线性代数-习题课-例题
线性代数行列式计算习题课

3 2
a bc d
a
3
b a c d
1 x2
b b
3
c a b d
1
2
a bc
d d
3 2
1
2
c c
3 2
r4 r3
a
x1
2
xn
x1 a b c d x1
n 1
a
b 2 2 x2 xn a b c d a n 1 b x 2 a
2 3 3 2
c d ( xi x j ) ni j 1c d a b a b c d
* c in *
6、 某 行 ( 列 ) 的 k倍 加 到 另 一 行 ( 列 ) 上 , 行 列 式 值 不 变
ri k r j ( c i k c j )
第 5页
行列式按行(列)展开
行列式等于它的任一行 ( 列 ) 各元素与其对应的代数余子 式乘积之和:
D n a i1 Ai1 a i 2 Ai 2 a 1 i A1 i a 2 i A 2 i a in A in a ni Ani
5 3 1 4 3
0 4 9
20
第16页
a. 行(列)元素之和相等的行列式
1 7. D 1 1 x 1 1 1 x 1 1
b
1 x 1 1 1 1
x 1 1 1 1
bx 1
c1 c 2 c1 c 3
x x x x 1 0
1 1 x 1 1 0 x
1 x 1 1 1
x 1 1 1 1
c1 c 4
1 a b 1
c1 x
x
1 b a 1 1 x 1
线性代数复旦版课后习题标准答案

线性代数习题及答案习题一1. 求下列各排列的逆序数.(1) 341782659; (2) 987654321;(3) n (n -1)…321; (4) 13…(2n -1)(2n )(2n -2)…2. 【解】(1) τ(341782659)=11; (2) τ(987654321)=36;(3) τ(n (n -1)…3²2²1)= 0+1+2 +…+(n -1)=(1)2n n -;(4) τ(13…(2n -1)(2n )(2n -2)…2)=0+1+…+(n -1)+(n -1)+(n -2)+…+1+0=n (n -1).4. 本行列式4512312123122xx x D x xx=的展开式中包含3x 和4x 的项.解: 设 123412341234()41234(1)i i i i i i i i i i i i D a a a a τ=-∑,其中1234,,,i i i i 分别为不同列中对应元素的行下标,则4D 展开式中含3x 项有(2134)(4231)333(1)12(1)32(3)5x x x x x x x x x ττ-⋅⋅⋅⋅+-⋅⋅⋅⋅=-+-=-4D 展开式中含4x 项有(1234)4(1)2210x x x x x τ-⋅⋅⋅⋅=.5. 用定义计算下列各行列式.(1)2000010300004; (2)12300020304501.【解】(1) D =(-1)τ(2314)4!=24; (2) D =12.6. 计算下列各行列式.(1)2141312112325062-----; (2) ab ac ae bdcd de bf cf ef-------; (3)10011001101ab c d ---; (4)1234234134124123.【解】(1) 125062312101232562r r D+---=--;(2) 1114111111D abcdef abcdef --==------; 210110111(3)(1)111011111;bcD a a bcd c c dd ddabcd ab ad cd --⎡--⎤=+-=+++--⎢⎥⎣⎦=++++ 321221133142144121023410234102341034101130113(4)160.1041202220044101231114r r c c r r c c r r r r c c r r D -+-+-++---====-------7. 证明下列各式.(1) 22222()111aab baa b b a b +=-; (2)2222222222222222(1)(2)(3)(1)(2)(3)0(1)(2)(3)(1)(2)(3)aa a ab b b bc c c c dd d d ++++++=++++++;(3) 232232232111()111a a a ab b ab bc ca b b cccc=++(4) 20000()000nn aba b D ad bc cdcd==-;(5)121111111111111nni i i i na a a a a ==++⎛⎫=+ ⎪⎝⎭+∑∏. 【证明】(1)1323223()()()2()201()()()()()2()21c c c c a b a b b a b ba b a b b a b a b b a b a b b a b a b a b a b--+--=--+--+==-=-=--左端右端.(2) 32213142412222-2-2232221446921262144692126021446921262144692126c c c c c c c c c c aa a a aa b b b b b b c c c c c c dd d d dd ---++++++++====++++++++左端右端.(3) 首先考虑4阶范德蒙行列式:2323232311()()()()()()()(*)11x x x a a a f x x a x b x c a b a c b c b b b ccc==------从上面的4阶范德蒙行列式知,多项式f (x )的x 的系数为2221()()()()(),11a aab bc ac a b a c b c ab bc ac b b cc++---=++但对(*)式右端行列式按第一行展开知x 的系数为两者应相等,故231123231(1),11a ab b cc+-(4) 对D 2n 按第一行展开,得22(1)2(1)2(1)00000(),n n n n ab abab ab D abcdcdc d c d dcad D bc D ad bc D ---=-=⋅-⋅=-据此递推下去,可得22(1)2(2)112()()()()()()n n n n n nD ad bc D ad bc D ad bc D ad bc ad bc ad bc ----=-=-==-=--=-2().nn D ad bc ∴=-(5) 对行列式的阶数n 用数学归纳法.当n =2时,可直接验算结论成立,假定对这样的n -1阶行列式结论成立,进而证明阶数为n 时结论也成立.按D n 的最后一列,把D n 拆成两个n 阶行列式相加:112211211111011111110111111101111111.n n nn n n a a a a D a a a a a a D ---++++=++=+但由归纳假设11121111,n n n i i D a a a a ---=⎛⎫+= ⎪⎝⎭∑从而有11211211121111111111.n n n n n i i nnnn n i i i i i i D a a a a a a a a a a a a a a a ---=-===⎛⎫+=+ ⎪⎝⎭⎛⎫⎛⎫++== ⎪ ⎪⎝⎭⎝⎭∑∑∑∏8. 计算下列n 阶行列式.(1) 111111n x x D x =(2) 122222222232222n D n=; (3)0000000000n x y x y D x y yx=. (4)n ij D a =其中(,1,2,,)ij a i j i j n =-= ; (5)21000121000120000021012n D =.【解】(1) 各行都加到第一行,再从第一行提出x +(n -1),得11111[(1)],11n x D x n x =+-将第一行乘(-1)后分别加到其余各行,得1111110[(1)](1)(1).01n n x D x n x n x x --=+-=+---(2) 213111222210000101001002012n r r n r r r r D n ---=-按第二行展开222201002(2)!.002002n n -=---(3) 行列式按第一列展开后,得1(1)(1)(1)10000000000000(1)0000000(1)(1).n n n n n nn nx y y x y x y D x y x y x y y x xyx xy yx y +-+-+=+-=⋅+⋅-⋅=+-(4)由题意,知11121212221212110122103123n n n n n nnn a a a n a a a D n a a a n n n --==----012211111111*********1111n n ------------后一行减去前一行自第三行起后一行减去前一行01221122111111200002000020000000022n n n n --------=-按第一列展开1122000201(1)(1)(1)(1)22n n n n n n -----=---按第列展开.(5) 210002000001000121001210012100012000120001200000210002100021012012012n D ==+122n n D D --=-.即有 112211n n n n D D D D D D ----=-==-=由 ()()()112211n n n n D D D D D D n ----+-++-=-得11,121n n D D n D n n -=-=-+=+. 9. 计算n 阶行列式.121212111n n n na a a a a a D a a a ++=+【解】各列都加到第一列,再从第一列提出11ni i a =+∑,得232323123111111,11n n nn i n i na a a a a a D a a a a a a a =+⎛⎫=++ ⎪⎝⎭+∑将第一行乘(-1)后加到其余各行,得2311110011.001001n nnn i ii i a a a D a a ==⎛⎫=+=+ ⎪⎝⎭∑∑10. 计算n 阶行列式(其中0,1,2,,i a i n ≠= ).1111123222211223322221122331111123n n n n nn n n n n nn n n n n n n n n n n na a a a ab a b a b a b D a b a b a b a b b b b b ----------------=.【解】行列式的各列提取因子1(1,2,,)n j a j n -= ,然后应用范德蒙行列式.3121232222312112123111131212311211111()().n n n n n n n n n n n n n j i n n j i n i j b b b b a a a a b b b b D a a a a a a a b b b b a a a a b b a a a a a ------≤<≤⎛⎫⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫-= ⎪⎝⎭∏11. 已知4阶行列式41234334415671122D =;试求4142A A +与4344A A +,其中4j A 为行列式4D 的第4行第j 个元素的代数余子式. 【解】41424142234134(1)(1)3912.344344567167A A +++=-+-=+= 同理43441569.A A +=-+=- 12. 用克莱姆法则解方程组.(1) 123123412342345,2 1, 2 2, 23 3.x x x x x x x x x x x x x x++=⎧⎪+-+=⎪⎨+-+=⎪⎪++=⎩(2) 121232343454556 1,56 0, 56 0, 560,5 1.x x x x x x x x x x x x x +=⎧⎪++=⎪⎪++=⎨⎪++=⎪+=⎪⎩ 【解】方程组的系数行列式为1110111013113121110131180;121052*********23141230123D -------=====≠-----1234511015101111211118;36;2211121131230323115011152111211136;18.1221121201330123D D D D --====---====--故原方程组有惟一解,为312412341,2,2,1.D D D D x x x x D D D D ========-12345123452)665,1507,1145,703,395,212.15072293779212,,,,.66513335133665D D D D D D x x x x x ===-==-=∴==-==-=13. λ和μ为何值时,齐次方程组1231231230,0,20x x x x x x x x x λμμ++=⎧⎪++=⎨⎪++=⎩ 有非零解?【解】要使该齐次方程组有非零解只需其系数行列式110,11121λμμ= 即(1)0.μλ-=故0μ=或1λ=时,方程组有非零解. 14. 问:齐次线性方程组12341234123412340,20,30,0x x x ax x x x x x x x x x x ax bx +++=⎧⎪+++=⎪⎨+-+=⎪⎪+++=⎩ 有非零解时,a ,b 必须满足什么条件?【解】该齐次线性方程组有非零解,a ,b 需满足11112110,113111a ab =-即(a +1)2=4b .15. 求三次多项式230123()f x a a x a x a x =+++,使得(1)0,(1)4,(2)3,(3)16.f f f f -====【解】根据题意,得0123012301230123(1)0;(1)4;(2)2483;(3)392716.f a a a a f a a a a f a a a a f a a a a -=-+-==+++==+++==+++=这是关于四个未知数0123,,,a a a a 的一个线性方程组,由于012348,336,0,240,96.D D D D D ====-=故得01237,0,5,2a a a a ===-= 于是所求的多项式为23()752f x x x =-+16. 求出使一平面上三个点112233(,),(,),(,)x y x y x y 位于同一直线上的充分必要条件. 【解】设平面上的直线方程为ax +by +c =0 (a ,b 不同时为0)按题设有1122330,0,0,ax by c ax by c ax by c ++=⎧⎪++=⎨⎪++=⎩ 则以a ,b ,c 为未知数的三元齐次线性方程组有非零解的充分必要条件为1122331101x y x y x y = 上式即为三点112233(,),(,),(,)x y x y x y 位于同一直线上的充分必要条件.习题 二1. 计算下列矩阵的乘积.(1)[]11321023⎡⎤⎢⎥-⎢⎥-⎢⎥⎢⎥⎣⎦=; (2) 500103120213⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦; (3) []32123410⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (4) ()111213112321222323132333a a a x x x x a a a x a a a x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦; (5) 11121321222331323310001101a a a a a a a a a ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦; (6) 1210103101010121002100230303⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦. 【解】 (1) 32103210;64209630-⎡⎤⎢⎥--⎢⎥⎢⎥-⎢⎥-⎣⎦(2)531⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦; (3) (10);(4) 3322211122233312211213311323322311()()()iji j i j a x a x a x a a x x a a x x a a x x ax x ==++++++++=∑∑(5)111212132122222331323233a a a a a a a a a a a a +⎡⎤⎢⎥+⎢⎥⎢⎥+⎣⎦; (6) 12520124004309⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦. 2. 设111111111⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦A ,121131214⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦B , 求(1)2-A B A ;(2) -A B B A ;(3) 22()()-=-A +B A B A B 吗? 【解】(1) 2422;400024⎡⎤⎢⎥-=⎢⎥⎢⎥⎣⎦A B A (2) 440;531311⎡⎤⎢⎥-=--⎢⎥⎢⎥--⎣⎦A B B A (3) 由于AB ≠BA ,故(A +B )(A -B )≠A 2-B 2.3. 举例说明下列命题是错误的.(1) 若2=A O , 则=A O ; (2) 若2=A A , 则=A O 或=A E ; (3) 若A X =A Y ,≠A O , 则X =Y . 【解】(1) 以三阶矩阵为例,取201,000000⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦0A A ,但A ≠0 (2) 令110000001-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,则A 2=A ,但A ≠0且A ≠E (3) 令11021,=,011121110⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=≠=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦A Y X 0 则AX =AY ,但X ≠Y . 4. 设11A λ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦, 求A 2,A 3,…,A k . 【解】2312131,,,.010101kk λλλ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A A A 5. 10010λλλ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦A =, 求23A ,A 并证明: 121(1)2000kk k kk k kk k k k λλλλλλ----⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A =. 【解】2322233223213302,03.0000λλλλλλλλλλλ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A =A = 今归纳假设121(1)2000kk k kk k kk k k k λλλλλλ----⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A =那么11211111(1)1020100000(1)(1)2,0(1)00k kk k k k k kk kk k kk k k k k k k k k λλλλλλλλλλλλλλλ+---+-++=-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦+⎡⎤+⎢⎥⎢⎥=+⎢⎥⎢⎥⎣⎦AA A = 所以,对于一切自然数k ,都有121(1)2.000kk k kk k kk k k k λλλλλλ----⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A = 6. 已知A P =PB ,其中10010000021001211⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦B =,P = 求A 及5A .【解】因为|P |= -1≠0,故由AP =PB ,得1100200,611-⎡⎤⎢⎥==⎢⎥⎢⎥--⎣⎦A PB P而51551()()100100100100210000210200.211001411611--==⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=--==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦⎣⎦A PB PP B P A 7. 设a b c d ba d cc d a b dcba ⎡⎤⎢⎥--⎢⎥⎢⎥--⎢⎥--⎣⎦A =,求|A |. 解:由已知条件,A 的伴随矩阵为22222222()()a b c d b a d ca b c d a b c d c d a b dcba *⎡⎤⎢⎥--⎢⎥-+++=-+++⎢⎥--⎢⎥--⎣⎦A =A 又因为*A A =A E ,所以有22222()a b c d -+++A =A E ,且0<A ,即 42222222224()()a b c d a b c d -++++++A=A A =AE于是有 2222422222()()a b c d a b c d =-+++=-+++A . 8. 已知线性变换112112212321331233232,3,232,2,45;3,x y y y z z x y y y y z z x y y y y z z =+=-+⎧⎧⎪⎪=-++=+⎨⎨⎪⎪=++=-+⎩⎩ 利用矩阵乘法求从123,,z z z 到123,,x x x 的线性变换. 【解】已知112233112233210,232415310,201013421124910116x y x y x y y z y z y z ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦-⎡⎤⎢⎥==-⎢⎥⎢⎥--⎣⎦X A Y Y B z X A Y A B z z, 从而由123,,z z z 到123,,x x x 的线性变换为11232123312342,1249,1016.x z z z x z z z x z z z =-++⎧⎪=-+⎨⎪=--+⎩ 9. 设A ,B 为n 阶方阵,且A 为对称阵,证明:'B A B 也是对称阵. 【证明】因为n 阶方阵A 为对称阵,即A ′=A , 所以 (B ′AB )′=B ′A ′B =B ′AB ,故'B A B 也为对称阵.10. 设A ,B 为n 阶对称方阵,证明:AB 为对称阵的充分必要条件是AB =BA . 【证明】已知A ′=A ,B ′=B ,若AB 是对称阵,即(AB )′=AB .则 AB =(AB )′=B ′A ′=BA , 反之,因AB =BA ,则(AB )′=B ′A ′=BA =AB ,所以,AB 为对称阵.11. A 为n 阶对称矩阵,B 为n 阶反对称矩阵,证明: (1) B 2是对称矩阵.(2) AB -BA 是对称矩阵,AB +BA 是反对称矩阵. 【证明】因A ′=A ,B ′= -B ,故(B 2)′=B ′²B ′= -B ²(-B )=B 2; (AB -BA )′=(AB )′-(BA )′=B ′A ′-A ′B ′= -BA -A ²(-B )=AB -BA ; (AB +BA )′=(AB )′+(BA )′=B ′A ′+A ′B ′= -BA +A ²(-B )= -(AB +BA ).所以B 2是对称矩阵,AB -BA 是对称矩阵,AB+BA 是反对称矩阵. 12. 求与A =1101⎡⎤⎢⎥⎣⎦可交换的全体二阶矩阵. 【解】设与A 可交换的方阵为ab cd ⎡⎤⎢⎥⎣⎦,则由 1101⎡⎤⎢⎥⎣⎦a b cd ⎡⎤⎢⎥⎣⎦=a b cd ⎡⎤⎢⎥⎣⎦1101⎡⎤⎢⎥⎣⎦, 得a cb d aa b cd cc d +++⎡⎤⎡⎤=⎢⎥⎢⎥+⎣⎦⎣⎦. 由对应元素相等得c =0,d =a ,即与A 可交换的方阵为一切形如0a b a ⎡⎤⎢⎥⎣⎦的方阵,其中a,b 为任意数. 13. 求与A =100012012⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦可交换的全体三阶矩阵. 【解】由于A =E +000002013⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦, 而且由111111222222333333000000,002002013013a b c a b c a b c a b c a b c a b c ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦可得111222333333232323023000023222.023333c b c c b c a b c c b c a a b b c c -⎡⎤⎡⎤⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦由此又可得1113232332322333230,230,20,30,2,3,232,233,c b c a a a c b c b b b c c b c c c =-==-===--=-=-所以2311233230,2,3.a a b c c b c b b ======-即与A 可交换的一切方阵为12332300203a b b b b b ⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦其中123,,a b b 为任意数.14. 求下列矩阵的逆矩阵.(1) 1225⎡⎤⎢⎥⎣⎦; (2) 123012001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; (3)121342541-⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦; (4) 1000120021301214⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (5) 520021000083052⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (6) ()1212,,,0n n a a a a a a ⎡⎤⎢⎥⎢⎥≠⎢⎥⎢⎥⎣⎦,未写出的元素都是0(以下均同,不另注). 【解】(1) 5221-⎡⎤⎢⎥-⎣⎦; (2) 12101201-⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦;(3) 12601741632142-⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦; (4) 100011002211102631511824124⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥--⎢⎥⎣⎦; (5) 120025000023058-⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦; (6) 12111n a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. 15. 利用逆矩阵,解线性方程组12323121,221,2.x x x x x x x ++=⎧⎪+=⎨⎪-=⎩【解】因123111102211102x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,而111002211≠- 故112311101111122.0221113122110221112x x x -⎡⎤⎡⎤-⎢⎥⎢⎥⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥-⎣⎦⎣⎦16. 证明下列命题:(1) 若A ,B 是同阶可逆矩阵,则(AB )*=B *A *. (2) 若A 可逆,则A *可逆且(A *)-1=(A -1)*. (3) 若AA ′=E ,则(A *)′=(A *)-1.【证明】(1) 因对任意方阵c ,均有c *c =cc *=|c |E ,而A ,B 均可逆且同阶,故可得|A |²|B |²B *A *=|AB |E (B *A *)=(AB ) *AB (B *A *)=(AB ) *A (BB *)A *=(AB ) *A |B |EA *=|A |²|B |(AB ) *.∵ |A |≠0,|B |≠0,∴ (AB ) *=B *A *.(2) 由于AA *=|A |E ,故A *=|A |A -1,从而(A -1) *=|A -1|(A -1)-1=|A |-1A . 于是A * (A -1) *=|A |A -1²|A |-1A =E ,所以(A -1) *=(A *)-1.(3) 因AA ′=E ,故A 可逆且A -1=A ′. 由(2)(A *)-1=(A -1) *,得(A *)-1=(A ′) *=(A *)′.17. 已知线性变换11232123312322,35,323,x y y y x y y y x y y y =++⎧⎪=++⎨⎪=++⎩ 求从变量123,,x x x 到变量123,,y y y 的线性变换. 【解】已知112233221,315323x y x y x y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦X A Y 且|A |=1≠0,故A 可逆,因而1749,637324---⎡⎤⎢⎥==-⎢⎥⎢⎥-⎣⎦Y A X X 所以从变量123,,x x x 到变量123,,y y y 的线性变换为112321233123749,637,324,y x x x y x x x y x x x =--+⎧⎪=+-⎨⎪=+-⎩ 18. 解下列矩阵方程.(1) 12461321-⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦X =; (2)211211210210111111--⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦X ; (3) 142031121101⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦X =; (4) 01010004310000120101010120-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦X .【解】(1) 令A =1213⎡⎤⎢⎥⎣⎦;B =4621-⎡⎤⎢⎥⎣⎦.由于13211--⎡⎤=⎢⎥-⎣⎦A 故原方程的惟一解为13246820.112127----⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦X A B 同理 (2) X =10001001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦; (3) X =11104⎡⎤⎢⎥⎢⎥⎣⎦; (4) X =210.03412-⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦19. 若k A =O (k 为正整数),证明:121()k --- E A =E +A +A ++A.【证明】作乘法212121()()k k k kk----=-----=-=E A E +A +A ++A E +A +A ++A A A A A E A E ,从而E -A 可逆,且121()k --- E A =E +A +A ++A20.设方阵A 满足A 2-A -2E =O ,证明A 及A +2E 都可逆,并求A -1及(A +2E )-1. 【证】因为A 2-A -2E =0,故212().2-=⇒-=A A E A E A E由此可知,A 可逆,且11().2-=-AA E同样地2220,64(3)(2)41(3)(2)4--=--=--+=---+=A A E A A E E ,A E A E E ,A E A E E.由此知,A +2E 可逆,且1211(2)(3)().44-+=--=-A E A E A E21. 设423110123⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦A =,2AB =A +B ,求B . 【解】由AB =A +2B 得(A -2E )B =A .而22310,1102121==-≠---A E 即A -2E 可逆,故11223423(2)110110121123143423386.1531102961641232129--⎡⎤⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==----⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦B A E A22. 设1-PAP =Λ. 其中1411--⎡⎤⎢⎥⎣⎦P =,1002-⎡⎤⎢⎥⎣⎦=Λ, 求10A . 【解】因1-P 可逆,且1141,113-⎡⎤=⎢⎥--⎣⎦P 故由1Λ-A =P P 得10110101101012121010()()141410331102113314141033110211331365136412421.34134031242--==⎡⎤⎢⎥---⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥--⎢⎥⎣⎦⎡⎤⎢⎥--⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥--⎢⎥⎣⎦⎡⎤-+-+⎡⎤==⎢⎥⎢⎥----⎣⎦⎣⎦AP P P PΛΛ23. 设m 次多项式01()m m f x a a x a x =+++ ,记01()mm f a a a =+++ A E A A ,()f A 称为方阵A 的m 次多项式.(1)12λλ⎡⎤⎢⎥⎣⎦A =, 证明12kk k λλ⎡⎤⎢⎥⎣⎦A =,12()()()f f f λλ⎡⎤=⎢⎥⎣⎦A ; (2) 设1-A =P BP , 证明1k k -B =PA P ,1()()f f -=B P A P . 【证明】 (1)232311232200,0λλλλ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦A A 即k =2和k =3时,结论成立. 今假设120,0kkk λλ⎡⎤=⎢⎥⎣⎦A 那么111111222000,00kk k k k k λλλλλλ+++⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦AA A = 所以,对一切自然数k ,都有120,0kkk λλ⎡⎤=⎢⎥⎣⎦A 而011101220111012212()1100().()mm mm m m m m m f a a a a a a a a a a a a f f λλλλλλλλλλ=⎡⎤⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎡⎤+=⎢⎥+⎣⎦⎡⎤=⎢⎥⎣⎦A E +A ++A++++++ (2) 由(1)与A =P -1BP ,得B =PAP -1.且B k =( PAP -1)k = PA k P -1,又0111011011()()().mm mm mm f a a a a a a a a a f ----=+++=+++=++=B E B BE PA PPA PP E A +A P P A P24. a b cd ⎡⎤⎢⎥⎣⎦A =,证明矩阵满足方程2()0x a d x ad bc -++-=.【证明】将A 代入式子2()x a d x ad bc -++-得222222()()10()()010000.00a d ad bc a b a b a d ad bc cd cd ad bca bc ab bd a adab bd ad bc ac cd cb d ac cdad d -++-⎡⎤⎡⎤⎡⎤=-++-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦-⎡⎤⎡⎤++++⎡⎤=-+⎢⎥⎢⎥⎢⎥-++++⎣⎦⎣⎦⎣⎦⎡⎤==⎢⎥⎣⎦A A E 0 故A 满足方程2()0x a d x ad bc -++-=. 25. 设n 阶方阵A 的伴随矩阵为*A ,证明:(1) 若|A |=0,则|*A |=0;(2) 1n *-=A A .【证明】(1) 若|A |=0,则必有|A *|=0,因若| A *|≠0,则有A *( A *)-1=E ,由此又得A =AE =AA *( A *)-1=|A |( A *)-1=0,这与| A *|≠0是矛盾的,故当|A | =0,则必有| A *|=0. (2) 由A A *=|A |E ,两边取行列式,得|A || A *|=|A |n ,若|A |≠0,则| A *|=|A |n -1 若|A |=0,由(1)知也有| A *|=|A |n -1.26. 设520032002100450000730041052062⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A =,B . 求(1) A B ; (2)B A ; (3) 1-A ;(4)|A |k(k 为正整数). 【解】 (1)232000109000046130329⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A B =; (2) 1980030130000331405222⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦B A =;(3) 1120025000023057--⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦A =; (4)(1)kk=-A .27. 用矩阵分块的方法,证明下列矩阵可逆,并求其逆矩阵.(1)1200025000003000001000001⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (2)003100212100230-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦; (3)20102020130010*******1⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. 【解】(1) 对A 做如下分块 12⎡⎤=⎢⎥⎣⎦A A A 00 其中1230012;,0102501⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦A A 12,A A 的逆矩阵分别为1112100523;,01021001--⎡⎤⎢⎥-⎡⎤⎢⎥==⎢⎥-⎢⎥⎣⎦⎢⎥⎣⎦A A 所以A 可逆,且1111252000210001.0000300010001----⎡⎤⎢⎥-⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦A AA 同理(2)11112121310088110044.110055230055----⎡⎤-⎢⎥⎢⎥⎢⎥⎡⎤⎢⎥⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦A A AA A (3)1110012211300222.001000001001-⎡⎤--⎢⎥⎢⎥⎢⎥--⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A习题 三1. 略.见教材习题参考答案.2. 略.见教材习题参考答案.3. 略.见教材习题参考答案.4. 略.见教材习题参考答案.5.112223334441,,,=+=+=+=+βααβααβααβαα,证明向量组1234,,,ββββ线性相关.【证明】因为1234123412341312342()2()0+++=+++⇒+++=+⇒-+-=ββββααααββββββββββ 所以向量组1234,,,ββββ线性相关.6. 设向量组12,,,r ααα线性无关,证明向量组12,,,r βββ也线性无关,这里12.i i +++ β=ααα【证明】 设向量组12,,,r βββ线性相关,则存在不全为零的数12,,,,r k k k 使得1122.r r k k k +++= 0βββ把12i i +++ β=ααα代入上式,得121232()()r r r r k k k k k k k +++++++++=0 ααα.又已知12,,,r ααα线性无关,故1220,0,0.r r r k k k k k k +++=⎧⎪++=⎪⎨⎪⎪=⎩该方程组只有惟一零解120r k k k ==== ,这与题设矛盾,故向量组12,,,r βββ线性无关.7. 略.见教材习题参考答案.8. 12(,,,),1,2,,i i i in i n ααα== α.证明:如果0ij a ≠,那么12,,,n ααα线性无关. 【证明】已知0ij a =≠A ,故R (A )=n ,而A 是由n 个n 维向量12(,,,),i i i in ααα= α1,2,,i n = 组成的,所以12,,,n ααα线性无关.9. 设12,,,,r t t t 是互不相同的数,r ≤n .证明:1(1,,,),1,2,,n i i i t t i r -== α是线性无关的.【证明】任取n -r 个数t r +1,…,t n 使t 1,…,t r ,t r +1,…,t n 互不相同,于是n 阶范德蒙行列式21111212111121110,11n n r r r n r r r n nnnt t t t t t t t tt t t ---+++-≠从而其n 个行向量线性无关,由此知其部分行向量12,,,r ααα也线性无关.10. 设12,,,s ααα的秩为r 且其中每个向量都可经12,,,r ααα线性表出.证明:12,,,r ααα为12,,,s ααα的一个极大线性无关组.【证明】若 12,,,r ααα (1) 线性相关,且不妨设12,,,t ααα (t <r ) (2)是(1)的一个极大无关组,则显然(2)是12,,,s ααα的一个极大无关组,这与12,,,s ααα的秩为r 矛盾,故12,,,r ααα必线性无关且为12,,,s ααα的一个极大无关组. 11. 求向量组1α=(1,1,1,k ),2α=(1,1,k ,1),3α=(1,2,1,1)的秩和一个极大无关组. 【解】把123,,ααα按列排成矩阵A ,并对其施行初等变换.1111111111111120010010101101001000111011001000k k k k kk k k ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥=→→→⎢⎥⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦⎣⎦A 当k =1时,123,,ααα的秩为132,,αα为其一极大无关组. 当k ≠1时,123,,ααα线性无关,秩为3,极大无关组为其本身.12. 确定向量3(2,,)a b =β,使向量组123(1,1,0),(1,1,1),==βββ与向量组1α=(0,1,1), 2α=(1,2,1),3α=(1,0,-1)的秩相同,且3β可由123,,ααα线性表出.【解】由于123123011120(,,);120011111000112112(,,),11010102a b b a ⎡⎤⎡⎤⎢⎥⎢⎥==→--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥==→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦A B αααβββ而R (A )=2,要使R (A )=R (B )=2,需a -2=0,即a =2,又12330112120(,,,),12001121112aa b b a ⎡⎤⎡⎤⎢⎥⎢⎥==→⎢⎥⎢⎥⎢⎥⎢⎥--+⎣⎦⎣⎦c αααβ 要使3β可由123,,ααα线性表出,需b -a +2=0,故a =2,b =0时满足题设要求,即3β=(2,2,0). 13. 设12,,,n ααα为一组n 维向量.证明:12,,,n ααα线性无关的充要条件是任一n 维向量都可经它们线性表出.【证明】充分性: 设任意n 维向量都可由12,,,n ααα线性表示,则单位向量12,,,n εεε,当然可由它线性表示,从而这两组向量等价,且有相同的秩,所以向量组12,,,n ααα的秩为n ,因此线性无关.必要性:设12,,,n ααα线性无关,任取一个n 维向量α,则12,,,n ααα线性相关,所以α能由12,,,n ααα线性表示.14. 若向量组(1,0,0),(1,1,0),(1,1,1)可由向量组α1,α2,α3线性表出,也可由向量组β1,β2,β3,β4线性表出,则向量组α1,α2,α3与向量组β1,β2,β3,β4等价.证明:由已知条件,1001103111R ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,且向量组(1,0,0),(1,1,0),(1,1,1)可由向量组α1,α2,α3线性表出,即两向量组等价,且123(,,)3R =ααα,又,向量组(1,0,0),(1,1,0),(1,1,1)可由向量组β1,β2,β3,β4线性表出,即两向量组等价,且1234(,,,)3R =ββββ,所以向量组α1,α2,α3与向量组β1,β2,β3,β4等价.15. 略.见教材习题参考答案.16. 设向量组12,,,m ααα与12,,,s βββ秩相同且12,,,m ααα能经12,,,s βββ线性表出.证明12,,,m ααα与12,,,s βββ等价.【解】设向量组12,,,m ααα (1)与向量组12,,,s βββ (2)的极大线性无关组分别为12,,,r ααα (3)和12,,,r βββ (4)由于(1)可由(2)线性表出,那么(1)也可由(4)线性表出,从而(3)可以由(4)线性表出,即1(1,2,,).ri ijjj ai r ===∑ αβ因(4)线性无关,故(3)线性无关的充分必要条件是|a ij |≠0,可由(*)解出(1,2,,)j j r = β,即(4)可由(3)线性表出,从而它们等价,再由它们分别同(1),(2)等价,所以(1)和(2)等价.17. 设A 为m ³n 矩阵,B 为s ³n 矩阵.证明:m ax{(),()}()()R R R R R ⎡⎤≤≤+⎢⎥⎣⎦A AB A B B .【证明】因A ,B 的列数相同,故A ,B 的行向量有相同的维数,矩阵⎡⎤⎢⎥⎣⎦A B 可视为由矩阵A 扩充行向量而成,故A 中任一行向量均可由⎡⎤⎢⎥⎣⎦A B 中的行向量线性表示,故()R R ⎡⎤≤⎢⎥⎣⎦A A B同理()R R ⎡⎤≤⎢⎥⎣⎦A B B故有m ax{(),()}R R R ⎡⎤≤⎢⎥⎣⎦A AB B又设R (A )=r ,12,,,i i ir ααα是A 的行向量组的极大线性无关组,R (B )=k , 12,,,j j jkβββ是B 的行向量组的极大线性无关组.设α是⎡⎤⎢⎥⎣⎦A B 中的任一行向量,则若α属于A 的行向量组,则α可由12,,,i i ir ααα表示,若α属于B 的行向量组,则它可由12,,,j j jkβββ线性表示,故⎡⎤⎢⎥⎣⎦A B 中任一行向量均可由12,,,i i ir ααα,12,,,j j jkβββ线性表示,故()(),R r k R R ⎡⎤≤+=+⎢⎥⎣⎦A AB B 所以有m ax{(),()}()()R R R R R ⎡⎤≤≤+⎢⎥⎣⎦A AB A B B .18. 设A 为s ³n 矩阵且A 的行向量组线性无关,K 为r ³s 矩阵.证明:B =KA 行无关的充分必要条件是R (K )=r .【证明】设A =(A s ,P s ³(n -s )),因为A 为行无关的s ³n 矩阵,故s 阶方阵A s 可逆. (⇒)当B =KA 行无关时,B 为r ³n 矩阵.r =R (B )=R (KA )≤R (K ),又K 为r ³s 矩阵R (K )≤r ,∴ R (K )=r . (⇐)当r =R (K )时,即K 行无关, 由B =KA =K (A s ,P s ³(n -s ))=(KA s ,KP s ³(n -s)) 知R (B )=r ,即B 行无关. 19. 略.见教材习题参考答案.20. 求下列矩阵的行向量组的一个极大线性无关组.(1)2531174375945313275945413425322048⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (2)1122102151203131141⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦. 【解】(1) 矩阵的行向量组1234⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦αααα的一个极大无关组为123,,ααα;(2) 矩阵的行向量组1234⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦αααα的一个极大无关组为124,,ααα.21. 略.见教材习题参考答案.22. 集合V 1={(12,,,n x x x )|12,,,n x x x ∈R 且12n +++ x x x =0}是否构成向量空间?为什么? 【解】由(0,0,…,0)∈V 1知V 1非空,设121122(,,,),(,,,),n n V V k =∈=∈∈x x x y y y αβR )则112212(,,,)(,,,).n n n x y x y x y k kx kx kx +=+++= αβα因为112212121212()()()()()0,()0,n n n n n n x y x y x y x x x y y y kx kx kx k x x x ++++++=+++++++=+++=+++= 所以11,V k V +∈∈αβα,故1V 是向量空间.23. 试证:由123(1,1,0),(1,0,1),(0,1,1)===ααα,生成的向量空间恰为R 3.【证明】把123,,ααα排成矩阵A =(123,,ααα),则11020101011==-≠A , 所以123,,ααα线性无关,故123,,ααα是R 3的一个基,因而123,,ααα生成的向量空间恰为R 3.24. 求由向量1234(1,2,1,0),(1,1,1,2),(3,4,3,4),(1,1,2,1)====αααα所生的向量空间的一组基及其维数. 【解】因为矩阵12345(,,,,)113141131411314214150121301213,113260001200012024140241400=⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥--------⎢⎥⎢⎥⎢⎥=→→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A ααααα ∴124,,ααα是一组基,其维数是3维的.25. 设1212(1,1,0,0),(1,0,1,1),(2,1,3,3),(0,1,1,1)===-=--ααββ,证明:1212(,)(,)L L =ααββ.【解】因为矩阵1212(,,,)1120112010110131,01310000013100=⎡⎤⎡⎤⎢⎥⎢⎥---⎢⎥⎢⎥=→⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦A ααββ 由此知向量组12,αα与向量组12,ββ的秩都是2,并且向量组12,ββ可由向量组12,αα线性表出.由习题15知这两向量组等价,从而12,αα也可由12,ββ线性表出.所以1212(,)(,)L L =ααββ.26. 在R 3中求一个向量γ,使它在下面两个基123123(1)(1,0,1),(1,0,0)(0,1,1)(2)(0,1,1),(1,1,0)(1,0,1)==-==-=-=αααβββ下有相同的坐标.【解】设γ在两组基下的坐标均为(123,,x x x ),即111232123233112233(,,)(,,),11001100111011101x x x x x x x x x x x x ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦-⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦γαααβββ即1231210,1110x x x --⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦求该齐次线性方程组得通解123,2,3x k x k x k ===- (k 为任意实数)故112233(,2,3).x x x k k k =++=-γεεε27. 验证123(1,1,0),(2,1,3),(3,1,2)=-==ααα为R 3的一个基,并把1(5,0,7),=β2(9,8,13)=---β用这个基线性表示.【解】设12312(,,),(,),==A B αααββ又设11112123132121222323,x x x x x x =++=++βαααβααα,即11121212321223132(,)(,,),x x x x x x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ββααα 记作 B =AX .则2321231235912359()111080345170327130327131235910023032713010330022400112r r r r r r -+↔--⎡⎤⎡⎤⎢⎥⎢⎥=−−−→−−−→---⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦-⎡⎤⎡⎤⎢⎥⎢⎥−−−−−→--⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦A B 作初等行变换。
《线性代数》第二章矩阵(习题课)

13
8. 用初等变换法求矩阵的逆矩阵
定理: 可逆矩阵可以经过若干次初等行变换化为单位矩阵. 推论1: 可逆矩阵可以表示为若干个初等矩阵的乘积
第二章 矩阵习题课
一. 主要内容 二. 典型例题 三. 测验题
1
一. 主要内容
1. 矩阵的定义
由m n个数 aij (i 1,2,,m; j 1,2,,n)
排成的m行n列的数表, a11 a12 a1n
简称m n矩阵.
记作
A
a 21
a 22
a 2n
例1:设矩阵
A
1 0
1
1
,
求与A可交换的所有矩阵。
分析:根据乘法定义及矩阵相等定义求
解:设所求矩阵为 X 由 AX XA,
a
c
b
d
,
得
ac
c
b
d
d
a c
a b
c
d
c 0,a d
X
a 0
矩阵加(减)法:两个同型矩阵,对应元素相加(减)
加法满足
1 交换律:A B B A.
2 结合律:A B C A B C . 3 A 0 A,其中A与O是同型矩阵. 4 A A O.
3
线性代数课后习题与答案

《线性代数》课程习题第1章行列式习 题 1.11. 计算下列二阶行列式: (1)2345 (2)2163- (3)xxx x cos sin sin cos - (4)11123++-x x x x(5)2232ab b a a (6)ββααcos sin cos sin (7)3log log 1a b b a2. 计算下列三阶行列式:(1)341123312-- (2)00000d c b a (3)d c e ba 0000 (4)zy y x x 00002121(5)369528741 (6)01110111-- 3. 用定义计算行列式:(1)4106705330200100 (2)1014300211321221---(3)5000000004000300020001000 (4)dcb a 100110011001---.4.用方程组求解公式解下列方程组:(1) ⎪⎩⎪⎨⎧=-+=--=--0520322321321321x x x x x x x x x (2)⎪⎩⎪⎨⎧=+-=-+=++232120321321321x x x x x x x x x习 题 1.21. 计算下列行列式:(1)123112101 (2)15810644372---- (3)3610285140 (4)6555655562.计算行列式(1)2341341241231234(2)12114351212734201----- (3)524222425-----a a a(4)322131399298203123- (5)0532004140013202527102135---- 3.用行列式的性质证明:(1)322)(11122b a b b a a b ab a -=+(2)3332221113333332222221111112c b a c b a c b a a c c b b a a c c b b a a c c b b a =+++++++++ 4.试求下列方程的根:(1)022223356=-+--λλλ(2)0913251323221321122=--x x5.计算下列行列式(1)8364213131524273------ (2)efcfbfde cd bdae ac ab---(3)2123548677595133634424355---------- (4)111110000000002211n n a a a a a a ---(5)xaaa x a a a x(6)abb a b a b a 000000000000习 题 1.31. 解下列方程组(1)⎪⎩⎪⎨⎧-=++=+--=++1024305222325321321321x x x x x x x x x (2)⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x2. k 取何值时,下列齐次线性方程组可能有非零:(1) ⎪⎩⎪⎨⎧=+-=++-=++0200321321321x x x x kx x kx x x (2)⎪⎩⎪⎨⎧=+-=++=++0300321321321x x x x kx x x x kx 习 题 五1.41.计算下列行列式(1)3010002113005004, (2)113352063410201-- (3)222111c b a c b a(4)335111243152113------, (5)nn n n n b a a a a a b a a a a D ++=+212112111112.用克莱姆法则解线性方程(1)⎪⎩⎪⎨⎧=+-=-+=--114231124342321321321x x x x x x x x x (2)⎪⎪⎩⎪⎪⎨⎧=++=+-+=+-+=++3322212543143214321321x x x x x x x x x x x x x x3.当λ为何值时,方程组⎪⎩⎪⎨⎧=+-=+-=++0020321321321x x x x x x x x x λλ可能存在非零解?4.证明下列各等式(1) 222)(11122b a b b a a b ab a -=+(2) ))()((4)2()1()2()1()2()1(222222222c b a c a b c c c b b ba a a ---=++++++ (3) ))()()()()()((111144442222d c b a d c d b c b d a c a b a d c b a d c b a d c b a+++------=5.试求一个2次多项式)(x f ,满足1)2(,1)1(,0)1(-==-=f f f .第2章矩阵习 题 2.21.设 ⎥⎦⎤⎢⎣⎡=530142A , ⎥⎦⎤⎢⎣⎡-=502131B , ⎥⎦⎤⎢⎣⎡--=313210C , 求3A -2B +C 。
线性代数-矩阵及其运算习题

设
D−1 = X 11
X 21
n阶矩阵(i, j = 1,2),
X 12 ,其中 X ij 均为 X 22
D
⋅
D−1
=
A C
0 ⋅ X 11 B X 21
X 12 X 22
=
A X 11
A X 12
C X 11 + B X 21 C X 12 + B X 22
= E 0 (E是n阶单位阵) 0 E
典型例题
一、矩阵的运算 二、逆矩阵的运算及证明 三、矩阵的分块运算
一、矩阵的运算
例1 计算
n − 1 − 1
n −1
n n−1
n n
− 1 2 n
−1 n
−1
−1
−1
n
−
1
n
n
n n n×n
解
n − 1 − 1 − 1 2
n −1
n n−1
−
n 1
n n
n
+ B,证明A可逆 ,并求其逆 .
三、(6分) 设n阶实方阵A ≠ O,且 A∗ = AT ,证明A 可逆. 四、(8分)解下列矩阵方程.
解
X = A−1 B X = BA−1 X = A−1C B−1
三、矩阵的分块运算
例5 设A, B都是n阶可逆矩阵,证明D = A 0 C B
必为可逆矩阵 , 并求D的逆矩阵 .
证 因为det D = det A ⋅ det B ≠ 0( A, B均可逆,
det A ≠ 0,det B ≠ 0),所以D为可逆矩阵.
其中k是正整数. Ak Al = Ak + l , ( Ak )l = Akl ,
线性代数(江西高校出版社)第一章习题课

D1 ai1 Ai1
ai1 Ai1
ai , j 1 Ai , j 1 aij 1 Aij ai , j 1 Ai , j 1
ai , j 1 Ai , j 1 aij Aij ai , j 1 Ai , j 1
ain Ain
7
24 A 24 24 4 12 7 180 .
2
【方法归纳】 本题属于抽象型行列式的计算问题,
求
解的关键是灵活运用行列式的基本性质.
13
1
x
x2
x n1
1
例7 设 P x 1
a1
a2
a12
a22
a1n1
a2n1 ,其中 a1 , a2 ,
30
2
1
2
2
2
3
n 1
1
n 1
2
n 1
3
1 an1 an21
, an1 是
ann11
互不相同的数.
(1)由行列式定义,说明 P x 是一个 n 1次多项式;
(2)由行列式性质,求 P x 0 的根.
14
解 (1)因为所给行列式的展开式中只有第一行含有x,
所以若
按行列式的第一行展开,
含有 x n1 的对应项的系数恰为
a1 j 1
a2 j 1
a1n
a2 n
an1
anj 1
ann
,
将D1按第j列拆分成两个行列式,再把第二个行列式按第j列
展开,得
19
D1
a11
a21
a1 j
a2 j
a1n
a2 n
线性代数第2章习题课

一般地, 注:一般地,对于 n 阶方阵 A 有 A = A
.
1 0 0 例6. 设 A = 2 2 0 ,则 (A* )-1 = 3 4 5
A/10
.
第一章
16
知识点6: 知识点 :矩阵的秩
k 1 1 1 k 1 1 1 k
例7. 设 A =
p.100 习题 习题27
第一章
7
分块矩阵的乘法
p.100 习题31 用分块矩阵乘法求下列矩阵的乘积: 习题31 用分块矩阵乘法求下列矩阵的乘积:
1 −2 0 0 1 −1 1 1 1 0 = A1 (1) A 0 3 2 0 −1 3
A2 B1 B2 A1 B1 = A B A4 O B4 3 1
A1B2 + A2 B4 A3 B2 + A4 B4
p.100 习题32 习题32
第一章
8
知识点2: 知识点 :转置与对称矩阵
例1. 设 A, B 均为 n 阶对称阵,则下列矩阵中不对称的是 B . 阶对称阵,
(A ) = A
* * n− 2
( A T )T = A
( A −1 ) −1 = A
三种运算符任意两个 任意两个可交换顺序 注:AT , A−1, A* 三种运算符任意两个可交换顺序
第一章
A P102 49
2
二、方阵的逆矩阵
1.方阵可逆的判定 1.方阵可逆的判定: 方阵可逆的判定: n 阶方阵 A 可逆 |A|≠0. A 是非奇异矩阵 . AB=I ( 或 BA =I ). A 与 In 相似, 相似, 即存在可逆阵P 即存在可逆阵 、Q,使得 ,使得PAQ= In. A 可以表示为若干初等矩阵的乘积 . r(A) = n . A 是满秩矩阵 .
线性代数第五章习题课

1. 求下列矩阵的特征值与特征向量. 求下列矩阵的特征值与特征向量.
0 2 2 (1) A = 2 4 2 ; 2 2 0
解
4 10 0 (2) A = 1 3 0 . 3 6 1
解
2. 判定下列矩阵是否相似于对角矩阵, 若 判定下列矩阵是否相似于对角矩阵, 相似, 相似, 则求出可逆矩阵 P , 使 P-1AP 是对角矩阵. 是对角矩阵.
解
(2) x1 x2 + x2 x3 + x3 x4 + x4 x1 2 12 x3 +
12 x1 x2 24 x1 x3 + 8 x2 x3 .
13. 判断下列二次型是否正定. 判断下列二次型是否正定.
二次型的正定性的常用判定法
2 2 (1) 3 x12 + 4 x2 + 5 x3 + 4 x1 x2 4 x2 x3 ;
解
5. 设三阶方阵 A 的特征值为
λ1 =1, λ2 = 2, λ3 = 3,
对应的特征向量依次为
1 1 1 p1 = 1, p2 = 2, p3 = 3 , 1 4 9
又向量 b= (1 , 1 , 3)T . (1) 求 A; (2) 将 b 用 p1, p2, p3 线性表示; 线性表示; (3) 求 Anb;(4)求 A100 . ;(4
�
解
0 0 1 3. 设 A = x 1 y 相似于对角矩阵, 相似于对角矩阵, 1 0 0
求 x 与 y 应满足的条件. 应满足的条件.
解
4. 已知矩阵
2 0 0 A = 0 0 1 0 1 x
与矩阵
2 0 0 相似. B = 0 y 0 相似 0 0 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
na 1 xa 1 Dn1
*
0 xa 0 0 0
0 0 xa 0 0
0 0 0 0
0 0 0 0
1 1 1
xa
x a n1阶
这是一个下三角行列式,所以
D
* n1
na n Dn (1 )( x a) xa n 1 ( x a na )( x a )
a 0 0
a 0
a 0 a( x a)
n 1
xa
x a n阶
故得到递推公式 n1 Dn x a Dn1 a( x a) , n =1,2,… 利用递推公式,依次类推得
Dn x a Dn1 a( xБайду номын сангаас a)
xa
xa
将上述行列式的第二列至第 n 列都加到第一列, 有
x (n 1)a 0 Dn 0 0
a xa 0 0
a 0 0
a 0 0
xa
xa
[ x ( n 1) a ]( x a ) n1
方法四 用行列式性质法。将 至第 n 行都加到第一行,得
n1
x a [( x a) Dn2 a( x a) n2 ] a( x a) n1
x a Dn2 2a( x a) n1
2
x a
n2
D2 (n 2)a( x a) n1
x a
n2
2
1 2
2
6
2
1
0 0
11
3 1 ( 1)
2
1
2 2 4
2 2 ( 2)( 1) ( 2)( ( 2) 8) 4
( 2) ( 4)
2
例1.3.7 计算四阶行列式
1.3 本章的主要解题方法
1.3.1 行列式的计算方法
1. 用行列式展开式法。计算三、四阶行列 式常用此方法。 例1.3.1 计算三阶行列式
2 3 4 5 1 1 2 3 6
解 用行列式展开式法。按第一行展开,
即
2 3 4 5 1 1 2 3 2 (1) 6
1 2 11
1 3 2 6
a a
a a
a x
a a
a a
a a a x a a a a x a a x
把上式中后一个 n 阶行列式的第一行乘以 -1分别加至第二行、第三行、……、第 n 行, 于是得
a a a a
a x a a
a a x a
a a a x
a24 a41 0 a34 a14 a32
a23 a33
a24 a34
a41 a32 (1) a14 a23 a32 a41
a23
a24
a41a32 ( a23 a14 )
可见,行列式按某一行或某一列来展开,只要 计算正确,结果应当是一样的。一般情况下总 是选取含零元素较多的那一行或那一列来展开, 这样计算比较简单方便。
2 3 ( 1)
100 327 100 443
342 100 521 1 327 1 443
46 100 114
342 1 521
1 1001
( 1 , 2 ) 2 1 ( 1) 3 1 ( 1)
46 114 46 68
327 443 327 116
0 a41 a32 a42
a14 a23 (1) a14 a23a32 a41
13
a14 a23 ( a32 a41 )
方法二
即
D4 a41 (1)
按列展开式法。 按第一列来展开, 0 0 a14 0 0 a14
41
0 a32
a23 a33 0 31
1 x D4 1 1 1
1 1 x 1 1
1 1 1 y 1
1 1 1 1 y
解 用造零降阶法。即
1 2 ( 1)
x 0 1 x
x 0 1 0 0 0
0 y
0 1 y
D4
3 4 ( 1)
1 1 x 1
1 1 y 0 y 1 0 0 0 y
2 1 ( 1)
2. 用行列式性质法。 (1) 化上三角法 上(下)三角行列式的计算是比较容易的, 其值等于主对角线所有元素的乘积。所以,利 用行列式的性质将行列式化为上(下)三角行 列式,是计算行列式时经常使用的一种方法, 而且,将所求的行列式化为上(下)三角行列 式的过程是这几条性质综合运用的结果。其中 最重要的是性质7的灵活运用。以化为上三角行 列式为例:首先将主对角线下方第一列
1 342 521 1
100 0
0 388 194
100
按 1 展开
68
116
388 194 300 116 0 194
100
1 2 2
5820000
(2) 造零降阶法 用行列式性质使其行列式中的零元素增多, 然后按零元素较多的那一行或那一列来展开, 使其降阶,再反复利用这种方法,直至降到三 阶或二阶行列式,最后直接计算,这种方法称 为造零降阶法。
对四阶及四阶以上的行列式,计算它的最 基本的方法也是用行列式展开式,即按某一行 或某一列来展开用该行或该列的所有元素与其 相应的代数余子式乘积之和。一般选择含零元 素较多的那一行或那一列。
解 方法一 按行展开式法。按第一行来展 开,即 0 0 a23 0 0 a23 D4 a14 (1)14 0 a32 a33 a14 0 a32 a33 a41 a42 a43 a41 a42 a43
Dn x (n 1)a a a a x (n 1)a x a a
Dn 第二行
x (n 1)a x (n 1)a a x a a a x
1 a [ x (n 1)a ] a a
1 x a a
1 a x a
1 a a x
8 0
5 2
24 4
16 1 2 4 3 240 3 8 2 20 4 8 5 24
2 1 ( 2 ) 3 1 ( 3 ) 4 1 ( 4 )
1
0
2
4
1 0 4 1 24 240 0 8 8 8 0
3 2 2
例1.3.3 计算五阶行列式
8 0 D5 0 0 5 6 0 6 0 0 2 4 0 3 3 4 9 1 8 7 2
0 6
7 2
解 用行、列展开式法。即行展开,列展 开综合使用的方法。即选取含零元素较多的那 一行或那一列来展开,得
6 D5 8 (1)
按 1 展开 11
8
3
40
1
0
2
4 24 40 88
1 0 4 1 240 0 0 10
4 2 2
0
0
5
1
( 3 , 4 )
0
2
4
1 0 4 1 24 240 0 0 5 88 0 0 10 40 1
4 3 ( 2)
0
2
4
1 0 4 1 24 34 240 0 0 5 88 3 0 0 0 136
的元素全部化为零,然后依次将主对角线下的 第二列、第三列、……直到第n-1列元素化为零。 一般情况下,为了避免分数运算,应先将 主对角线元素变成1或-1。
例1.3.4 计算行列式
5 / 6 4 / 3 4 / 3 14 / 3 D4 1 3/ 2 2/5 2 4 4/5 3/ 2 1 8 10
4 3 ( 1)
1 x 1 0 1
x 0 0
x
按 1 展开 2
按 1 展开
x 1 y 1
0 y
0 0 y
x2 y2
y 1
3. 用递推公式或加“边”法,计算 n 阶 行列式。 例1.3.8 计算 n 阶行列式
x a Dn a a a x a a a a x a a
将上述行列式的第一行乘以(-a)分别加到第二 行至第 n 行,有
a , a x
n2
解 方法一 用递推公式法。把第一列的各 个元素分别写成两个元素的和,利用行列式性 质6可得到
xaa 0a Dn 0a 0a a x a a a a x a a a a x
xa 0 0 0
a x a
a a x
( x a ) (n 2)a( x a)
2 2
n 1
x (n 1)a ( x a) n1
所以
Dn [ x (n 1)a]( x a)
n1
Dn 方法二 用加“边”法。将 但使其值不变,即 1 a a a 0 x a a 0 a x a * Dn1 Dn 0 a a x 0 a a a
7 2 0 2 0 3
4 9 1 8
0 6 6
7 2
8 9 (1)
按 2 展开
6
2 4
7 2 2 3 0 7 2
6 6
上面最后一个三阶行列式的计算,当然可以用 行列式的展开式法来计算,但是,我们注意到 这个三阶行列式的第一行与第三行的元素相同, 由行列式的性质2可知,这个三阶行列式的值为 零,这是利用行列式的性质得到的结果。也是 一种行列式的重要计算法。
例1.3.5 计算行列式
46 D3 114 427 327 543 443