最新人工智能AI4章计算智能
人工智能计算智能和机器学习

人工智能计算智能和机器学习
人工智能(AI)是指通过计算机来模拟、延伸和增强人类智力的能力,使计算机具备一定的智能能力,可以实现任务自动化,实现对未知环境的
适应能力,从而实现自动决策。
人工智能的核心是机器学习,机器学习是计算机科学的一个分支,它
以各种算法和统计方法来研究计算机如何从现有的数据中学习。
它基于发
现数据规律允许机器以有效的方式处理新的信息,也就是从历史中学习。
也正是由于数据规律的发现,让计算机可以作出准确的决策和解决问题。
此外,还有一类特殊的机器学习算法,如深度学习算法,它可以利用
多层神经网络提取出特征,实现计算机的自动特征提取、特征学习,更加
准确地完成计算机的自动决策。
与传统的机器学习和统计学习不同,深度学习可以找到特征和模式。
2024版《人工智能》PPT课件

《人工智能》PPT课件•人工智能概述•机器学习原理及算法•自然语言处理技术•计算机视觉技术•语音识别与合成技术•智能推荐系统与数据挖掘•人工智能伦理、法律与社会影响目录定义与发展历程定义人工智能是一门研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的新技术科学。
发展历程从早期的符号学习到现代的深度学习,人工智能经历了多个发展阶段,包括专家系统、知识工程、机器学习等。
重要事件人工智能领域的重要事件包括图灵测试、达特茅斯会议、AlphaGo战胜围棋世界冠军等。
人工智能的技术原理包括感知、思考、学习和行动四个方面,通过模拟人类的思维和行为方式来实现智能化。
技术原理人工智能的核心思想是让机器能够像人类一样具有智能,包括理解、推理、决策、学习等能力。
核心思想人工智能的实现方式包括符号主义、连接主义和行为主义等多种方法,其中深度学习是当前最热门的技术之一。
实现方式技术原理及核心思想前景展望未来人工智能的发展前景非常广阔,将会在更多领域得到应用,同时也会出现更多的技术创新和突破。
应用领域人工智能已经广泛应用于各个领域,包括智能家居、自动驾驶、医疗诊断、金融风控等。
挑战与机遇人工智能的发展也面临着一些挑战,如数据安全、隐私保护等问题,但同时也带来了巨大的机遇和发展空间。
应用领域与前景展望原理通过最小化预测值与真实值之间的均方误差,学习得到最优的线性模型参数。
应用预测连续型数值,如房价、销售额等。
原理在特征空间中寻找最大间隔超平面,使得不同类别的样本能够被正确分类。
应用分类问题,如图像识别、文本分类等。
原理通过递归地选择最优特征进行划分,构建一棵树状结构,用于分类或回归。
应用分类、回归问题,如信用评分、医学诊断等。
原理将数据划分为K个簇,使得同一簇内的数据尽可能相似,不同簇间的数据尽可能不同。
应用数据挖掘、图像压缩等。
原理通过计算数据点间的相似度,将数据逐层进行聚合或分裂,形成树状结构。
应用社交网络分析、生物信息学等。
《计算智能》课件

计算智能的挑战与
限制
分析了当前计算智能面临的主要 挑战和限制,如数据质量、算法 可解释性、隐私保护等。
展望
未来发展方向
探讨了计算智能未来的发展趋势和研究方向,如深度学习、强化学 习、迁移学习等。
与其他技术的融合
讨论了计算智能与物联网、云计算、边缘计算等技术的融合,以及 它们在智能制造、智慧城市等领域的应用前景。
应用领域
人工神经网络在模式识别、图像处理、语音识别、自然语言处理等领域 有广泛应用。
模糊逻辑
总结词
模糊逻辑是一种处理不确定性、不完全性和模糊性的逻辑方法,通过引入模糊集合和模糊推理规则,实现对模糊信息 的处理。
详细描述
模糊逻辑通过将经典集合论中的确定性边界扩展到模糊边界,允许元素同时属于多个集合,从而更准确地描述现实世 界中的模糊现象。模糊逻辑在控制系统、决策支持系统、专家系统等领域有广泛应用。
详细描述
推荐系统广泛应用于电子商务、在线视频、社交媒体等领域。通过分析用户的购买记录、浏览历史和 兴趣爱好等信息,推荐系统可以为用户推荐相关商品、视频或朋友,提高用户体验和满意度。
机器人控制
总结词
机器人控制技术利用计算智能实现对机器人的精确控制,使机器人能够完成复杂任务。
详细描述
机器人控制技术广泛应用于工业制造、医疗护理、航空航天等领域。在工业制造中,智 能机器人可以自动化地完成生产线上的任务,提高生产效率;在医疗护理中,机器人可 以帮助医生进行手术操作或为病人提供护理服务;在航空航天中,机器人可以协助宇航
法律法规制定
为规范人工智能的发展和应用,需要制定相应的法律法规,明确人工智能的合法地位和责任归属,为人工智能技 术的发展和应用提供法律保障。
05
人工智能本科习题

图8.22机械手堆积木规划问题
8-8指出你的过程结构空间求得的图8.23问题的路径,并叙述如何把你在上题中所得结论推广至包括旋转情况。
图8.23一个寻找路径问题
第一章绪论
1-1.什么是人工智能?试从学科和能力两方面加以说明。
1-2.在人工智能的发展过程中,有哪些思想和思潮起了重要作用?
1-3.为什么能够用机器(计算机)模仿人的智能?
1-4.现在人工智能有哪些学派?它们的认知观是什么?
1-5.你认为应从哪些层次对认知行为进行研究?
1-6.人工智能的主要研究和应用领域是什么?其中,哪些是新的研究热点?
3-16下列语句是一些几何定理,把这些语句表示为基于规则的几何证明系统的产生式规则:
(1)两个全等三角形的各对应角相等。
(2)两个全等三角形的各对应边相等。
(3)各对应边相等的三角形是全等三角形。
(4)等腰三角形的两底角相等。
第四章计算智能(1):神经计算模糊计算
4-1计算智能的含义是什么?它涉及哪些研究分支?
5-2试述遗传算法的基本原理,并说明遗传算法的求解步骤。
5-3如何利用遗传算法求解问题,试举例说明求解过程。
5-4用遗传算法求的最大值
5-5进化策略是如何描述的?
5-6简述进化编程的机理和基本过程,并以四状态机为例说明进化编程的表示。
5-7遗传算法、进化策略和进化编程的关系如何?有何区别?
5-8人工生命是否从1987年开始研究?为什么?
2-10试构造一个描述你的寝室或办公室的框架系统。
第三章搜索推理技术
3-1什么是图搜索过程?其中,重排OPEN表意味着什么,重排的原则是什么?
3-2试举例比较各种搜索方法的效率。
(2024年)(完整版)人工智能介绍课件

多层感知器(MLP)
由多个神经元组成的多层网络,具有 强大的分类和回归能力。
2024/3/26
12
卷积神经网络(CNN)
01
02
03
卷积层
通过卷积核提取输入数据 的局部特征,实现参数共 享和稀疏连接。
2024/3/26
池化层
降低数据维度,提高模型 泛化能力,如最大池化、 平均池化等。
全连接层
将卷积层和池化层提取的 特征进行整合,输出最终 结果。
13
循环神经网络(RNN)
01
循环神经单元
具有记忆功能,能够处理序列数 据,如LSTM、GRU等。
02
时间步
将序列数据按照时间顺序输入到 循环神经单元中,实现信息的传 递和积累。
03
序列到序列( Seq2Seq)
由编码器和解码器组成的模型结 构,实现输入序列到输出序列的 映射。
2024/3/26
14
深度确定性策略梯度( Deep Deterministic Policy Gradient, DDPG )
10
2024/3/26
03
CATALOGUE
深度学习技术与应用
11
神经网络模型
神经元模型
模拟生物神经元结构和功能,实现输 入到输出的非线性映射。
激活函数
引入非线性因素,提高神经网络的表 达能力,如ReLU、Sigmoid等。
第二次浪潮
20世纪90年代至21世纪初,随着计算机技术的飞速发展 和大数据时代的到来,机器学习、深度学习等算法取得重 大突破,人工智能开始进入快速发展阶段。
第三次浪潮
21世纪初至今,人工智能技术在语音识别、图像识别、 自然语言处理等领域取得显著成果,并开始渗透到金融、 医疗、教育等各行各业。
人工智能第4章(不确定性推理方法)

例:容器里的球
现分别有 A,B 两个容器,在容器 A 里分别有 7 个红球和 3 个白球,在容器 B 里有 1 个红球和 9 个白球。
现已知从这两个容器里任意抽出了一个球,且是红球, 问:这个红球是来自容器 A 的概率是多少?
假设已经抽出红球为事件 B,从容器 A 里抽出球为事件 A, 则有:P(B) = 8 / 20 P(A) = 1 / 2 P(B | A) = 7 / 10,
证据(前提)的不确定性表示 规则的不确定性表示 推理计算---结论的不确定性表示
11
证据的不确定性度量
单个证据的不确定性获取方法:两种 初始证据:由提供证据的用户直接指定,用可信度因子对 证据的不确定性进行表示。如证据 E 的可信度表示为 CF(E)。 如对它的所有观测都能肯定为真,则使CF(E)=1;如能肯定 为假,则使 CF(E)=-1 ;若它以某种程度为真,则使其取小 于1的正值,即0< CF(E)<1;若它以某种程度为假,则使其 取大于 -1 的负值,即-1< CF(E)<0; 若观测不能确定其真假, 此时可令CF(E)=0。
P (H | E) - P (H) , 当 P (H | E) P (H) 1 P (H) CF(H, E) P (H | E) - P (H) , 当P (H | E) P (H) P (H)
15
确定性方法
规则
规则的不确定性表示 证据(前提)的不确定性表示 推理计算—结论的不确定性表示
24
规则
(推理计算 4)
CF(E) < =0,
规则E H不可使用,即此计算不必进行。
0 < CF(E) <= 1,
人工智能_第五章计算智能
传统分类能力
ANN 分类能力
分类与识别功能
§5.2.1人工神经网络研究的进展
三、基本功能
优化计算功能
§5.2.1人工神经网络研究的进展
§5.2.2人工神经网络的结构
2.生理神经元的功能
从生物控制论的观点,神经元作为控制和信息处理的基本单元,具有下列
一些重要的功能与特性:
• 时空整合功能:神经元对于不同时间通过同一突触传入的神经冲动,具有时 间整合功能。对于同一时间通过不同突触传入的神经冲动,具有空间整合功 能。两种功能相互结合,具有时空整合的输入信息处理功能; • 兴奋与抑制状态:即兴奋(细胞膜电位升高)和抑制(细胞膜电位降低)。 • 脉冲与电位转换:突触界面具有脉冲/电位信号转换功能。 • 神经纤维传导速度:神经冲动沿神经纤维传导的速度在1-150m/s之间。 • 突触延时和不应期:突触对神经冲动的传递具有时延和不应期,在相邻的二 次冲动之间需要一个时间间隔,即为不应期。 每个人脑大约含有1011-1012个神经元,每一神经元又约有103-104个突触。神
匹配等, 而反馈型神经网络则是一个非线性动力学系统,它具有如下两个重要特征:
1.系统具有多个稳定状态,从某一初始状态开始运动,系统最终可以到
为1或0取决于其输入之和大于或小于内部阈值θ。
§5.2.2人工神经网络的结构
激发函数一般具有非线性特性,常用的非线性特性如下图所示,分述于下:
① 阈值型
对于这种模型,神经元没有内部状态,激发函数为一阶跃函数,如图 (a) 所示。这时,输出为: 1 f(xi)=U(xi)= 0 ② 分段线性强饱和型 见图 (b)。 ,xi>0 ,xi≤0
【人工智能】《人工智能》课程习题
【⼈⼯智能】《⼈⼯智能》课程习题《⼈⼯智能》课程习题第⼀章绪论1-1. 什么是⼈⼯智能?试从学科和能⼒两⽅⾯加以说明。
1-2. 在⼈⼯智能的发展过程中,有哪些思想和思潮起了重要作⽤?1-3. 为什么能够⽤机器(计算机)模仿⼈的智能?1-4. 现在⼈⼯智能有哪些学派?它们的认知观是什么?1-5. 你认为应从哪些层次对认知⾏为进⾏研究?1-6. ⼈⼯智能的主要研究和应⽤领域是什么?其中,哪些是新的研究热点?第⼆章知识表⽰⽅法2-1状态空间法、问题归约法、谓词逻辑法和语义⽹络法的要点是什么?它们有何本质上的联系及异同点?2-2设有3个传教⼠和3个野⼈来到河边,打算乘⼀只船从右岸渡到左岸去。
该船的负载能⼒为两⼈。
在任何时候,如果野⼈⼈数超过传教⼠⼈数,那么野⼈就会把传教⼠吃掉。
他们怎样才能⽤这条船安全地把所有⼈都渡过河去?再定义描述过河⽅案的谓词:L-R(x, x1, y, y1,S):x1个修道⼠和y1个野⼈渡船从河的左岸到河的右岸条件:Safety(L,x-x1,y-y1,S’)∧Safety(R,3-x+x1,3-y+y1,S’)∧Boat(L,S)动作:Safety(L,x-x1,y-y1,S’)∧Safety(R,3-x+x1,3-y+y1,S’)∧Boat(R,S’)R-L (x, x1, y, y1,S):x2个修道⼠和y2个野⼈渡船从河的左岸到河的右岸条件:Safety(R,3-x-x2,3-y-y2,S’)∧Safety(L,x+x2,y+y2,S’)∧Boat(R,S)动作:Safety(R,3-x-x2,3-y-y2,S’)∧Safety(L,x+x2,y+y2,S’)∧Boat(L,S’)(2) 过河⽅案Safety(L,3,3,S0)∧Safety(R,0,0,S0)∧Boat(L,S0)L-R(3, 1, 3, 1,S0) L-R(3, 0, 3, 2,S0)Safety(L,2,2,S1)∧Safety(R,1,1,S1)∧Boat(R,S1)Safety(L,3,1,S1’)∧Safety(R,0,2,S1’)∧Boat(R,S1’)R-L (2, 1, 2, 0,S1) R-L (3,0, 1, 1,S1’)Safety(L,3,2,S2)∧Safety(R,0,1,S2)∧Boat(L,S2)L-R(3, 0, 2, 2,S2)Safety(L,3,0,S3)∧Safety(R,0,3,S3)∧Boat(R,S3)R-L (3, 0, 0, 1,S3)Safety(L,3,1,S4)∧Safety(R,0,2,S1)∧Boat(L,S4)L-R(3, 2, 1, 0,S4)Safety(L,1,1,S5)∧Safety(R,2,2,S5)∧Boat(R,S5)R-L (1, 1, 1, 1,S5)Safety(L,2,2,S6)∧Safety(R,1,1,S6)∧Boat(L,S6)L-R(2, 2, 2, 0,S6)Safety(L,0,2,S7)∧Safety(R,3,1,S7)∧Boat(R,S7)R-L (0, 0, 2, 1,S7)Safety(L,0,3,S8)∧Safety(R,3,0,S8)∧Boat(L,S8)L-R(0, 0, 3, 2,S8)Safety(L,0,1,S9)∧Safety(R,3,2,S9)∧Boat(R,S9)R-L (0, 1, 1, 0,S9)Safety(L,1,1,S10)∧Safety(R,2,2,S10)∧Boat(L,S10)2-3利⽤图2.3,⽤状态空间法规划⼀个最短的旅⾏路程:此旅程从城市A开始,访问其他城市不多于⼀次,并返回A。
2024年Ai人工智能PPT课件
3
AI系统的公平性和偏见 如何避免AI系统在处理数据时产生歧视和偏见, 确保公平对待所有用户。
相关法规政策解读
数据保护法规
介绍国内外关于数据保 护和隐私权的法律法规, 如欧盟的《通用数据保 护条例》(GDPR)等。
AI技术监管政策
分析政府对AI技术的监 管政策,包括算法审查、 数据使用限制等。
知识产权保护
词法、句法分析技术
词法分析
研究单词的内部结构以及单词之间的结构关系,包括词性标注、 分词等任务。
句法分析
研究句子中词语之间的结构关系,建立词语之间的依存关系或短语 结构关系。
词法、句法分析技术应用
在信息抽取、情感分析、机器翻译等领域有广泛应用。
情感分析、问答系统等应用
情感分析
识别和分析文本中的情感倾向和 情感表达,用于产品评论、社交
国外发展现状
美国、欧洲等发达国家在人工智能领域的研究和应用也处于领先地位。这些国家拥 有众多知名的科技公司和科研机构,不断推动人工智能技术的创新和发展。
未来发展趋势预测
技术创新
随着深度学习、机器学习等技术的不断发展,人工智能将在 更多领域实现突破和创新,如自然语言处理、计算机视觉、 智能机器人等。
2024年Ai人工智能PPT课件
目录
• 人工智能概述与发展趋势 • 机器学习原理及应用场景 • 深度学习技术与应用创新 • 自然语言处理技术探讨 • 计算机视觉在AI中角色 • AI伦理、法规及社会责任
01
人工智能概述与发展趋势
人工智能定义及分类
定义
人工智能(AI)是计算机科学的一个分支,旨在研究、开发能够模拟、延伸和 扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学。
第4章走进智能时代4.2利用智能工具解决问题-高中教学同步《信息技术-数据与计算》(教案)
批判性思维:学生能够评估人工智能工具的有效性和局限性,并提出可能的改进措施。
4.2.2编程开发智能工具
编程知识:学生能够理解使用Python语言开发人工智能工具的基本过程,包括安装必要的库和语料库。
活动二:
调动思维
探究新知
介绍《新一代人工智能发展规划》的主要内容,强调国家对AI技术的重视和发展目标。
讲解人工智能开放创新平台的五大方向,如自动驾驶、城市大脑等,并展示这些技术如何转化为实际应用。
听取教师对《新一代人工智能发展规划》的介绍,理解国家层面的战略部署。
观看视频或案例分析,了解人工智能平台的具体应用和技术创新。
自主学习法:鼓励学生在课后继续探索其他人工智能工具或库的使用,培养自主学习和持续学习的能力。
多媒体教学法:利用幻灯片、视频演示等多媒体工具,直观展示人工智能工具的运作和效果,增强教学的生动性和趣味性。
小组合作学习:在实践操作环节中,鼓励学生分组合作,共同完成任务,通过团队合作来提高解决问题的效率和质量。
调试与问题解决:在实际编程过程中,学生可能遇到各种错误和问题,教师需要引导学生学会自主调试和解决问题。
教学方法
讲授法:通过教师的讲解来介绍人工智能平台的发展背景、国家规划以及各类智能工具的功能和应用。
案例分析法:使用具体的实例(如自动驾驶、城市大脑等平台)来展示人工智能技术在解决实际问题中的应用,帮助学生理解抽象概念。
编程语言选择:
Python:多平台运行、强大的数据处理库、丰富的第三方库
优势:
可以自主开发智能工具,提高灵活性
示例:
开发对话机器人
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-70毫伏
动作电位:
+40 毫伏 工作方式:
细胞核
刺激叠加
瞬间冲动
11
1. 生物神经系统简介
突触联结方式
12
1. 生物神经系统简介
突触传导
突触传导由电变化和化学 变化两个过程完成。
当一个神经冲动传到神经 末梢时,促使小泡前移与突 触前膜融合,并在融合处出 现裂口,使其所含神经递质 释放,释放出来的神经递质 通过突触前膜的张口进入突 出间隙。
1
用指数、对数或双曲正切等S型函数表示。它反映的
是神经元的饱和特性.
σ 0
子阈累积型(Subthreshold Summation)
f(θ)
也是一个非线性函数,当产生的激活值超过T值时, 该神经元被激活产生个反响。在线性范围内,系统
1
的反响是线性的。
0
T
σ
16
2. 人工神经网络简介
人工神经网络及其分类
多层反馈网络 指拥有隐含层的反馈网络
18
1. 前馈网络
单层前馈网络(1/3)
单层前馈网络是指那种只拥有单层计算节点的前向网络。它仅含有输入层 和输出层,且只有输出层的神经元是可计算节点,如下图所示
x1 X2
X3
…
y1
Y2
…
xn 输入层
权值 wij
ym 输出层
图4.8 单层前馈网ห้องสมุดไป่ตู้结构
其中,输入向量为X=(x1,x2,…,xn);输出向量为Y=(y1,y2,…,ym);输入层各个
2
4.2.1 神经计算基础
生物神经系统是人工神经网络的基础。人工神经网络是对人脑神经 系统的简化、抽象和模拟,具有人脑功能的许多基本特征。
1. 生物神经系统简介
(1) 生物神经元的结构 (2) 生物神经细胞及工作方式 (3) 突触联结 (4) 突触传递方式
2. 人工神经网络简介
9
结构: 胞体 轴突 树突 突触
1. 前馈网络
(只包含前向联结)
单层前馈网络 多层前馈网络
仅含输入层和输出层,且只有输出层 的神经元是可计算节点
n
yjf( w ijxij) j1,2,..m ., i1
除拥有输入、输出层外,还至少含有 一个、或更多个隐含层的前向网络
2. 反馈网络
(可含有反馈联结)
单层反馈网络 指不拥有隐含层的反馈网络
n
人工神经元是一个具有多输入,单输出的非线性器件。其输入为: w i x i i1
其输出为: n
yf()f( wixi )
15
i1
2. 人工神经网络简介
常用的人工神经元模型
根据功能函数的不同,可得不同的神经元模型。 阈值型(Threshold)
f(θ)
这种模型的神经元没有内部状态,作用函数f是一
1
个阶跃函数,他表示激活值σ和输出之间的关系。
0
σ
分段线性强饱和型(Linear Saturation)
f(θ)
这种模型又称为伪线性,其输入/输出之间在一定
1
范围内满足线性关系,一直延续到输出为最大值1为
止。但当达到最大值后,输出就不再增。
0
σ
S型(Sibmoid)
f(θ)
这是一种连续的神经元模型,其输入输出特性常
…
θ
y
xn
wn
图4.3 MP神经元模型
MP模型是美国心理学家麦克洛奇(W.McM ulloch)和数理逻辑学家皮茨 (W.Pitts) 根据生物神经元的功能和结构,于1943年提出的一种将神经元看作 二进制阈值元件的简单模型。
图中的x1, x2, … ,xn表示某一神经元的n个输入;wi表示第i个输入的连接强度, 称为连接权值;θ为神经元的阈值;y为神经元的输出。
人工神经网络的概念
人工神经网络是一种对人工神经元进行互联所形成的网络,它是对生物神 经网络的模拟。反映的是神经元的饱和特性.
人工神经网络的分类
按拓扑结构
前馈网络 反馈网络
按学习方法
有导师指导 无导师指导
连续型网络 按网络性能
离散型网络
17
4.2.2 人工神经网络的互联结构
人工神经网络的互连结构(或称拓扑结构)是指单个神经元之间的连接模 式,它是构造神经网络的基础,也是神经网络诱发偏差的主要来源。从互连 结构的角度:
长度: 最长1米
状态: 抑制 兴奋
1. 生物神经系统简介
生物神经元的结构
细胞体
突触
树突 轴突
10
1. 生物神经系统简介
神经细胞及工作方式
细胞结构
细胞膜,细胞质,细胞核
神经递质传递
细胞膜
乙酰胆碱、儿茶酚胺类、
氨基酸等
信号跨膜转导
离子通道
基本状态: 抑制:-70毫伏
细胞质
兴奋:+40 毫伏
静息膜电位:
输入到相应神经元的连接权值分别是wij,i=1,2,..,n,j=1,2,.., m。
19
1. 前馈网络
单层前馈网络(2/3)
若假设各神经元的阈值分别是θj,j=1,2,…,m,则各神经元的输出yj, j=1,2,..,m分别为:
n
yj f( w ijxij) i1
j1,2,..m .,
其中,由所有连接权值wij构成的连接权值矩阵W为:
进入突触间隙的神经递质 又迅速作用于突触后膜,改 变突触后膜的通透性,引起 突触后成分中的电位变化, 实现神经冲动的传递。
由于神经末梢所释放的递 质不同(兴奋作用和抑制作 用),因此突触可分为兴奋 性突触和抑制性突触。
神经微管 线粒体 存储颗粒
突触小泡
突触前膜 突触间隙 突触后膜
13
4.2.1 神经计算基础
生物神经系统是人工神经网络的基础。人工神经网络是对人脑神经 系统的简化、抽象和模拟,具有人脑功能的许多基本特征。
1. 生物神经系统简介 2. 人工神经网络简介
(1) 人工神经元的结构 (2) 常用的人工神经元模型 (3) 人工神经网络及其分类
14
2. 人工神经网络简介
人工神经元的结构
x1
w1
x2
w2
人工智能AI4章计算智能
4.1.1 什么是计算智能
概念解释
计算智能(Computational Intelligence,CI)目前还没有一个统一的的定义, 使用较多的是美国科学家贝慈德克(J.C.Bezdek)从计算智能系统角度所给出 的定义。
从计算智能系统角度 如果一个系统仅处理低层的数值数据,含有模式识别部件,没有使用人工 智能意义上的知识,且具有计算适应性、计算容错力、接近人的计算速度和 近似于人的误差率这4个特性,则它是计算智能的。 从学科范畴看 计算智能是在神经网络(Neural Networks,NN)、进化计算(Evolutionary Computation, EC)及模糊系统(Fuzzy System,FS)这3个领域发展相对成熟 的基础上形成的一个统一的学科概念。