主成分分析实验报告
主成分分析

主成分分析法实验报告一、实验名称:主成分分析二、实验目的:利用计算机实现主成分分析,完成综合评价。
三、实验原理:四、实验过程:(一)数据录入:将相关指标数据录入如下表(二)数据标准化:为避免不同量纲引起的大数吃小数问题,我们对相关数据进行标准化,结果如下:表1:标准化后的数据录入表表2:描述统计量表表1是标准化后的相关数据,表2给出了标准化过程中涉及到的均值、标准差等数值。
(三)分析表3:公因子方差表表3给出了该次分析从每个原始变量中提取的信息,表格下的表注表明,该次分析使用主成分分析完成的。
可以看出除百元销售收入实现利税信息损失较大外,主成分几乎包含了各个原始变量至少85%的信息。
表4:相关矩阵表4为各指标因素量化后的相关矩阵。
表5:解释的总方差表由输出结果表5可以看出,前两个主成分y1,y2的方差和占全部方差的的比例为84.7%。
我们就选取y1为第一主成分,y2为第二主成分,且这两个主成分的方差和占全部方差的84.7%,即基本上保留了原来的指标的信息,这样由原来的9个指标转化为2个新指标,起到了降维的作用。
表6:因子载荷矩阵因子载荷矩阵(表6)是主成分和变量间的因子负荷量,即相关系数,代表相关度。
并非主成分的系数;所以我们要通过该成分矩阵计算出主成分的系数,计算结果如表7:表7:主成分系数表7中,a1代表第一主成分与各变量间的因子负荷量,a2代表第二主成分与各变量间的因子负荷量;u1代表y1的系数,u2代表y2的相应系数。
由此可得到两个主成分y1、y2的线性组合。
(四)主成分得分及分类表8:主成分得分为了分析各样品在主成分所反映的经济意义方面的情况,还将标准化后的原始数据代入主成分表达式中计算出各样品的主成分得分,如表8,得到28个省的、直辖市、自治区的主成分的分。
将这28个样品在平面直角坐标系上描出来,进而得到样品分类,如下图所示:由上图可以看出,分布在第一象限的是上海、北京、天津、广西四个省区,这四个省区的经济效益在全国来说属于较好的,上海经济效益最好。
《多元统计实验》主成分分析实验报告二

《多元统计实验》主成分分析实验报告三、实验结果分析6.5人均粮食产量x5,经济作物占农作物播种面积x6,耕地占土地面积比x7,果园与林地面积之比x8,灌溉田占1耕地面积比例x9等五个指标有较强的相关性, 人口密度x1,人均耕地面积x2,森林覆盖率x3,农民人均收入x4相关性也很强,再作主成分分析,求样本相关矩阵的特征值和主成分载荷。
λ11/2=2.158962,λ21/2=1.4455076,λ31/2 =1.0212708,λ41/2 =0.71233588,λ51/2 =0.5614001,λ61/2 =0.43887788,λ71/2 =0.33821497,λ81/2 =0.212900230,λ91/2=0.177406876。
确定主成分分析,前两个主成分的累积方差贡献率为75.01%,前三个主成分的累积方差贡献率为86.59%,按照累积方差贡献率大于80%的原则,主成分的个数取为3,前三个主成分分别为:Z*1=0.3432x*1-0.446x*3+0.376x*5+0.379x*6+0.432x*7+0.446x*9Z*2=0.368x*1-0.614x*2-0.61x*4-0.307x*5-0.1224x*6Z*3=-0.122x*6+0.246x*7-0.950x*8第一主成分在x*7,x*9两个指标上取值为正且载荷较大,可视为反映耕地占比和灌溉田占耕地面积比例的主成分,第二主成分在x*2和x*4这两个指标的取值为负,绝对值载荷最大,不能作为人均耕地和人均收入的主成分。
第三主成分,x*8这个指标取值为负且,载荷绝对值最大,不能反映果园与林地面积之比的主成分。
根据该图结果可以认为选取前两个指标作为主成分分析的选择是正确的。
将八个指标按前两个主成分进行分类:由结果可以得出森林覆盖率为一类,人口密度、果园与林地面积之比、耕地占土地面积比、灌溉田占耕地面积比为一类,经济作物占农作物播种面积比例、人均粮食产量、农民人均收入、人均耕地面积为一类。
主成份分析报告(包含sas程序)

主成分分析实验报告实验内容:表1的数据是广东省各地市经济发展的基本数据,其中X1-城镇人口占常住人口比例(%),X2-固定资产投资(亿元),X3-人均可支配收入(元),X4-人均消费支出(元),X5-社会消费品零售总额(亿元),X6-第三产业占GDP百分比(%),X7-出口总额(亿美元),X8-人均地区生产总值(元)。
表1 安徽省各地市经济发展的基本数据城市X1X2X3X4X5X6X7X8广州82.532659.8527609.622820.93615.7760.9374.0588424.71189深圳1001709.1529244.521526.12567.9453.21619.7992022.45885珠海87.16410.5122858.617948.4404.4644.8177.8369652.80797汕头69.58291.913650.911659.5661.9639.540.1620282.83847佛山92.361470.5624577.919295.61408.7835245.7880391.16195韶关47.29356.516288.711467.6278.3645 5.7919490.55365河源40.5198.1512137.998054.92139.534.914.1313729.38507梅州46.2162.9813113.310365.7267.9839.3 6.7112528.23307惠州61.27758.972127817913.9491.137.8171.4935615.98569汕尾57289.4312560.218735.73282.0638.29.4813287.30274东莞86.391094.0833044.624269.9959.0751.2551.6759274.23927中山86.34545.6123088.3917414.7549.7639.4177.3662222.89651江门50.08492.0719003.7614262.87562.0734.279.4931915.39277阳江46.72239.4913075.219164.85305.383612.321999.29294湛江38.99393.2313665.210470.1559.9439.913.6516537.29201茂名37.5180.0113160.649764.1591.0543.1 5.3219853.45836肇庆44.89462.771506311030.3275.7843.720.322169.19445清远34.93841.2414314.799851.89303.5631.914.1522513.00645潮州62.1162.9812398.210758.29207.8937.618.718653.62032揭阳45.36393.513169.2410463.1341.4633.625.2514093.4095云浮50.2240.191321111383.48117.9133.7 6.1614128.88059利用主成分分析综合出适当的主成分及相应的主成分得分;利用上面的主成分得分对样品进行聚类分析,并给出适当的结论。
主成分分析实验报告

一、实验目的本次实验旨在通过主成分分析(PCA)方法,对给定的数据集进行降维处理,从而简化数据结构,提高数据可解释性,并分析主成分对原始数据的代表性。
二、实验背景在许多实际问题中,数据集往往包含大量的变量,这些变量之间可能存在高度相关性,导致数据分析困难。
主成分分析(PCA)是一种常用的降维技术,通过提取原始数据中的主要特征,将数据投影到低维空间,从而简化数据结构。
三、实验数据本次实验采用的数据集为某电商平台用户购买行为的调查数据,包含用户年龄、性别、收入、职业、购买商品种类、购买次数等10个变量。
四、实验步骤1. 数据预处理首先,对数据进行标准化处理,消除不同变量之间的量纲影响。
然后,进行缺失值处理,删除含有缺失值的样本。
2. 计算协方差矩阵计算标准化后的数据集的协方差矩阵,以了解变量之间的相关性。
3. 计算特征值和特征向量求解协方差矩阵的特征值和特征向量,特征值表示对应特征向量的方差,特征向量表示数据在对应特征方向上的分布。
4. 选择主成分根据特征值的大小,选择前几个特征值对应特征向量作为主成分,通常选择特征值大于1的主成分。
5. 构建主成分空间将选定的主成分进行线性组合,构建主成分空间。
6. 降维与可视化将原始数据投影到主成分空间,得到降维后的数据,并进行可视化分析。
五、实验结果与分析1. 主成分分析结果根据特征值大小,选取前三个主成分,其累计贡献率达到85%,说明这三个主成分能够较好地反映原始数据的信息。
2. 主成分空间可视化将原始数据投影到主成分空间,绘制散点图,可以看出用户在主成分空间中的分布情况。
3. 主成分解释根据主成分的系数,可以解释主成分所代表的原始数据特征。
例如,第一个主成分可能主要反映了用户的购买次数和购买商品种类,第二个主成分可能反映了用户的年龄和性别,第三个主成分可能反映了用户的收入和职业。
六、实验结论通过本次实验,我们成功运用主成分分析(PCA)方法对数据进行了降维处理,提高了数据可解释性,并揭示了数据在主成分空间中的分布规律。
主成分分析、因子分析实验报告--SPSS

主成分分析、因子分析实验报告--SPSS主成分分析、因子分析实验报告SPSS一、实验目的主成分分析(Principal Component Analysis,PCA)和因子分析(Factor Analysis,FA)是多元统计分析中常用的两种方法,旨在简化数据结构、提取主要信息和解释变量之间的关系。
本次实验的目的是通过使用 SPSS 软件对给定的数据集进行主成分分析和因子分析,深入理解这两种方法的原理和应用,并比较它们的结果和差异。
二、实验原理(一)主成分分析主成分分析是一种通过线性变换将多个相关变量转换为一组较少的不相关综合变量(即主成分)的方法。
这些主成分是原始变量的线性组合,且按照方差递减的顺序排列。
主成分分析的主要目标是在保留尽可能多的数据信息的前提下,减少变量的数量,从而简化数据分析和解释。
(二)因子分析因子分析则是一种探索潜在结构的方法,它假设观测变量是由少数几个不可观测的公共因子和特殊因子线性组合而成。
公共因子解释了变量之间的相关性,而特殊因子则代表了每个变量特有的部分。
因子分析的目的是找出这些公共因子,并估计它们对观测变量的影响程度。
三、实验数据本次实验使用了一份包含多个变量的数据集,这些变量涵盖了不同的领域和特征。
数据集中的变量包括具体变量 1、具体变量 2、具体变量 3等,共X个观测样本。
四、实验步骤(一)主成分分析1、打开 SPSS 软件,导入数据集。
2、选择“分析”>“降维”>“主成分分析”。
3、将需要分析的变量选入“变量”框。
4、在“抽取”选项中,选择主成分的提取方法,如基于特征值大于1 或指定提取的主成分个数。
5、点击“确定”,运行主成分分析。
(二)因子分析1、同样在 SPSS 中,选择“分析”>“降维”>“因子分析”。
2、选入变量。
3、在“描述”选项中,选择相关统计量,如 KMO 检验和巴特利特球形检验。
4、在“抽取”选项中,选择因子提取方法,如主成分法或主轴因子法。
实验报告8 主成分分析

实验八主成分分析一、实验目的和要求能利用原始数据与相关矩阵、协主差矩阵作主成分分析,并能理解标准化变量主成分与原始数据主成分的联系与区别;能根据SAS输出结果选出满足要求的几个主成分.实验要求:编写程序,结果分析.实验内容:书上4.5 4.6也可选做下面的题目之一:1.下表为山东省2006年统计数据,对此做主成分分析,找出主成分,并按第一、第二主成分对山东省各城市进行综合排名,说明排名结果。
表1 山东省2006年统计数据单位: 万元地区地区生产总值第一产业增加值第二产业增加值# 工业增加值第三产业增加值济南市2185.09 145.12 1001.78 861.51 1038.19青岛市3206.58 183.95 1677.17 1527.49 1345.46淄博市1645.16 62.72 1079.06 1003.00 503.38枣庄市759.95 68.48 482.82 445.72 208.65东营市1450.31 53.27 1170.13 1115.03 226.91烟台市2405.75 216.01 1462.24 1336.26 727.49潍坊市1720.88 211.81 1000.63 916.51 508.44济宁市1456.09 187.06 803.44 740.97 465.59泰安市1018.18 116.28 572.22 503.54 329.68威海市1368.53 116.58 849.59 793.12 402.36日照市505.87 73.89 251.56 220.07 180.42莱芜市291.98 19.55 192.40 180.59 80.03临沂市1404.86 178.65 730.83 633.20 495.38德州市1003.38 140.73 559.51 504.00 303.14聊城市841.33 138.84 491.96 453.46 210.54滨州市833.67 97.21 514.82 471.75 221.63菏泽市539.60 166.44 247.72 209.63 125.44单位: 各方面的支出(万元)地区流通部门文体广播教育支出科学支出医疗卫生其他部门的事业费济南市1129 31240 175935 3737 70572 35800青岛市3511 63853 401744 3925 68999 134510淄博市1861 27436 190130 6701 43723 31362枣庄市2711 20856 83353 1544 24768 25433东营市1127 16566 114045 2016 23907 27969烟台市216 30788 220599 3634 49379 60217潍坊市977 36484 252298 2974 37211 43285济宁市2174 46338 204464 2858 43159 46694泰安市1382 19672 103466 2358 36980 24055威海市717 18468 120004 1266 29562 37796日照市70 10814 58024 1098 16571 15238莱芜市388 7588 49980 676 13010 10942临沂市4475 39946 194380 2777 51723 34332德州市1415 20080 100432 2777 31442 16555聊城市3677 26234 103399 2352 27636 13616滨州市759 17096 100284 1062 24930 19961菏泽市413 31410 125664 1152 33193 1617012-9 各市农林牧渔业总产值(2006年)单位:万元地区农林牧农业产值林业产值牧业产值渔业产值农林牧渔服务业产值渔业总产值济南市2477193 1479799 64385 848623 28902 55484青岛市3396096 1360755 23546 1076254 855131 80410淄博市1160195 766074 52589 294504 19835 27193枣庄市1278410 831435 32985 347404 30842 35744东营市1045593 477566 11371 264438 216534 75684烟台市3832237 1795414 45611 679950 1238827 72435潍坊市4230441 2392085 43644 1437142 240827 116743济宁市3680065 1993193 69607 1229986 267302 119977泰安市2062840 1236797 64195 622845 76841 62162威海市2186326 465164 6216 337948 1352551 24447日照市1286840 550601 36468 261814 398981 38976莱芜市353735 224665 21764 91013 5519 10774临沂市3233487 2016291 153830 908942 79723 74701德州市2661008 1562942 37421 844453 67174 149018聊城市2470609 1638065 34141 710461 45450 42492滨州市1803325 1076124 23910 424643 230605 48043菏泽市2983624 1993394 64882 802778 76574 459962.调查美国50个州7种犯罪率,得结果列于表35.2,其中给出的是美国50个州每100 000个人中七种犯罪的比率数据.这七种犯罪是:murder(杀人罪),rape(强奸罪),robbery (抢劫罪),assault(斗殴罪),burglary(夜盗罪),larceny(偷盗罪),auto(汽车犯罪),很难直接从这七个变量出发来评价各州的治安和犯罪情况,试作主成份分析.说明选几个主成分合适,找出几个主成分,并按照第一、第二主成分分别对50个周进行排名,并解释之。
实验:主成分分析

数理经济学分析方法实验报告2:主成分分析1.采用数据student.txt,对六个变量做协方差矩阵和相关系数矩阵。
我在做主成分分析之前对student.txt进行90%的随机抽样,然后根据抽样后的数据,利用spss计量分析软件对六个变量做协方差矩阵和相关系数矩阵如下。
(1)协方差矩阵(2)相关系数矩阵项间相关性矩阵VAR00001 VAR00002 VAR00003 VAR00004 VAR00005 VAR00006 VAR00001 1.000 .634 .623 -.606 -.491 -.502 VAR00002 .634 1.000 .537 -.432 -.337 -.365 VAR00003 .623 .537 1.000 -.442 -.338 -.366 VAR00004 -.606 -.432 -.442 1.000 .815 .829 VAR00005 -.491 -.337 -.338 .815 1.000 .806 VAR00006 -.502 -.365 -.366 .829 .806 1.0002.采用数据student.txt,先对六个变量做标准化,然后求协方差矩阵和相关系数矩阵。
观察步骤1和步骤2的结果,并做说明。
运用spss计量分析软件对六个变量做标准化后,得出协方差矩阵和相关系数矩阵如下。
(1)标准化后协方差矩阵(2)标准化后相关系数矩阵解释说明:步骤1是原始数据未经过标准化处理得到的协方差矩阵和相关系数矩阵,而步骤2是经过标准化处理后得到的协方差矩阵和相关系数矩阵。
从表格中,我们可以发现,标准化以后的协方差矩阵和相关系数矩阵对应相等,并且与未经标准化处理的相关系数矩阵对应相等,唯独与未经标准化处理的协方差矩阵对应不相等。
这表明在进行主成分分析时,一般采用相关系数矩阵进行分析,因为相关系数就是标准化以后的协方差,它可以消除量纲的影响,从而避免了由于量纲影响而导致的分析误差。
主成分分析实验报告

《系统工程》主成分分析实验报告
1500米.448 -.
81
-.274 -.788 .612 .577 -.267 -.404 -.124 1.000
a. 行列式 = 3.15E-005
KMO 和 Bartlett 的检验
取样足够度的 Kaiser-Meyer-Olkin 度量。
.780
Bartlett 的球形度检验近似卡方153.735
df 45
Sig. .000
由表可知:巴特利特球度检验统计量的观测值为153.735,相应的概率p值接近0,小于显著性水平(取0.05),所以应拒绝原假设,认为相关系数矩阵与单位矩阵有显著差异。
同时,KMO值为0.780,可知原有变量可以进行因子分析。
3.旋转前的因子矩阵
(表四)
表四成份矩阵也即是因子载荷矩阵,根据该表可以写出因子分析模型:
110米栏=-0.948f1+0.017f2+0.020f3 跳远=0.918f1-0.062f2+0.074f3
旋转后的成分矩阵
采用最大方差法对成份矩阵(因子载荷矩阵)实施正交旋转以使因子具有命名解释性,指定按第一因子载荷降序的顺序输出旋转后的因子载荷矩阵如表六所示
(表六)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主成分分析
地信0901班陈任翔010******* 【实验目的及要求】
掌握主成分分析与因子分析的思想和具体步骤。
掌握SPSS实现主成分分析与因子分析的具体操作。
【实验原理】
1.主成分分析的主要目的是希望用较少的变量去解释原来资料中的大部分变异,将我们手中许多相关性很高的变量转化成彼此相互独立或不相关的变量。
通常是选出比原始变量个数少,能解释大部分资料中的变异的几个新变量,即所谓主成分,并用以解释资料的综合性指标。
由此可见,主成分分析实际上是一种降维方法。
2.因子分析研究相关矩阵或协方差矩阵的内部依赖关系,它将多个变量综合为少数几个因子,以再现原始变量与因子之间的相关关系。
【实验步骤】
1.数据准备
●1)首先在Excel中打开“水样元素成分分析数据”,删除表名“水样元素成分分析数据”,
保存数据。
●3)数据格式转换。
2.数据描述分析操作
1)Descriptives过程
点击Analyze下的Descriptive Statistics选项,选择该选项下的Descriptives
●选中待处理的变量(左侧的As…..Hg等);
●点击使变量As…..Hg 移至Variable(s)中;
●选中Save standrdized values as variables;
●点击Options
2)数据标准化
标准化处理后的结果
2.主成分分析
1)点击Analyze下的Data Reduction选项,选择该选项下的Factor过程。
选中待处理的变量,移至Variables
2)点击Descriptives判断是否有进行因子分析的必要
Coefficients(计算相关系数矩阵)
Significance levels(显著水平)
KMO and Bartlett’s test of sphericity (对相关系数矩阵进行统计学检验)
Inverse(倒数模式):求出相关矩阵的反矩阵;
Reproduced(重制的):显示重制相关矩阵,上三角形矩阵代表残差值,而主对角线及下三角形代表相关系数;
Determinant(行列式):求出前述相关矩阵的行列式值;
Anti-image(反映像):求出反映像的共同量及相关矩阵。
Univariate descriptive单变量描述统计量(输出被选中的各变量的均数与标准差)
Initial solution未转轴之统计量(显示因素分析未转轴前之共同性、特征值、变异数百分比及累积百分比)
3)点击Extraction :
●选择主成分分析方法
●输出未旋转的因子载荷矩阵
4)点击Rotation
5)点击Scores
●选中Save as variables (把因子得分作为新变量保存在数据文件中)
●选中Regression(回归因子得分)
●点击Continue
6)点击Options
●选中Exclude cases listwise(去除所有含缺失数据的样本、再进行分析)
●选中Sorted by size(载荷系数将按照数值大小排列,并构成矩阵)
●点击Continue
3.结果分析
●SPSS输出的第一个表格列出了标准化后数据的平均值(Mean)、标准差
(Std. Deviation)和分析用到的取值个数(N)
●系统输出的第2个表格是8个原始变量的相关矩阵与单尾显著性检验
(多个变量之间的相关系数较大,说明这些变量之间存在着较为显著的相关性,且其对应的Sig值普遍较小,根据分析,这些数据有进行因子分析的必要。
)
●KMO检验法和巴特利特球形检验法(KMO and Bartlett Test of Sphericity)的检验
结果
(Bartlett球形检验统计量的Sig<0.01,认为各变量之间存在着显著的相关性。
一般,KMO大于0.9时效果最佳,0.7以上可以接受,0.5以下不宜作因子分析。
但是相关矩阵和Bartlett球形检验统计量的效果都比较好,认为是可以作因子分析)
●SPSS输出的第四个表格“成分矩阵”是初始的未经旋转的因子载荷矩阵
(已选出了3个主因子,以替代原有的8个变量所含的信息)
●SPSS输出的第七个表格“旋转成分矩阵”是经过旋转(转轴法使得因素负荷量
易于解释)后的因子载荷矩阵。
(旋转后每个公因子上的载荷分配地更清晰,因子变量代表的变量相对集中,比未旋转时更容易解释各因子的意义。
载荷绝对值较大的因子与变量的关系更为密切,也更能代表这个变量
●第1公因子代表Cd、Zn、As、Pb这几个变量因素
●第2公因子代表Cr、P两个变量
●第3公因子代表Cu、Hg两个变量
●可以根据实际情况对第1公因子、第2公因子、第3公因子命名
●我们将第1公因子命名为镉类,第2公因子命名为铬类,第3公因子命名为铜类)
●SPSS输出的第八个表格“成分转换矩阵”是正交旋转后因素相关矩阵
●SPSS输出的第六个表格表示各因子变量的特征值与累积贡献率(表明m个主成
分综合原始变量的能力)
(由于前3个特征值累计贡献率达到91.798%,根据累计贡献率大于85%的原则,故选
取前三个特征值)
●SPSS输出的第五个表格表示变量的共同度(m个公共因子对第i个变量Xi的方
差贡献)
(As的共同度为0.974,可以理解为3个公共因子能够解释As的方差的97.4%;Pb的共同度为0.581,可以理解为3个公共因子能够解释As的方差的58.1%。
)
●回到Data View窗口的当前数据集,会看到文件中增加了3列FAC1_1(第1因子
得分)、FAC2_1(第2因子得分)和FAC3_1(第3因子得分)
(可以通过第1因子得分来了解镉类元素的分布情况,第2公因子来了解铬类元素的分布情况,第3公因子来了解铜类元素的分布情况。
样号为Z-W-2-02的样品Cd、Zn、As、Pb含量较高,样号为C-W-06-01的样品Cr、P含量较高,样号为C-W-01-02的样品重金属含量较高)
zF(综合得分)=46.048%* FAC1_1 + 24.085%* FAC2_1 + 21.665%* FAC3_1。
根据综合得分可以看出总体情况
【实验总结】
通过本次实验,了解SPSS软件的运行管理方式;熟悉各主要操作模块,窗口及其功能,相关的系统参数设置等。
基本掌握了应用SPSS软件Analyze菜单中的Data Reduction模块对数据进行主成分分析和因子分析,但是在操作过程和文字分析上还是有些生疏,有待进一步的熟练。
2011-11-4。