0,即32﹣4×m×(﹣4)≥0,解得m≥﹣,∴m的取值范围为m≥﹣且m≠0.故答案为:≥﹣且m≠0.15.如图,在矩形ABCD中,对角线AC与BD相交于O点,且AB=OA=2cm,则BD的长为4cm,BC的长为2cm.【考点】矩形的性质;三角形内角和定理;等边三角形的判定与性质;勾股定理.【分析】根据矩形的性质得到OA=OC,OB=OD,AC=BD,∠ABC=90°,推出BD=AC=2OA=4,OA=OB=AB=2,得出等边△OAB,求出∠ACB=30°,根据勾股定理即可求出B C.【解答】解:∵矩形ABCD,∴OA=OC,OB=OD,AC=BD,∠ABC=90°,∴OA=OB,∵AB=OA=2,∴BD=AC=2OA=4,OA=OB=AB=2,∴△OAB是等边三角形,∴∠BAC=60°,∴∠ACB=90°﹣60°=30°,由勾股定理得:BC===2.故答案为:4,2.16.如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的度数是22.5度.【考点】等腰三角形的性质;三角形内角和定理;正方形的性质.【分析】根据正方形的性质,易知∠CAE=∠ACB=45°;等腰△CAE中,根据三角形内角和定理可求得∠ACE的度数,进而可由∠BCE=∠ACE﹣∠ACB得出∠BCE的度数.【解答】解:∵四边形ABCD是正方形,∴∠CAB=∠BCA=45°;△ACE中,AC=AE,则:∠ACE=∠AEC==67.5°;∴∠BCE=∠ACE﹣∠ACB=22.5°.故答案为22.5.17.菱形两条对角线长度比为1:,则菱形较小的内角的度数为60度.【考点】菱形的性质;解直角三角形.【分析】根据已知可得到菱形的较小的内角的一半的度数,从而就不难求得较小内角的度数.【解答】解:因菱形的对角线互相垂直平分,且每一条对角线平分一组对角,可得菱形较小的内角的一半的正切值为1:,则菱形较小的内角的一半为30°,则菱形较小的内角的度数为60°.18.已知菱形ABCD的边长为6,∠A=60°,如果点P是菱形内一点,且PB=PD=2,那么AP的长为或.【考点】菱形的性质.【分析】根据题意得,应分P与A在BD的同侧与异侧两种情况进行讨论.【解答】解:当P与A在BD的异侧时:连接AP交BD于M,∵AD=AB,DP=BP,∴AP⊥BD(到线段两端距离相等的点在垂直平分线上),在直角△ABM中,∠BAM=30°,∴AM=AB•cos30°=3,BM=AB•sin30°=3,∴PM==,∴AP=AM+PM=4;当P与A在BD的同侧时:连接AP并延长AP交BD于点MAP=AM﹣PM=2;当P与M重合时,PD=PB=3,与PB=PD=2矛盾,舍去.AP的长为4或2.故答案为4或2.19.如图:矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为28.【考点】平移的性质.【分析】运用平移个观点,五个小矩形的上边之和等于AD,下边之和等于BC,同理,它们的左边之和等于AB,右边之和等于CD,可知五个小矩形的周长之和为矩形ABCD的周长.【解答】解:由勾股定理,得AB==6,将五个小矩形的所有上边平移至AD,所有下边平移至BC,所有左边平移至AB,所有右边平移至CD,∴五个小矩形的周长之和=2(AB+BC)=2×(6+8)=28.故答案为:28.三、解答题(共43分)20.解下列方程:(1)x2﹣18=7x(用配方法解)(2)4x(x﹣1)=1(用配方法解)(3)2x2﹣4x﹣1=0 (用公式法解)(4)(2﹣3x)+(3x﹣2)2=0 (用因式法解)【考点】解一元二次方程-因式分解法;解一元二次方程-直接开平方法;解一元二次方程-配方法;解一元二次方程-公式法.【分析】(1)移项后配方,开方,即可得出两个一元一次方程,求出方程的解即可;(2)整理后配方,开方,即可得出两个一元一次方程,求出方程的解即可;(3)求出b2﹣4ac的值,再代入公式求出即可;(4)先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)x2﹣18=7x,x2﹣7x=18,x2﹣7x+()2=18+()2,(x﹣)2=,x﹣=,x1=9,x2=﹣2;(2)4x(x﹣1)=1,4x2﹣4x+1=1+1,(2x﹣1)2=2,2x﹣1=,x1=,x2=;(3)2x2﹣4x﹣1=0,b2﹣4ac=(﹣4)2﹣4×2×(﹣1)=24,x=,x1=,x2=;(4)(2﹣3x)+(3x﹣2)2=0,(2﹣3x)(1+2﹣3x)=0,2﹣3x=0,1+2﹣3x=0,x1=,x2=1.21.如图,在△ABC中,AD平分∠BAC,DE∥AC,DF∥A B.求证:四边形AEDF是菱形.【考点】菱形的判定.【分析】由已知易得四边形AEDF是平行四边形,由角平分线和平行线的定义可得∠F AD=∠FDA,∴AF=DF,∴四边形AEDF是菱形.【解答】证明:∵AD是△ABC的角平分线,∴∠EAD=∠F AD,∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∠EAD=∠ADF,∴∠F AD=∠FDA∴AF=DF,∴四边形AEDF是菱形.22.关于x的方程kx2+(k+2)x+=0有两个不相等的实数根;(1)求k的取值范围;(2)是否存在实数k,使方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,请说明理由.【考点】根的判别式;根与系数的关系.【分析】(1)由于x的方程kx2+(k+2)x+=0有两个不相等的实数根,由此可以得到判别式是正数,这样就可以得到关于k的不等式,解不等式即可求解;(2)不存在符合条件的实数k.设方程kx2+(k+2)x+=0的两根分别为x1、x2,由根与系数关系有:x1+x2=﹣,x1•x2=,又+=,然后把前面的等式代入其中即可求k,然后利用(1)即可判定结果【解答】解:(1)由△=[(k+2)]2﹣4×k•>0,∴k>﹣1又∵k≠0,∴k的取值范围是k>﹣1,且k≠0;(2)不存在符合条件的实数k理由:设方程kx2+(k+2)x+=0的两根分别为x1、x2,由根与系数关系有:x1+x2=﹣,x1•x2=,又∵+==0,∴=0,解得k=﹣2,由(1)知,k=﹣2时,△<0,原方程无实解,∴不存在符合条件的k的值.23.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.【考点】矩形的判定;正方形的判定.【分析】(1)利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而由等腰三角形的性质得出∠ADB=90°,即可得出答案;(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.【解答】(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,∴四边形AEBD是平行四边形,∵AB=AC,AD是∠BAC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AEBD是矩形;(2)当∠BAC=90°时,理由:∵∠BAC=90°,AB=AC,AD是∠BAC的角平分线,∴AD=BD=CD,∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.24.某商场在“五•一”节里实行让利销售,全部商品一律按九折销售.这样每天所获得的利润恰是销售收入的,如果第一天的销售收入是4万元,并且每天的销售收入都有增长,第三天的利润是1.25万元.(1)求第三天的销售收入是多少万元?(2)求第二天和第三天销售收入平均每天的增长率是多少?【考点】一元二次方程的应用.【分析】(1)直接根据这样每天所获得的利润恰是销售收入的进行计算;(2)设第二天和第三天销售收入平均每天的增长率是m,则根据第一天的4万元增长到6.25万元列方程求解.【解答】解:(1)1.25÷=6.25(万元)所以第三天的销售收入是6.25万元;(2)设第二天和第三天销售收入平均每天的增长率是m,则4(1+m)2=6.25.解得m1=25%,m2=﹣2.25%(不合题意舍去).答:第二天和第三天销售收入平均每天的增长率约是25%.四.附加题:(附加题20分)25.分别把带有指针的圆形转盘A、B分成4等份、3等份的扇形区域,并在每一个小区域内标上数字(如图所示).欢欢、乐乐两个人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.(1)试用列表或画树状图的方法,求欢欢获胜的概率;(2)请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.【考点】游戏公平性;列表法与树状图法.【分析】(1)列举出所有情况,看指针所指两区域的数字之积为奇数的情况占总情况的多少即可求得欢欢胜的概率;(2)由(1)进而求得乐乐胜的概率,比较两个概率即可.【解答】解:(1)共有12种情况,积为奇数的情况有6种情况,所以欢欢胜的概率是=;(2)由(1)得乐乐胜的概率为1﹣=,两人获胜的概率相同,所以游戏公平.26.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t 秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.【考点】相似形综合题.【分析】(1)利用t表示出CD以及AE的长,然后在直角△CDF中,利用直角三角形的性质求得DF的长,即可证明;(2)易证四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,据此即可列方程求得t的值;(3)分两种情况讨论即可求解.【解答】(1)证明:∵直角△ABC中,∠C=90°﹣∠A=30°.∵CD=4t,AE=2t,又∵在直角△CDF中,∠C=30°,∴DF=CD=2t,∴DF=AE;解:(2)∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,即当t=10时,▱AEFD是菱形;(3)当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).理由如下:当∠EDF=90°时,DE∥B C.∴∠ADE=∠C=30°∴AD=2AE∵CD=4t,∴DF=2t=AE,∴AD=4t,∴4t+4t=60,∴t=时,∠EDF=90°.当∠DEF=90°时,DE⊥EF,∵四边形AEFD是平行四边形,∴AD∥EF,∴DE⊥AD,∴△ADE是直角三角形,∠ADE=90°,∵∠A=60°,∴∠DEA=30°,∴AD=AE,AD=AC﹣CD=60﹣4t,AE=DF=CD=2t,∴60﹣4t=t,解得t=12.综上所述,当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).北师大版九年级上学期第二次月考数学试卷一、精心选一选,相信你一定能选对!(每题3分,共36分)1.如图,在平行四边形ABCD中,AB=2,BC=3,∠ABC、∠BCD的平分线分别交AD于点E、F,则EF的长是()A.3 B.2C.1.5D.12.如图,EF过▱ABCD对角线的交点O,并交AD于E,交BC于F,若AB=4,BC=5,OE=1.5,则四边形EFCD的周长是()A.16 B.14 C.12 D.103.平行四边形一边长为10,那么它的对角线长度和可以为()A.8和12B.20和30 C.6和8 D.4和64.不能判定四边形ABCD为平行四边形的题设是()A.AB平行且等于CD B.∠A=∠C,∠B=∠DC.AB=AD,BC=CD D.AB=CD,AD=BC5.下面性质中菱形有而矩形没有的是()A.邻角互补B.内角和为360°C.对角线相等D.对角线互相垂直6.正方形具有而菱形不一定具有的性质是()A.对角线相等B.对角线互相垂直平分C.对角线平分一组对角D.四条边相等7.顺次连接任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形8.下列各图中,不是中心对称图形的是()A.B.C.D.9.下列命题中,真命题是()A.有两边相等的平行四边形是菱形B.有一个角是直角的四边形是直角梯形C.四个角相等的菱形是正方形D.两条对角线相等的四边形是矩形10.如图,四边形ABCD为矩形纸片,把纸片ABCD折叠,使点B恰好落在CD边的中点E 处,折痕为AF,若CD=6,则AF等于()A.B.C.D.811.如图,在平行四边形ABCD中,点E、F分别在边AB、CD上移动,且AE=CF,则四边形不可能是()A.平行四边形B.矩形C.菱形D.梯形12.如图,菱形ABCD的对角线交于点O,AC=8cm,BD=6cm,则菱形的高为()A.cm B.cm C.cm D.cm二、细心填一填,相信你填得又快又准!(每题4分,共20分)13.▱ABCD中,∠A=50°,则∠B=,∠C=,∠D.14.已知菱形两条对角线的长分别为5cm和8cm,则这个菱形的面积是cm2.15.矩形一个角的平分线分矩形一边为1cm和3cm两部分,则这个矩形的面积为cm2.16.对角线长为2的正方形的周长为,面积为.17.等腰梯形的上、下底分别是3cm和5cm,一个角是135°,则等腰梯形的面积为.三、用心做一做,培养你的综合运用能力,相信你是最棒的18.如图,E、F是平行四边形ABCD对角线AC上的两点,且AE=CF.求证:△ADF≌△CBE.19.已知:如图,平行四边形ABCD的对角线AC、BD相交于点O,E、F是直线AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形.20.已知:如图中,AD是∠A的角平分线,DE∥AC,DF∥A B.求证:四边形AEDF是菱形.21.如图,已知E是▱ABCD中BC边的中点,连接AE并延长AE交DC的延长线于点F.(1)求证:△ABE≌△FCE.(2)连接AC、BF,若∠AEC=2∠ABC,求证:四边形ABFC为矩形.22.证明:等腰梯形上底的中点与下底两端点的距离相等.23.如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥B D.求证:四边形OCED是菱形.24.等腰梯形ABCD中,AD∥BC,AB=CD,DE⊥BC与E,AE=BE,BF⊥AE与F,线段BF与图中的哪一条线段相等?先写出您的猜想,再加以证明.25.如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.(1)试说明EO=FO;(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论.参考答案与试题解析一、精心选一选,相信你一定能选对!(每题3分,共36分)1.如图,在平行四边形ABCD中,AB=2,BC=3,∠ABC、∠BCD的平分线分别交AD于点E、F,则EF的长是()A.3 B.2 C. 1.5D.1考点:平行四边形的性质;角平分线的定义;等腰三角形的判定与性质.专题:数形结合.分析:根据平行四边形的性质可知∠DFC=∠FCB,又因为CF平分∠BCD,所以∠DCF=∠FCB,则∠DFC=∠DCF,则DF=DC,同理可证AE=AB,那么EF就可表示为AE+FD﹣BC=2AB﹣BC,继而可得出答案.解答:解:∵平行四边形ABCD,∴∠DFC=∠FCB,又CF平分∠BCD,∴∠DCF=∠FCB,∴∠DFC=∠DCF,∴DF=DC,同理可证:AE=AB,∴2AB﹣BC=AE+FD﹣BC=EF=1cm.故选D.点评:本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题,难度不大,关键是解题技巧的掌握.2.如图,EF过▱ABCD对角线的交点O,并交AD于E,交BC于F,若AB=4,BC=5,OE=1.5,则四边形EFCD的周长是()A.16 B.14 C.12 D.10考点:平行四边形的性质.分析:先利用平行四边形的性质求出AB、CD、BC、AD的值,可利用全等的性质得到△AEO ≌△CFO,即可求出四边形的周长.解答:解:已知AB=4,BC=5,OE=1.5,根据平行四边形的性质,AB=CD=4,BC=AD=5,在△AEO和△CFO中OA=OC,∠OAE=∠OCF,∠AOE=∠COF,所以△AEO≌△CFO,OE=OF=1.5,则EFCD的周长=ED+CD+CF+EF=(DE+CF)+AB+EF=5+4+3=12.则EFCD的周长是12.故选C.点评:本题考查平行四边形的性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.3.平行四边形一边长为10,那么它的对角线长度和可以为()A.8和12 B.20和30 C.6和8 D.4和6考点:平行四边形的性质;三角形三边关系.分析:平行四边形的长为10的一边,与两条对角线的一半构成的三角形的另两边应满足三角形的三边关系,即两边之和大于第三边,两边之差小于第三边.根据这个结论可以判断选择哪一个.。