汽车振动系统的分析研究
汽车动力系统的噪音与振动控制技术

汽车动力系统的噪音与振动控制技术随着汽车工业的进步和普及,人们对于汽车的噪音和振动控制技术也提出了更高的要求。
本文将就汽车动力系统的噪音与振动控制技术进行论述,介绍相关的理论和应用。
一、汽车噪音与振动现状分析汽车噪音主要来自于发动机、排气系统、传动系统以及轮胎与路面的摩擦等。
同时,汽车的振动也会对车身和零部件产生不同程度的影响。
噪音与振动不仅影响驾乘者的舒适性和健康,也对周围环境造成困扰。
因此,控制和减少汽车动力系统的噪音与振动成为了一项重要的研究课题。
二、噪音与振动的产生机理1. 发动机噪音与振动:发动机的爆震、排气和进气阀门的开闭、曲轴和活塞的运动等都会产生噪音和振动。
2. 排气系统噪音与振动:排气管道和中段消声器的设计和材料选择,直接影响排气系统的噪音和振动。
3. 传动系统噪音与振动:齿轮传动、联轴器和轴承的摩擦和振动等都会产生噪音和振动。
4. 轮胎与路面噪音与振动:车轮与路面的接触会产生颠簸和摩擦,进而产生噪音和振动。
三、汽车动力系统噪音与振动控制技术为了控制和降低汽车动力系统的噪音和振动,相关的技术和措施被研发和应用:1. 发动机隔离措施:使用隔离支撑和悬挂装置来减少发动机噪音和振动的传播。
2. 声学隔离与吸声材料:在车内壁面和底板等位置使用隔音和吸声材料,减少噪音传播。
3. 振动补偿技术:通过控制反馈和振动传感器来实时调整车身和零部件的振动。
4. 换向消音器设计:采用特殊的换向消音器结构和材料,有效降低排气系统噪音。
5. 优化传动系统设计:通过改进齿轮设计、减震装置的使用和优化联轴器等,控制传动系统的噪音和振动。
6. 轮胎和路面的改进:通过改进轮胎的胎面材料和减震结构设计,降低轮胎与路面间的噪音和振动。
四、噪音与振动控制技术的发展前景随着科技的不断进步和汽车工业的发展,噪音与振动控制技术将继续得到改进和完善。
未来的发展趋势包括:1. 新材料的应用:开发和应用高性能的减震材料和吸声材料,提升噪音和振动控制效果。
汽车振动分析三自由度概论

汽车振动分析三自由度概论汽车振动分析是指对汽车在运行过程中的振动进行研究和分析。
汽车在运行过程中会受到地面不平坦、发动机工作、零部件损耗等多种因素的影响,从而产生各种振动。
了解和分析汽车的振动情况对于改善驾驶舒适性、提高汽车性能、延长零部件寿命等方面具有重要意义。
在汽车振动分析中,常使用三自由度模型进行初步研究和分析。
该模型是对汽车在垂直方向(纵向)、水平方向(横向)和侧向(垂直)三个方向的振动进行建模,可以较为准确地模拟实际振动情况。
在三自由度模型中,汽车被简化为一个质点,其质量为m,质心位置为(x,y,z)。
地面和汽车之间通过弹簧和减振器连接,用来模拟悬挂系统。
弹簧的刚度为k,减振器的阻尼为c。
汽车在运行过程中会受到外界的激励力Fa,例如地面的不平坦、发动机输出的力等。
根据牛顿第二定律,可以得出以下三个方程:mx'' + cx' + kx = Famy'' + cy' + ky = Fymz'' + cz' + kz = Fz其中,x''表示汽车在x方向的加速度,x'表示汽车在x方向的速度,类推y和z。
Fa,Fy,Fz分别表示在x、y、z方向上的外界激励力。
通过求解以上方程组,可以得到汽车在三个方向上的振动响应。
为了更好地研究和分析汽车的振动情况,还需要进行模态分析。
模态分析是指对系统的固有特性进行研究和分析。
在汽车振动分析中,模态分析主要用于求解汽车的模态频率和模态振型。
汽车的模态频率是指在特定工况下,汽车振动系统的固有频率。
一般来说,模态频率越高,汽车的振动特性越好。
模态振型是指在特定模态频率下汽车的振动形态,可以用来了解汽车的振动特性和寻找可能的振动源。
对于三自由度模型而言,可以通过手工计算或使用专业的软件进行求解模态频率和模态振型。
一般来说,模态分析会得到多个不同的模态频率和模态振型,其中前几个频率和振型对应着汽车振动系统的主要特性。
汽车发动机传动系统的振动特性分析

汽车发动机传动系统的振动特性分析汽车作为现代人生活中不可或缺的交通工具,其中的发动机传动系统是其核心部件之一。
发动机传动系统的振动特性是我们在设计和改进汽车时必须要考虑的重要因素。
本文将以汽车发动机传动系统的振动特性分析为主题,探讨其对汽车性能和乘坐舒适度的影响。
1. 振动产生的原因及影响汽车发动机传动系统的振动是由多种原因引起的,包括发动机的工作原理、旋转不平衡、配气系统的不平衡等。
这些振动会直接影响到汽车的性能和舒适度。
首先,振动会导致发动机的失稳和不平衡,降低了发动机的工作效率。
这不仅影响到汽车的燃油经济性,还可能导致磨损加剧和损坏其他发动机部件。
其次,振动会传递到汽车的车身和底盘中,给乘客带来不舒适的感受。
特别是在高速行驶中,振动会加剧乘客的疲劳感,影响安全驾驶。
2. 振动特性的测试方法为了准确分析汽车发动机传动系统的振动特性,需要采用适当的测试方法。
常用的方法包括频谱分析、模态测试和混响测试。
频谱分析是通过采集振动信号,将其转换为频域信号分析振动的幅值和频率。
这可以帮助识别和定位引起振动的原因,进而进行有针对性的改进。
模态测试则是通过施加外力并观察结构的振动模态来分析其特性。
这可以帮助了解结构的固有频率和振动模态,并优化传动系统的设计。
混响测试则是在传动系统中引入随机激励信号,并观察其振动衰减的过程。
通过测量振动信号的幅值随时间的变化,可以分析传动系统的动态特性。
3. 改进传动系统的措施针对振动特性的测试结果,可以采取一系列措施来改进汽车发动机传动系统的性能和舒适度。
首先,可以通过在发动机的旋转部件上增加平衡块来解决由旋转不平衡引起的振动。
这可以有效地减少发动机的振动幅值,提升其工作稳定性。
其次,可以通过优化传动系统的结构和材料来减少振动的传递和共振。
例如,使用吸振材料和减震器来吸收和消散振动能量,降低振动的幅度和频率。
此外,合理设计传动系统的支撑结构和减振装置,也可以有效地减少振动的传递。
《汽车动力总成悬置系统振动分析及优化设计》

《汽车动力总成悬置系统振动分析及优化设计》篇一一、引言随着汽车工业的飞速发展,消费者对汽车性能的要求日益提高,其中,汽车的舒适性和稳定性成为了重要的考量因素。
汽车动力总成悬置系统作为连接发动机与车身的重要部分,其性能的优劣直接影响到整车的振动特性和乘坐舒适性。
因此,对汽车动力总成悬置系统的振动进行分析及优化设计显得尤为重要。
本文将针对汽车动力总成悬置系统的振动问题进行分析,并提出相应的优化设计方案。
二、汽车动力总成悬置系统概述汽车动力总成悬置系统主要由发动机、离合器、变速器、驱动桥等组成,通过悬置装置与车身相连。
其作用是支撑和固定动力总成,减少振动和噪声的传递,保证汽车的平稳运行。
动力总成悬置系统的性能直接影响到整车的乘坐舒适性和行驶稳定性。
三、汽车动力总成悬置系统振动分析1. 振动产生原因汽车动力总成悬置系统振动的主要原因是发动机的运转产生的激励力以及道路的不平度等因素引起的。
这些激励力通过悬置装置传递到车身,导致整车的振动。
此外,动力总成各部件之间的相互作用也会产生振动。
2. 振动影响分析汽车动力总成悬置系统的振动会影响整车的乘坐舒适性和行驶稳定性。
过大的振动会导致乘客感到不适,严重时甚至会影响到驾驶安全。
此外,振动还会导致动力总成各部件的磨损加剧,降低整车的使用寿命。
四、汽车动力总成悬置系统优化设计1. 设计原则在进行汽车动力总成悬置系统的优化设计时,应遵循以下原则:首先,要保证动力总成的稳定性和可靠性;其次,要尽量减少振动和噪声的传递;最后,要考虑到整车的重量和成本等因素。
2. 优化方案针对汽车动力总成悬置系统的振动问题,可以采取以下优化方案:(1)改进悬置装置的设计:通过优化悬置装置的结构和材料,提高其支撑和减振性能。
可以采用橡胶减震垫、液压减震器等减震元件,以减少振动和噪声的传递。
(2)优化动力总成的布局:合理布置发动机、离合器、变速器等部件的位置和角度,以降低各部件之间的相互作用力,减少振动的产生。
汽车振动特性实验报告

汽车振动特性实验报告1. 引言汽车振动特性是指汽车在行驶过程中,由于路面不平整、发动机运转、车辆结构等原因所产生的振动现象。
一个良好的汽车振动特性对于乘坐舒适性、车辆稳定性和寿命都至关重要。
本实验旨在通过模拟汽车行驶过程,并对振动信号进行采集和分析,来研究汽车振动特性。
2. 实验目的1. 了解汽车振动特性的影响因素;2. 掌握汽车振动信号的采集和分析方法;3. 分析不同路况对汽车振动特性的影响。
3. 实验装置实验所需装置包括:1. 汽车模型2. 动力学测试系统3. 数据采集设备4. 计算机及相关软件4. 实验步骤4.1 汽车模型准备将汽车模型放置在动力学测试系统上,保证模型稳定且符合实际尺寸比例。
4.2 数据采集设备连接将数据采集设备与动力学测试系统连接,确保传感器的准确采集振动信号。
4.3 实验参数设置设置测试系统的参数,如加载频率、加载幅值等,以模拟不同路况的汽车振动。
4.4 数据采集启动数据采集设备,并进行振动测试,同时记录振动信号。
4.5 数据分析利用计算机及相关软件对采集到的振动信号进行分析。
可以采用时域分析、频域分析、振动模态分析等方法,定量分析汽车振动特性。
5. 实验结果与讨论根据实验数据得到的结果,可以进行以下讨论:1. 不同路况对汽车振动特性的影响。
比较不同道路状况下的振动信号,分析车辆行驶平稳性和舒适性的变化。
2. 车辆结构对振动特性的影响。
通过对同一路况下不同车辆模型的振动信号进行对比,分析车辆结构对振动的吸收和传递的影响。
6. 结论通过本实验的研究,得出以下结论:1. 路况的好坏直接影响车辆的振动特性,较为平整的道路能减少车辆的振动幅度,提高行驶的平稳性和舒适性。
2. 车辆结构的合理设计能有效减缓振动的传递和减震,提高乘坐舒适性和车辆稳定性。
7. 实验总结本实验通过模拟汽车行驶过程,对汽车振动特性进行了研究。
实验结果表明,路况和车辆结构对汽车振动特性有着重要的影响。
合理的道路维护和车辆设计能够提高车辆的稳定性和乘坐舒适性。
汽车振动问题研究分析

AUTO AFTERMARKET | 汽车后市场汽车振动问题研究分析刘劭航山西吉利汽车部件有限公司 山西省晋中市 030600摘 要: 随着社会的不断发展,制造技术的不断提高,汽车振动问题得到了明显改善。
但是,对于从事汽车专业工作的人来说,汽车振动仍然是个难以忍受的大问题,它严重影响到了正常的工作效率以及个人的身心健康。
本文以汽车振动问题为切入点,选取汽车振动源作为研究对象,分析汽车振动问题的主要原因,总结汽车振动问题的优化方案及改善措施。
关键词:汽车 振动问题 振源 优化改善1 汽车振动的一般分析在实际生产过程中,各种机械结构是非常复杂的,所以存在的振动问题也极其复杂,这给振动相关问题的研究分析带来了很大的困难。
所以,需要把振动简化成为简单的力学模型来研究,这种模型就是一种典型的机械系统,它是由许多个弹性的和非弹性的质量元件所组成的系统,即弹簧质量系统。
在该系统中,弹簧可以用来表示弹性的组件,它被迫伸长或者缩短时所加载的力可以用弹簧的相关关系表示出来。
在汽车的振动研究过程中,可以把它的机身、前桥和后桥当做质量,同时弹性部分用轮胎来表示,将振动传播过程中的各种减振设计当成弹簧阻尼,这样就组合成了一个可进行系统研究的机械系统。
在构建机械系统的条件下,对于汽车振动问题,一般可以用试验分析或者理论研究的方式来进行,它们从不同的角度对汽车振动问题进行研究分析,从而达到解决问题的目的。
如果采用接近实际的试验分析的方法来研究,就要使用各种仪器设备对具体的汽车进行各种性能参数的测试工作,用测定的数据进行研究分析从而获得汽车的固有特性和规律;如果展开理论研究的话,就需要对各种情况进行力学分析,从而建立相关的力学和数学模型来进行研究,并且通过计算机系统进行各种数学运算来获取相对应的研究成果。
从两种研究方法来看,它们都有各自的长处和不足,但却具有很好的互补性,一个注重理论研究,一个偏于实践操作,两者相结合能够更好的解决存在于汽车振动中的各种难题。
汽车悬挂系统的振动模态分析

汽车悬挂系统的振动模态分析一、问题描述一个简单的汽车系统如图1所示,若将其处理成平面系统,可以由车身(梁)、承重、前后支撑组成,汽车悬架振动系统可以简化地看作由以下两个主要运动组成:运动体系在垂直方向的线性运动以及车身质量块的旋转运动,对该系统进行模态分析。
模型中的各项参数如表 1 所示,为与文献结果进行比较,这里采用英制单位。
表1 汽车悬架振动模型的参数 材料参数几何参数 弹性模量psf E 9104⨯=加速度2sec /2.32ft g =质心的前距离ft l 5.41= 车身重量lb W 3220=车身质量ft lb g W m /sec 100/2⋅==质心的后距离ft l 5.52= 前悬架支撑弹簧系数ft lb k /24001=后悬架支撑弹簧系数ft lb k /26002=质量分布的回转半径ft r 4=(a )问题描述 (b )有限元分析模型图1 汽车悬架振动系统模型二、有限元建模1、模型分析计算模型如图1(b)所示。
这里将车身简化为梁,仅起到连接作用,这里设定不考虑梁的质量对振动性能的影响,因此需将密度设定为零即可,但在建模时需要输入梁的各种参数(包括材料以及几何参数),实际上,可以将车身梁的弹性效果通过质量块的垂直运动及旋转运动来等效,质量块的转动惯性矩为2r m I zz ⋅=,r 取为 4ft ,经计算ft lb I zz ⋅⋅=2sec 1600。
可以看出所采用的平面简化模型仅有两个自由度(梁单元由于取密度为零,将仅起连接作用)。
采用 2D 的计算模型,使用梁单元 2-D Elastic Beam Elements (BEAM3)来等效车身,使用弹簧单元Spring-Damper Elements (COMBIN14)来等效车体的前后悬架支撑,使用质量块单元Structural Mass Element (MASS21)来等效车身质量。
2、建模的要点1) 首先定义分析类型并选取三种单元,输入实常数;2) 建立对应几何模型,并赋予各单元类型对应各参数值 ;3) 在后处理中,用命令<*GET >来提取其计算分析结果(频率);4) 通过命令<*GET >来提取模态的频率值。
《2024年汽车动力总成悬置系统振动分析及优化设计》范文

《汽车动力总成悬置系统振动分析及优化设计》篇一一、引言汽车作为现代社会出行的重要工具,其舒适性和安全性已成为消费者选购车辆的重要考量因素。
动力总成悬置系统作为汽车的重要组成部分,其性能直接影响到整车的振动噪声水平及乘坐舒适性。
因此,对汽车动力总成悬置系统的振动进行分析,并进行优化设计,对于提升汽车性能具有重要意义。
本文将就汽车动力总成悬置系统的振动分析及优化设计进行探讨。
二、汽车动力总成悬置系统概述汽车动力总成悬置系统主要由发动机、变速箱、传动系统等组成,其作用是将发动机产生的动力传递至车轮,同时起到减震、降噪、提高乘坐舒适性的作用。
该系统的性能直接影响到整车的运行平稳性和乘坐舒适性。
三、汽车动力总成悬置系统振动分析1. 振动产生原因汽车动力总成悬置系统的振动主要来源于发动机的燃烧、气缸内的工作过程、燃油的喷入以及各种力的相互作用等因素。
此外,路面不平、车身结构等因素也会对系统产生一定的振动影响。
2. 振动分析方法针对汽车动力总成悬置系统的振动分析,可采用理论分析、仿真分析和实车测试等方法。
理论分析主要依据动力学原理和弹性力学原理对系统进行建模和分析;仿真分析则通过建立系统的有限元模型,对系统进行动力学仿真分析;实车测试则是通过在真实环境下对车辆进行测试,获取系统的振动数据。
四、汽车动力总成悬置系统优化设计1. 设计目标汽车动力总成悬置系统的优化设计目标主要包括降低系统振动、提高乘坐舒适性、减少噪声等。
通过对系统进行优化设计,可提高整车的性能和品质。
2. 优化设计方法(1)材料选择:选用高强度、轻量化的材料,如铝合金、复合材料等,以降低系统重量,提高刚度和减震性能。
(2)结构优化:通过优化结构布局和刚度分配,使系统在受到外界力时能够快速恢复稳定状态,减少振动。
(3)主动控制技术:采用主动控制技术,如主动悬挂系统、电磁减震器等,对系统进行实时控制,以降低振动和噪声。
(4)仿真分析:利用仿真软件对系统进行动力学仿真分析,预测系统的振动性能,为优化设计提供依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽车振动系统的分析研究*左万里苏小平田海兰(南京工业大学机械与动力工程学院,南京210009)Research of the vehicle vibration systemZUO Wan-li ,SU Xiao-ping ,TIAN Hai-lan(School of Mechanical and Power Engineering ,Nanjing University of Technology ,Nanjing 210009,China )文章编号:1001-3997(2011)02-0112-02【摘要】建立前轮为独立悬架,后轮为非独立悬架汽车的七自由度动力学模型,并给出该模型所需要的质量特性与运动学特性参数。
由给出的运动微分方程,利用仿真分析得出车身的振动加速度图。
研究结果表明,建立的汽车振动系统动力学模型是有合理的。
关键词:汽车;系统动力学;数学模型【Abstract 】A seven-degrees-of-freedom dynamic model of the car which front wheel with indepen -dent suspension and rear wheel with dependent suspension is presented,then the mss parameters and move -ment characteristics parameters that the model need is given.According to the differential equations of mo -tion ,the vibration acceleration diagram of vehicle body is obtained via simulation analysis.The results showed that the dynamic model of vehicle vibration system is reasonable.Key words :Vehicle ;System dynamics ;Mathematic model中图分类号:TH16文献标识码:A*来稿日期:2010-04-02*基金项目:江苏省高技术研究重点实验室项目BM20072011引言振动是现代汽车面临的一个重要问题,随着汽车速度和人们对生活要求的不断提高,人们对降低汽振动的要求也越来越高。
了解掌握汽车动态特性及其结构参数之间的关系,是对汽车进行减振优化设计的前提。
为此,对某一带有非独立悬的中型客车,进行了一些研究。
以某中型客车为原型,其前悬为双横臂独立悬架,后悬为板簧悬架。
假设车身是一个刚体,当车辆在不平路面做匀速直线运动时,车身具有上下跳动,俯仰,侧倾3个自由度,两个前轮分别具有垂向运动的自由度,后轴具有垂向跳动和侧倾转运2个自由度,计系统共有七个自由度。
2系统的运动方程带非独立悬架的七自由度整车模型示意图,如图1所示。
a B fy K frC frx ufr x frx x rfrK tfr φθz m fr x rlx ufl x rflK tflm flC fl K flK rlx urlx rl C rl x rrlm rl K trlB rK rr x rr bC rrx urrx rrrm rrK trrx ur γ图1汽车振动系统简化模型图中:K fl 、K fr 、K rl 、K rr —前后悬加的刚度系数;C fl 、C fr 、C rl 、C rr —前后悬架的阻尼系数;m fl 、m fr 、m rl 、m rr —前后悬架的簧下质量;K tfl 、K tfr 、K trl 、K trr —四个轮胎的垂直刚度。
考虑到汽车的左右对称性,假定K fl =K fr =K f ,K rl =K rr =K r ;C fl =C fr =C f ,C rl =C rr =C r ;m fl =m fr =m f ,m rl =m rr =m r ,K tfl =K tfr =K trl =K trr =K t 。
m s —车身质量;a 、b —车身质心到前轴和后轴的距离;B f —前轴轮距;B r —后轴轮距;x —车身质心的垂直位移,θ—车身的俯仰角位移;φ—车身的侧倾角位移。
x ufl 、x ufr 、x url 、x urr —前后悬架簧下质量的垂直位移;x fl 、x fr 、x rl 、x rr —前后悬架簧上质量的垂直位移;x ur —后桥质心的垂直位移;γ—后桥质心的倾角位移[1]。
在俯仰角θ和侧倾角φ较小时,车身四个端点处的垂向位移有如下关系:x fl =x-a θ-1B f φ(1)x fr =x-a θ+12B f φ(2)x rl =x+b θ-12B r φ(3)x rr =x+b θ+1B r φ(4)后桥质心回转运动与垂直位移方程为:γ=X url -Xurr (5)X ur =X url +X urr 2(6)因此,车身质心处的垂向运动方程为:m s x 咬=C f x 觶fl -x 觶ufl r r +K f x fl -x ufl r r +C f x 觶fr -x 觶ufr r r +K f x fr -x ufr r r +C r x 觶rl -x 觶url r r +K r x rl -x url r r +C r x 觶rr -x 觶urr r r +K r x rr -x urr r r (7)车身俯仰运动方程为:I zz θ咬=C r x 觶rl -x 觶url r r +K r x rl -x url r r +C r x 觶rr -x 觶urr r r +K r x rr -x urr r r r r b-a C f x 觶fl -x 觶ufl r r +K f x fl -x ufl r r +C f x 觶fr -x 觶ufr r r +K f x fr -x ufr r r r r (8)车身侧倾运动方程:I yy φ咬=C f x 觶fr -x 觶ufr r r +K f x fr -x ufr r r +C f x 觶fl -x 觶ufl r r +K f x fl -x ufl r r r r ×12B f +C r x 觶rr -x 觶urr r r +K r x rr -x urr r r +C r x 觶rl -x 觶urlr r +K r x rl -x url r r r r ×12B r (9)Machinery Design &Manufacture机械设计与制造第2期2011年2月112左前悬架的簧下质量的垂直运动微分方程为:mf x觶ufl=Kfx-aθ-1Bfφ-xuflr r+C f x觶-aθ觶-12Bfφ觶-x觶uflr r-Ktflxufl-xrflr r(10)右前悬架的簧下质量的垂直运动微分方程为:mf x咬ufr=Kfx-aθ+12Bfφ-xufrr r+C f x觶-aθ觶+1B fφ觶-x觶ufrr r-Ktfrxufr-xrfrr r(11)由于后悬架为非独立悬架,在求解左右两个车轮的运动微分方程时,左右两个车轮相互影响,则可采用拉格朗日方程[3~4]进行求解:ddt坠Ek坠q觶jr r-坠E k坠qj+坠Ep坠qj+坠Ed坠q觶j=Qj,j=1,2,…,n(12)式中:Ek —系统的动能;Ep—系统的势能;Ed—耗能函数;Qj—系统外部广义激振作用力。
E k =1msx2+1Izzθ觶2+1Iyyφ觶2+1mfx觶2ufl+1mfx觶2ufr+1mrx觶url+x觶urr2r r2+1I yyr x觶url-x觶urrBrr r2(13)E p =12Kfxfl-xuflr r2+12Kfxfr-xufrr r2+12Krxrl-xurlr r2+1 2Krxrr-xurrr r2(14)E d =1Cfx觶fl-x觶uflr r2+1Cfx觶fr-x觶ufrr r2+1Crx觶rl-x觶urlr r2+1 2Crx觶rr-x觶urrr r2(15)将式(1)~(6)代入式(13)~(15),然后再对式(13)~(15)求导后代入式(12)可得:左后悬架的簧下质量的垂直运动微分方程为:1mr -Iyyr Brr r x咬url+1m r+I yyrBrr r x咬urr=K r x+C r x觶+bK rθ+C r bθ觶+1Br Crφ+1BrCrφ觶-Ktr+Krr r xurr-Crx觶urr+Ktrxrrr(16)右后悬架的簧下质量的垂直运动微分方程为:1 4mr+IyyrB2rr r x咬url+14m r-I yyrB2rr r x咬urr=K r x+C r x觶+bK rθ+C r bθ觶-1Br Crφ-1BrCrφ觶-Ktr+Krr r xurr-Crx觶urr+Ktrxrrr(17)以上七个微分方程式(7)~(11)和式(16)~(17)代表了七自由度整车动力学模型。
表1某型号汽车悬架质量特性与运动学特性参数参数名称数值单位汽车簧上质量m s2850kg汽车前簧下质量m f96.95kg汽车后簧下质量m r140.4kg前轴轮距B f 1.683m后轴轮距B r 1.540m簧上质量部分质心至后轴的距离b 1.71m簧上质量部分质心至前轴的距离a0.96m簧上质量绕质心的侧倾转动惯量I yy980kg/m2簧上质量绕质心的俯仰转动惯量I zz2943kg/m2前悬架刚度系数K f80400N/m后悬架刚度系数K r150000N/m前悬架阻尼系数C f716.03N/m·s-1后悬架阻尼系数C r1628.98N/m·s-1轮胎垂直刚度系数K t475100N/m 3汽车振动系统参数汽车振动系统的参数包括质量参数、几何参数与动力学参数,这些参数的获取是建立与研究振动系统模型的基础。
通过实验和计算,如表1所示,某型号汽车悬架质量特性与运动学特性参数。
4仿真与分析从上面的公式中可知,影响汽车振动的因素有很多,除了与汽车本身的结构参数大小有关,还与路面的激励有关。
直接计算求解难以实现,这里借助计算机仿真方法加以研究。
在汽车满载、B级路面、车速60km/h匀速行驶的条件下,得到车身质心垂直方向的振动加速度曲线图,如图2所示。
1500750-750a/mm.s-205101520t/s图2车身质心垂直方向的振动加速度图1.2E+068E+054E+050.00.010.020.030.040.050.0f/Hz图3加速度的功率谱密度曲线对加速度曲线进行FFT变换即可得到加速度的功率谱密度曲线,如图3所示,并对计算结果作数据处理后可得到加速度均方根值,如图3所示,加速度均方根值为1027.64mm/s2,根据厂家提供的道路试验数值为1097.68mm/s2。