高考数学解析几何知识点总结【更多资料关注@高中学习资料库 】

合集下载

高中数学解析几何知识点总结

高中数学解析几何知识点总结

高中数学解析几何知识点总结一、平面解析几何在平面解析几何中,我们主要研究平面上的点、直线、圆、曲线等几何对象。

平面解析几何的基本思想是用代数方法研究几何问题,通过建立坐标系和引入坐标变量的方法,将几何问题转化为代数问题进行研究。

在平面解析几何中,有一些重要的知识点需要掌握,下面我们将逐一进行讲解。

1. 坐标系坐标系是平面解析几何的基本工具,它通过数轴的方式将平面上的点和几何对象进行了定位。

常见的坐标系有直角坐标系和极坐标系两种。

直角坐标系是由水平轴和垂直轴组成的,水平轴称为x轴,垂直轴称为y轴。

平面上的每个点通过它的横坐标x和纵坐标y来确定,就可以唯一确定一个点的位置。

例如,点A(x,y)表示了点A在坐标系中的位置。

极坐标系是以原点O和一条射线作为坐标轴,用点到原点的距离r和与射线的夹角θ来表示点的位置。

在极坐标系中,点的坐标表示为(r,θ)。

2. 直线的方程在直角坐标系中,直线可以用方程y=ax+b或者y=kx+b来表示,其中a、b、k为常数。

当a≠0时,直线的方程为y=ax+b,a称为直线的斜率,b称为直线的截距;当a=0时,直线的方程为y=b,其斜率为0,直线与y轴平行。

另外,直线还可以用斜截式、截距式、两点式等来表示,学生需要灵活掌握不同表示方法,并能够相互转化。

3. 圆的方程在平面解析几何中,圆是一个重要的几何对象,它的方程可以用不同的形式表示。

在直角坐标系中,圆的方程一般写为(x-a)²+(y-b)²=r²,其中(a,b)为圆心的坐标,r为圆的半径。

4. 曲线的方程除了直线和圆之外,学生还需要学习其他曲线的方程,如抛物线、椭圆、双曲线等。

这些曲线都有各自的方程形式,在解析几何中有着重要的应用。

5. 解析几何的基本性质和定理在学习平面解析几何时,学生还需要掌握一些基本的性质和定理,如两点间的距离公式、直线的斜率公式、直线与圆的位置关系、圆与圆的位置关系等。

(完整版)高中数学解析几何知识点总结大全

(完整版)高中数学解析几何知识点总结大全
②若两直线的斜率都不存在,则两直线 平行 ;若一条直线的斜率不存在,另一直线的斜率 为 0 ,则两直线垂直。
③对于 A1A2 B1B2 0 来说,无论直线的斜率存在与否,该式都成立。因此,此公式使用
起来更方便. ④斜率相等时,两直线平行(或重合);但两直线平行(或重合)时,斜率不一定相等,因为斜 率有可能不存在。 四、两直线的交角
注意:当直线斜率不存在时,不能用点斜式表示,此时方程为 x x0 ;
2.斜截式:若已知直线在 y 轴上的截距(直线与 y 轴焦点的纵坐标)为 b ,斜率为 k ,则直
线方程: y kx b ;特别地,斜率存在且经过坐标原点的直线方程为: y kx
注意:正确理解“截距”这一概念,它具有方向性,有正负之分,与“距离”有区别。
b a
;|
PPo
|
|t|

a2 b2
点 P1 , P2 对应的参数为 t1 , t2 ,则| P1P2 |
| t1 t2 | ; a2 b2
x
y
x0 y0
t t
cos sin

t
为参数)其中方向向量为
(c
os
,
sin
)

t 的几何意义为| PPo
| ;斜
率为 tan ;倾斜角为 (0 ) 。
产实际中有许多问题都可以归结为线性规划问题。
注意:①当 B 0 时,将直线 Ax By 0 向上平移,则 z Ax By 的值越来越大; 直线 Ax By 0 向下平移,则 z Ax By 的值越来越小;
②当 B 0 时,将直线 Ax By 0 向上平移,则 z Ax By 的值越来越小; 直线 Ax By 0 向下平移,则 z Ax By 的值越来越大;

高中数学解析几何知识点总结大全

高中数学解析几何知识点总结大全

高中数学解析几何知识点总结大全解析几何是高中数学的重要分支之一,通过运用代数和几何的方法来研究几何图形的性质和变换。

下面是高中数学解析几何的知识点总结,供参考:一、直线与平面的位置关系1.直线与平面的交点个数:直线和平面可以有0个、1个或无数个交点。

2.平面与平面的位置关系:两个平面可以相交、平行或重合。

二、向量及其代数运算1.向量的概念:向量是具有大小和方向的量。

2.向量的表示方法:向量可以用有向线段或坐标表示。

3.向量的加法:向量的加法满足平行四边形法则。

4.向量的数乘:向量的数乘是一个向量与一个实数的乘积。

5.向量的数量积:向量的数量积是两个向量之间的乘积,结果是一个实数。

6.向量的乘法运算法则:分配律、结合律和交换律。

三、直线及其方程1.平面直角坐标系:平面直角坐标系包括坐标轴、坐标原点和相应的正方向。

2.直线的方程:直线可以用一般式、点斜式、两点式或截距式表示。

3.直线的性质:平行、垂直、斜率、倾斜角等。

4.直线的位置关系:两条直线可以相交、平行或重合。

四、曲线及其方程1.圆的方程:圆可以用标准方程、一般方程或截距方程表示。

2.椭圆、双曲线和抛物线的方程:椭圆、双曲线和抛物线可以用一般式表示。

3.曲线的性质:焦点、准线、离心率等概念的理解。

4.曲线的位置关系:两条曲线可以相交、相切或没有交点。

五、空间直线及其方程1.空间直线的方程:空间直线可以用对称式、参数方程或直角坐标式表示。

2.空间直线的位置关系:两条空间直线可以相交、平行或重合。

3.空间直线与平面的位置关系:空间直线可以与平面相交、平行或测度为零。

六、空间曲线及其方程1.空间曲线的方程:空间曲线可以用参数方程或直角坐标式表示。

2.空间曲线与平面的位置关系:空间曲线可以与平面相交、触及或完全包含。

七、立体图形1.点、线、面、体的概念:点是没有长度、宽度和高度的,线是一系列相连的点,面是一系列相连的线,体是一系列相连的面。

2.立体图形的表面积:立方体、长方体、正方体、球体、圆柱体、圆锥体和棱锥体的表面积计算公式。

高中数学解析几何知识点归纳总结

高中数学解析几何知识点归纳总结

高中数学解析几何知识点归纳总结
1. 直线与平面的位置关系
- 直线与平面的交点可以有三种情况:交于一点、平行或重合。

- 直线与平面的夹角可以分为三种情况:直线在平面内、直线
与平面垂直或直线在平面外。

- 两个平面的位置关系可以分为三种情况:相交于一直线、平
行或重合。

2. 平面的方程
- 平面的方程有两种形式:点法式和一般式。

- 点法式方程:通过平面上一点和法向量来确定平面方程。

- 一般式方程:由平面的法向量和一个常数项确定平面方程。

3. 直线的方程
- 直线的方程也有两种形式:点向式和一般式。

- 点向式方程:通过直线上一点和方向向量来确定直线方程。

- 一般式方程:由直线的法向量和一个常数项确定直线方程。

4. 平面和直线的距离
- 平面和直线的距离可以使用点到平面的距离公式或点到直线
的距离公式。

5. 直线与直线的位置关系
- 直线与直线的位置关系可以分为三种情况:相交于一点、平
行或重合。

6. 空间中的球面与圆
- 空间中的球面方程与二维平面上的圆方程类似。

- 空间中的球面与圆的方程可以通过中心点和半径来确定。

7. 二次曲线
- 二次曲线包括椭圆、双曲线和抛物线。

- 二次曲线的方程可以通过焦点、直径等要素来确定。

以上是高中数学解析几何的一些主要知识点。

通过研究和掌握
这些知识,你将能够更好地理解和应用解析几何的相关概念和方法。

高中数学中的平面解析几何知识点总结

高中数学中的平面解析几何知识点总结

高中数学中的平面解析几何知识点总结高中数学中的平面解析几何是一个重要的知识板块,它将代数与几何巧妙地结合在一起,为我们解决几何问题提供了全新的思路和方法。

下面就让我们一起来详细梳理一下平面解析几何的相关知识点。

一、直线1、直线的方程点斜式:若直线过点\((x_0,y_0)\),斜率为\(k\),则直线方程为\(y y_0 = k(x x_0)\)。

斜截式:若直线斜率为\(k\),在\(y\)轴上的截距为\(b\),则直线方程为\(y = kx + b\)。

两点式:若直线过点\((x_1,y_1)\)和\((x_2,y_2)\),则直线方程为\(\frac{y y_1}{y_2 y_1} =\frac{x x_1}{x_2 x_1}\)。

截距式:若直线在\(x\)轴、\(y\)轴上的截距分别为\(a\)、\(b\)(\(a\neq 0\),\(b\neq 0\)),则直线方程为\(\frac{x}{a} +\frac{y}{b} = 1\)。

一般式:\(Ax + By + C = 0\)(\(A\)、\(B\)不同时为\(0\))。

2、直线的位置关系平行:两条直线\(y_1 = k_1x + b_1\)和\(y_2 = k_2x + b_2\)平行,当且仅当\(k_1 = k_2\)且\(b_1 \neq b_2\);对于一般式直线\(A_1x + B_1y + C_1 = 0\)和\(A_2x + B_2y + C_2 = 0\)平行,当且仅当\(A_1B_2 A_2B_1 = 0\)且\(A_1C_2 A_2C_1 \neq0\)。

垂直:两条直线\(y_1 = k_1x + b_1\)和\(y_2 = k_2x + b_2\)垂直,当且仅当\(k_1k_2 =-1\);对于一般式直线\(A_1x + B_1y + C_1 = 0\)和\(A_2x + B_2y + C_2 = 0\)垂直,当且仅当\(A_1A_2 + B_1B_2 = 0\)。

高中数学解析几何知识点总结

高中数学解析几何知识点总结

高中数学解析几何知识点总结1.直线方程直线和圆的方程是解析几何中的重要知识点之一。

在直线方程的研究中,我们需要掌握以下几个要点:1.1 直线的倾斜角直线的倾斜角是指一条直线向上的方向与x轴正方向所成的最小正角。

当直线与x轴平行或重合时,其倾斜角为0度或180度。

需要注意的是,当直线垂直于x轴时,其斜率不存在。

1.2 直线方程的几种形式直线方程可以表示为点斜式、截距式、两点式和斜截式。

其中,当直线经过两点时,即在x轴和y轴上的截距分别为a和b(a≠0,b≠0)时,直线方程为y = (-a/b)x + 1.1.3 直线系直线系是指斜截式方程y = kx + b中的k和b均为确定的数值时,所表示的一组直线。

当b为定值,k变化时,它们表示过定点(0,b)的直线束;当k为定值,b变化时,它们表示一组平行直线。

2.平行和垂直的直线在解析几何中,平行和垂直的直线是常见的情况。

判断两条直线是否平行或垂直,需要注意以下几点:2.1 两条直线平行的条件两条直线平行的条件是:它们是两条不重合的直线,且在它们的斜率都存在的前提下,斜率相等。

需要特别注意的是,抽掉或忽视其中任一个“前提”都会导致结论的错误。

2.2 两条直线垂直的条件两条直线垂直的条件是:它们的斜率之积为-1.同样需要注意的是,在判断两条直线是否垂直时,需要确保它们的斜率都存在。

以上是解析几何中直线方程和平行、垂直直线的基本知识点总结。

掌握这些知识点,对于研究和理解解析几何的其他内容将会有很大的帮助。

本文主要介绍了直线和圆的方程,其中包括直线的平行和垂直方程,过定点的直线方程以及过两条直线交点的直线方程等内容。

同时还介绍了关于点和直线对称的性质,以及圆的标准方程和特例。

下面对每个部分进行小幅度的改写和格式修正。

一、直线方程1.直线的平行和垂直方程直线的平行和垂直方程是很重要的概念,它们可以帮助我们更好地理解直线的性质和特点。

其中,与直线 Ax+By+C=0平行的直线方程是 Ax+By+m=0(m为实数,且C≠m);与直线Ax+By+C=0 垂直的直线方程是Bx-Ay+m=0(m为实数)。

解析几何高考知识点总结

解析几何高考知识点总结

解析几何高考知识点总结几何是数学中的一个分支,几何学主要研究空间中的点、线、面及其相互关系。

在高中数学教学中,解析几何是一个重要的知识点,涉及到平面和空间的几何图形以及它们的性质和运算。

下面将对几何高考的相关知识点进行总结与解析。

一、平面几何1. 点、线、面的性质和判定在平面几何中,点、线和面都是基本的几何要素。

点是没有大小和方向的,只有位置;线是由无数个点组成的,具有长度和方向;面是由无数个平行于同一直线的线段组成的,具有长度、宽度和平面内的方向。

通过点的坐标、直线的方程和平面的方程,我们可以判定它们的性质,如两点之间的距离、线段的中点、直线的斜率等。

2. 相交与平行在平面几何中,两条直线相交的条件是它们的斜率不相等,两条直线平行的条件是它们的斜率相等且截距不相等。

根据这一条件,我们可以判断两条直线是否相交或平行,并求出直线的交点坐标。

3. 三角形的性质和判定三角形是平面几何中常见的图形,根据其边长和角度的性质,我们可以对三角形进行分类和判定。

例如,根据边长的关系,三角形可以分为等边三角形、等腰三角形和普通三角形;根据角度的关系,三角形可以分为直角三角形、锐角三角形和钝角三角形。

通过这些性质和判定条件,我们可以解决与三角形相关的问题,如计算三角形的面积、判定三角形的形状等。

二、空间几何1. 空间直线与平面的关系在空间几何中,直线和平面是重要的几何要素。

空间直线可以由一点及其方向向量确定,平面可以由一点及其法向量确定。

通过这一关系,我们可以确定直线与平面的位置关系,如直线与平面的交点、直线与平面的距离等。

2. 空间向量的运算在解析几何中,向量是一个非常重要的概念,它可以表示空间中的方向和大小。

空间向量的运算包括加法、减法、数乘和点乘等。

通过向量的运算,我们可以求解空间中的线段长度、夹角、面积等问题。

3. 空间直线与空间曲面的关系在空间几何中,空间直线与空间曲面的关系是一个研究的重点。

根据直线与曲面的位置关系,我们可以判定它们的交点、相切点等。

高三解析几何总结知识点

高三解析几何总结知识点

高三解析几何总结知识点解析几何是高中数学中的一个重要分支,通过运用坐标系和代数方法,研究几何图形的性质和变换规律。

在高三阶段,解析几何是帮助学生巩固和拓展几何知识的重要内容。

下面将对高三解析几何的知识点进行总结,并以例题进行说明。

一、直线的方程1. 一般式方程:Ax + By + C = 02. 点斜式方程:y - y₁ = k(x - x₁)3. 两点式方程:(y - y₁)/(x - x₁) = (y₂ - y₁)/(x₂ - x₁)例题:已知直线L过点A(3,-2),斜率为2,求直线L的方程。

解:利用点斜式方程,代入已知条件可得:y - (-2) = 2(x - 3)化简得:y + 2 = 2x - 6转化为一般式方程:2x - y + 8 = 0所以直线L的方程为2x - y + 8 = 0。

二、直线的位置关系1. 平行关系:两条直线的斜率相同。

2. 垂直关系:两条直线的斜率之积为-1。

3. 直线的交点:联立两条直线的方程,求解方程组得到交点坐标。

例题:已知直线L₁的方程为3x - y + 5 = 0,直线L₂过点B(1, 4)且与L₁垂直,求直线L₂的方程。

解:根据L₁的一般式方程,可以得到L₁的斜率为3。

由于L₂与L₁垂直,故L₂的斜率为-1/3。

利用点斜式方程可得:y - 4 = -1/3(x - 1)化简得:3y - 12 = -x + 1转化为一般式方程:x + 3y - 13 = 0所以直线L₂的方程为x + 3y - 13 = 0。

三、直线的距离和垂足1. 点到直线的距离:利用点到直线的距离公式,d = |Ax₀ + By₀ + C|/√(A² + B²)2. 直线的垂足:垂直于直线的直线与给定直线的交点。

例题:已知直线L的方程为2x - 3y + 6 = 0,点P(4, -2),求点P到直线L的距离和直线L的垂足的坐标。

解:根据点到直线的距离公式,代入已知条件可得:d = |2(4) - 3(-2) + 6|/√(2² + (-3)²)化简得:d = 4/√13所以点P到直线L的距离为4/√13。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学解析几何知识点大总结第一部分:直线一、直线的倾斜角与斜率 1.倾斜角α(1)定义:直线l 向上的方向与x 轴正向所成的角叫做直线的倾斜角。

(2)范围:︒<≤︒1800α2.斜率:直线倾斜角α的正切值叫做这条直线的斜率.αtan =k(1).倾斜角为︒90的直线没有斜率。

(2).每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率(直线垂直于x 轴时,其斜率不存在),这就决定了我们在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否则会产生漏解。

(3)设经过),(11y x A 和),(22y x B 两点的直线的斜率为k , 则当21x x ≠时,2121tan x x y y k --==α;当21x x =时,o90=α;斜率不存在;二、直线的方程1.点斜式:已知直线上一点P (x 0,y 0)及直线的斜率k (倾斜角α)求直线的方程用点斜式:y-y 0=k(x-x 0)注意:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =;2.斜截式:若已知直线在y 轴上的截距(直线与y 轴焦点的纵坐标)为b ,斜率为k ,则直线方程:b kx y +=;特别地,斜率存在且经过坐标原点的直线方程为:kx y = 注意:正确理解“截距”这一概念,它具有方向性,有正负之分,与“距离”有区别。

3.两点式:若已知直线经过),(11y x 和),(22y x 两点,且(2121,y y x x ≠≠则直线的方程:121121x x x x y y y y --=--;注意:①不能表示与x 轴和y 轴垂直的直线;②当两点式方程写成如下形式0))(())((112112=-----x x y y y y x x 时,方程可以适应在于任何一条直线。

4截距式:若已知直线在x 轴,y 轴上的截距分别是a ,b (0,0≠≠b a )则直线方程:1=+bya x ; 注意:1).截距式方程表不能表示经过原点的直线,也不能表示垂直于坐标轴的直线。

2).横截距与纵截距相等的直线方程可设为x+y=a;横截距与纵截距互为相反数的直线方程可设为x-y=a5一般式:任何一条直线方程均可写成一般式:0=++C By Ax ;(B A ,不同时为零);反之,任何一个二元一次方程都表示一条直线。

注意:①直线方程的特殊形式,都可以化为直线方程的一般式,但一般式不一定都能化为特殊形式,这要看系数C B A ,,是否为0才能确定。

②指出此时直线的方向向量:),(A B -,),(A B -,⎪⎪⎭⎫⎝⎛+-+2222,B A ABA B (单位向量);直线的法向量:),(B A ;(与直线垂直的向量)6(选修4-4)参数式⎩⎨⎧+=+=bt y y atx x 00(t 参数)其中方向向量为),(b a ,单位向量⎪⎪⎭⎫ ⎝⎛++2222,b a bba a ; ab k =;22||||ba t PP o +=; 点21,P P 对应的参数为21,t t ,则222121||||ba t t P P +-=;⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数)其中方向向量为)sin ,(cos αα, t 的几何意义为||o PP ;斜率为αtan ;倾斜角为)0(παα<≤。

三、两条直线的位置关系位置关系222111::b x k y l b x k y l +=+=:0:22221111=++=++C y B x A l C y B x A l 平行⇔21k k =,且21b b ≠212121C C B B A A ≠=(A 1B 2-A 2B 1=0) 重合⇔21k k =,且21b b =212121C C B B A A == 相交⇔21k k ≠2121B B A A ≠垂直⇔121-=⋅k k 02121=+B B A A设两直线的方程分别为:222111:b x k y l +=或0:22221111=++C y B x A l ;当21k k ≠或1221B A B A ≠时它们相交,交点坐标为方程组⎩⎨⎧+=+=2211b x k y b x k y 或⎩⎨⎧=++=++00222111Cy B x A C y B x A 解;注意:①对于平行和重合,即它们的方向向量(法向量)平行;如:),(),(2211B A B A λ= 对于垂直,即它们的方向向量(法向量)垂直;如0),(),(2211=⋅B A B A②若两直线的斜率都不存在,则两直线 平行 ;若一条直线的斜率不存在,另一直线的斜率为 0 ,则两直线垂直。

③对于02121=+B B A A 来说,无论直线的斜率存在与否,该式都成立。

因此,此公式使用起来更方便.④斜率相等时,两直线平行(或重合);但两直线平行(或重合)时,斜率不一定相等,因为斜率有可能不存在。

四、两直线的交角(1)1l 到2l 的角:把直线1l 依逆时针方向旋转到与2l 重合时所转的角;它是有向角,其范围是πθ<≤0;注意:①1l 到2l 的角与2l 到1l 的角是不一样的;②旋转的方向是逆时针方向;③绕“定点”是指两直线的交点。

(2)直线1l 与2l 的夹角:是指由1l 与2l 相交所成的四个角的最小角(或不大于直角的角),它的取值范围是20πθ<≤;(3)设两直线方程分别为:222111::b x k y l b x k y l +=+=或0:0:22221111=++=++C y B x A l C y B x A l ①若θ为1l 到2l 的角,12121tan k k k k +-=θ或21211221tan B B A A B A B A +-=θ;②若θ为1l 和2l 的夹角,则12121tan k k k k +-=θ或21211221tan B B A A B A B A +-=θ;③当0121=+k k 或02121=+B B A A o注意:①上述与k 有关的公式中,其前提是两直线斜率都存在,而且两直线互不垂直;当有一条直线斜率不存在时,用数形结合法处理。

②直线1l 到2l 的角θ与1l 和2l 的夹角α:)2(πθθα≤=或)2(πθθπα>-=;五、点到直线的距离公式:1.点),(00y x P 到直线0:=++C By Ax l 的距离为:2200||BA C By Ax d +++=;2.两平行线0:11=++C By Ax l ,0:22=++C By Ax l 的距离为:2221||BA C C d +-=;六、直线系:(1)设直线0:1111=++C y B x A l ,0:2222=++C y B x A l ,经过21,l l 的交点的直线方程为0)(222111=+++++C y B x A C y B x A λ(除去2l );如:①011=--⇒+=kx y kx y ,即也就是过01=-y 与0=x 的交点)1,0(除去0=x 的直线方程。

②直线5)12()1(:-=-+-m y m x m l 恒过一个定点 。

注意:推广到过曲线0),(1=y x f 与0),(2=y x f 的交点的方程为:0)()(21=+x f x f λ; (2)与0:=++C By Ax l 平行的直线为01=++C By Ax ; (3)与0:=++C By Ax l 垂直的直线为01=+-C Ay Bx ; 七、对称问题: (1)中心对称:①点关于点的对称:该点是两个对称点的中点,用中点坐标公式求解,点),(b a A 关于),(d c C 的对称点)2,2(b d a c --②直线关于点的对称:Ⅰ、在已知直线上取两点,利用中点公式求出它们关于已知点对称的两点的坐标,再由两点式求出直线方程; Ⅱ、求出一个对称点,在利用21//l l 由点斜式得出直线方程; Ⅲ、利用点到直线的距离相等。

求出直线方程。

如:求与已知直线0632:1=-+y x l 关于点)1,1(-P 对称的直线2l 的方程。

(2)轴对称:①点关于直线对称:Ⅰ、点与对称点的中点在已知直线上,点与对称点连线斜率是已知直线斜率的负倒数。

Ⅱ、求出过该点与已知直线垂直的直线方程,然后解方程组求出直线的交点,在利用中点坐标公式求解。

如:求点)5,3(-A 关于直线0443:=+-y x l 对称的坐标。

②直线关于直线对称:(设b a ,关于l 对称)Ⅰ、若b a ,相交,则a 到l 的角等于b 到l 的角;若l a //,则l b //,且b a ,与l 的距离相等。

Ⅱ、求出a 上两个点B A ,关于l 的对称点,在由两点式求出直线的方程。

Ⅲ、设),(y x P 为所求直线直线上的任意一点,则P 关于l 的对称点'P 的坐标适合a的方程。

如:求直线042:=-+y x a 关于0143:=-+y x l 对称的直线b 的方程。

八、简单的线性规划:(1)设点),(00y x P 和直线0:=++C By Ax l ,①若点P 在直线l 上,则000=++C By Ax ;②若点P 在直线l 的上方,则0)(00>++C By Ax B ;③若点P 在直线l 的下方,则0)(00<++C By Ax B ; (2)二元一次不等式表示平面区域:对于任意的二元一次不等式)0(0<>++C By Ax ,①当0>B 时,则0>++C By Ax 表示直线:=++C By Ax 上方的区域;0<++C By Ax 表示直线:=++C By Ax 下方的区域;②当0<B 时,则0>++C By Ax 表示直线:=++C By Ax 下方的区域;0<++C By Ax 表示直线:=++C By Ax 上方的区域;注意:通常情况下将原点)0,0(代入直线C By Ax ++中,根据0>或0<来表示二元一次不等式表示平面区域。

(3)线性规划:求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。

满足线性约束条件的解),(y x 叫做可行解,由所有可行解组成的集合叫做可行域。

生产实际中有许多问题都可以归结为线性规划问题。

注意:①当0>B 时,将直线0=+By Ax 向上平移,则By Ax z +=的值越来越大; 直线0=+By Ax 向下平移,则By Ax z +=的值越来越小;②当0<B 时,将直线0=+By Ax 向上平移,则By Ax z +=的值越来越小; 直线0=+By Ax 向下平移,则By Ax z +=的值越来越大;如:在如图所示的坐标平面的可行域内(阴影部分且包括周界),目标函数ay x z +=取得最小值的最优解有无数个,则a 为 ; 第二部分:圆与方程2.1圆的标准方程:222)()(r b y a x =-+-圆心),(b a C ,半径r 特例:圆心在坐标原点,半径为r 的圆的方程是:222r y x =+. 2.2点与圆的位置关系:1. 设点到圆心的距离为d ,圆半径为r : (1)点在圆上 d=r ;(2)点在圆外 d >r ;(3)点在圆内 d <r .2.给定点),(00y x M 及圆222)()(:r b y a x C =-+-.①M 在圆C 内22020)()(r b y a x <-+-⇔ ②M 在圆C 上22020)()r b y a x =-+-⇔( ③M 在圆C 外22020)()(r b y a x >-+-⇔ 2.3 圆的一般方程:022=++++F Ey Dx y x .当0422>-+F E D 时,方程表示一个圆,其中圆心⎪⎭⎫⎝⎛--2,2E D C ,半径2422FE D r -+=.当0422=-+F E D 时,方程表示一个点⎪⎭⎫⎝⎛--2,2E D . 当0422<-+F E D 时,方程无图形(称虚圆).注:(1)方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是:0=B 且0≠=C A 且0422>-+AF E D .圆的直径系方程:已知AB 是圆的直径0))(())((),(),(21212211=--+--⇒y y y y x x x x y x B y x A2.4 直线与圆的位置关系: 直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有xyOA(1,1)B(5,1)C(4,2)三种,d 是圆心到直线的距离,(22BA C Bb Aa d +++=(1)<∆⇔⇔>相离r d ;(2)=∆⇔⇔=相切r d ;(3)0>∆⇔⇔<相交r d 。

相关文档
最新文档