关于矩阵的运算

合集下载

矩阵的运算

矩阵的运算

§2 矩阵的运算一、矩阵的相等、加、减、数乘、乘法、转置与共轭(A +B )=A +B (kA )=kA (k 为任意复数) (AB )τ=BA (反序定律)(A 1A 2...A s )=τττ12...A A A s(A k )=(A )k (k 为整数)二、 矩阵的初等变换与初等矩阵设I =⎥⎥⎥⎥⎤⎢⎢⎢⎢⎡10101,称为单位矩阵.用数k(0)乘矩阵的第i 列(或行)初等变换具有性质:1° 任何矩阵(a ij )都可经过有限次初等变换化为对角矩阵(a ij )⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡0001012° 初等变换不改变矩阵的秩.三、 矩阵的微积分假设矩阵A 的元素a ij 都是参数t 的函数,那末1° 矩阵A 的导数定义为⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡==t a t a ta t a t a tat a t a t a A tA mn m m n n d d ...d d d d ............d d ...d d d d d d ...d d d d d d 212222111211同样可定义矩阵的高阶导数. 2° 矩阵A 的积分定义为⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰t a t a ta t at at a t a t a ta t A mn m m n nd ...d d ............d ...d d d ...d d d 212222111211同样可定义矩阵的多重积分.四、 特殊矩阵[零矩阵与零因子] 元素a ij 全为零的矩阵称为零矩阵,记作O =(0)=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0...00............0 (00)0 (00)零矩阵具有性质:O +A =A +O =A OA =AO =OA +(-A )=O ,-A 称为A 的负矩阵若A ,B 为非零矩阵,即A ≠O ,B ≠O ,而AB =O ,则称矩阵A 为矩阵B 的左零因子,矩阵B 为矩阵A 的右零因子,例如A =⎥⎦⎤⎢⎣⎡--1111,B =⎥⎦⎤⎢⎣⎡--1111 AB =⎥⎦⎤⎢⎣⎡--1111⎥⎦⎤⎢⎣⎡--1111=⎥⎦⎤⎢⎣⎡0000=O[对角矩阵] 主对角线以外的元素都是零(d ij =0,i ≠j )的方阵称为对角矩阵,记作D =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n d d d 0...021=diag(d 1,d 2,...,d n )=[ d 1 d 2 ... d n ] 对角矩阵具有性质: 1° 左乘BDB =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n d d d 0021⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n b b b b b b b b b .....................212222111211=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n n n n b d b d b d b d b d b d b d b d b d ............... (2)12222221211121111 =)(ij i b d 2° 右乘BBD =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n b b b b b b b b b (2)12112111211⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n d d d 0021=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n n n n b d bd b d b d b d bd b d b d b d (2211222)22111122111 3° 两个对角矩阵的和、差、积仍为对角矩阵.[数量矩阵] d i =d (i =1,2,...,n )的对角矩阵称为数量矩阵,记作D =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡d d d00 =[d d... d ]显然DB =BD =dB .[单位矩阵] d =1的数量矩阵称为单位矩阵,记作 I =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡10101 =「1 1 ... 1」显然IB =BI =B .[对称矩阵] 满足条件a ij =a ji (i ,j =1,2,...,n )的方阵A =(a ij )称为对称矩阵.例如A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--423261315 是对称矩阵.对称矩阵具有性质: 若A ,B 都是对称矩阵,则A A=τ,且A -1(使A -1=A -1A =I 的矩阵.详见本节,六),A m (m 为正整数),A +B 仍是对称矩阵.[实对称矩阵]实对称矩阵按其特征值(本节,七)可分为正定矩阵,半正定矩阵、负定矩阵、半负定矩阵和不定矩阵,它们的定义与充分必要条件如下[反对称矩阵] 满足条件⎩⎨⎧-=jiij a a 0 )()(j i j i ≠= (i ,j =1,2,...,n )的方阵A =(a ij )称为反对称矩阵.例如A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---023201310 是反对称矩阵.反对称矩阵具有性质:1° 若A ,B 都是反对称矩阵,则A τ=-A ,且A -1, A +B 仍是反对称矩阵,A m 为⎩⎨⎧反对称矩阵对称矩阵)()(为奇数为偶数m m2° 任意方阵A 都可分解为一个对称矩阵B =(b ij )与一个反对称矩阵C =(c ij )之和,即A =B +C只需取b ij =21 (a ij +a ji ),c ij =21(a ij -a ji )(i ,j =1,2,...n )[埃尔米特矩阵] 满足条件A τ=A的方阵A 称为埃尔米特矩阵.例如A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--++-4232231212215i i i i i i 是埃尔米特矩阵.埃尔米特矩阵具有性质:若A ,B 都是埃尔米特矩阵,则1-A ,A +B 仍是埃尔米特矩阵.若A 又是实方阵(即a ij 全为实数),则A 就是对称矩阵.[反埃尔米特矩阵] 满足条件A τ=A -的方阵A 称为反埃尔米特矩阵.例如A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+--+-05250212210i i i i i i 是反埃尔米特矩阵.反埃尔米特矩阵具有性质: 若A ,B 都是反埃尔米特矩阵,则1-A , A +B 仍是反埃尔米特矩阵.若A 又是实方阵,则A 就是反对称矩阵.[正交矩阵] 满足条件A τ=1-A的方阵A 称为正交矩阵.例如 A =⎥⎦⎤⎢⎣⎡-θθθθcos sin sin cos 是正交矩阵.正交矩阵具有性质:若A =(a ij )和B 都是正交矩阵,则 1° 1-A , AB 仍是正交矩阵. 2° det A =±1.3° ⎩⎨⎧=∑=011n k jk ik a a )()(j i j i ≠=⎩⎨⎧=∑=011n k kj ki a a )()(j i j i ≠=[酉(U )矩阵] 满足条件1-=A A τ的方阵A 称为酉(U )矩阵.例如:A =⎥⎦⎤⎢⎣⎡00i i 是酉矩阵.酉矩阵具有性质:若A =(a ij )和B 都是酉矩阵,则 1° A -1,AB 仍是酉矩阵. 2° det A ∙det A =1.3° 若A 又是实方阵,则A 是正交矩阵.[带型矩阵] 满足条件a ij =0 )(m j i >-的方阵A =(a ij )称为带型矩阵.2m +1称为带宽.一般形式为A =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--++++nn mn n n m n n n n m a a a a a a a,,1,11,11,11100[三角矩阵] 满足条件a ij =0 (i >j )的方阵A =(a ij )称为上三角形矩阵,一般形式为A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n a a a a a a 022211211 满足条件()j i b ij <=0的方阵()ij b B =称为下三角形矩阵,一般形式为B =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n b b b b b b 212221110 三角形矩阵具有性质:1° 任何秩为r 的方阵C 的前r 个顺序的主子式不为0时,C 可表为一个上三角形矩阵A与一个下三角形矩阵B 的乘积,即C =AB2° 上(或下)三角形矩阵的和、差、积及数乘仍是上(或下)三角形矩阵.[分块矩阵] 用水平和垂直虚线将矩阵A 中的元素的阵列分成小块(称为子阵),A 就成为分块矩阵.例如A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡333231232221131211a a a a a a a a a =⎥⎦⎤⎢⎣⎡22211211B B B B 式中B 11=⎥⎦⎤⎢⎣⎡22211211a a a a,B 12=⎥⎦⎤⎢⎣⎡2313a a B 21=[]3231a a , B 22=[]33a 它们都是A 的子阵. 进行分块矩阵的运算时,可将子阵当作通常矩阵的元素看待.这些运算指加、减、乘法、数乘、转置与共轭等.[分块对角矩阵] 主对角线上的子阵都是方阵,其余子阵都是零矩阵的分块矩阵称为分块对角矩阵.一般形式为A =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡kkB O B O O O B 2211 分块对角矩阵A 的逆矩阵A -1和A 的行列式可以用下面简单公式求出A -1=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---1122111KK B OB O Bdet A =det B 11·det B 22·...·det B kk注意,一般分块矩阵的行列式不能用把子阵当作通常矩阵的元素的方法来计算,例如把四阶方阵化为分块矩阵A =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡44434241343332312423222114131211...........................a a a a a a a a a a a a a a a a =⎥⎦⎤⎢⎣⎡22211211B B B B 一般det A =det B 11·det B 22-det B 21·det B 12不成立(参见§1,二,3中的四阶行列式).五、 相似变换[相似变换] 如果有一非奇异矩阵X (即det X ≠0)使得B =1-X AX那末称矩阵A 与矩阵B 相似,也称A 经相似变换化为B ,记作A ~B .它具有下列性质: 1° A ~A ,AA .2° 若A ~B ,则BA .3° 若A ~C ,B ~C ,则A ~B .4° 1-X (A 1+ A 2+...+ A m )X =1-X A 1X + 1-X A 2X + ...+ 1-X A m X 5° 1-X (A 1 A 2 ...A m )X =1-X A 1 X ·1-X A 2 X ·... ·1-X A m X 6° 1-X A m X =( 1-X AX )m7° 若)(A f 为矩阵A 的多项式,则1-X )(A f X =)(1AX X f -8° 若A ~B ,则A 与B 的秩相同,即rank A =rank B . A 与B 的行列式相同,即det A =det B .A 与B 的迹(定义见本节,七)相同,即tr A =tr B . A 与B 具有相同的特征多项式和特征值(本节,七).[正交变换] 若Q 为正交矩阵(即1-Q =Q τ),则称Q τAQ 为矩阵A 的正交变换,其性质与相似变换类似.特别还有性质: 对称矩阵A 经正交变换后仍是对称矩阵.[旋转变换] 取正交矩阵U 为)(p)(qU pq =(u ij )=)()(11cos sin 11sin cos 11q p ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡θθ-θθ 即u pp =u qq =θcosu pq =-u qp =θsin u ii =1 (i ≠p,q )u ij =0 (i,j ≠p,q;i ≠j ) 这时称B =pq pq AU U τ为A 的旋转变换,称为旋转角,如果A 是对称矩阵,那末B 的元素b ij 与A 的元素a ij 有 如下对应关系:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=θ+θ=θ-θ=θ-θ+θθ-==θ+θθ+θ=θ+θθ-θ=ijijqj pj qj qj pj pj pq qq pp qp pqqq pq pp qq qq pq pp pp a b a a b a a b a a a b b a a a b a a a b cos sin sin cos )sin (cos cos sin )(cos cos sin 2sin sin cos sin 2cos 222222)其他元素(),(),(q p j q p j ≠≠同时有性质:∑=nj i ija1,2=∑=nj i ij b 1,2∑=ni iia 12∑=≤ni ii b 12 若取旋转角pqpp qq a a a 2cot arc 21-=θ则旋转变换使0==qp pq b b六、 逆矩阵[逆矩阵及其性质] 若方阵A ,B 满足等式AB=BA=I (I 为单位矩阵)则称A 为B 的逆矩阵,或称B 为A 的逆矩阵,记作A=1-B 或B=1-A这时A,B 都称为可逆矩阵(或非奇异矩阵,或满秩矩阵).否则称为不可逆矩阵(或奇异矩阵,或降秩矩阵).可逆矩阵具有性质:1° 若A,B 为可逆矩阵,则AB 仍为可逆矩阵,且111)(---=A B AB (反序定律)一般地,若A 1 ,A 2 ,…,A s 为可逆矩阵,则=-121)(s A A A 11121---A A A s2° 矩阵A 可逆的充分必要条件是:det A ≠0.3° 若矩阵A 可逆,则det 1-A ≠0 且 det 1-A =(det 1)-A11)(--A =A , 111)(---=A a aA (a ≠0)1)(-τA =(1-A )τ,()()11--=A A4° 矩阵A 可逆的充分必要条件是:矩阵A 的特征值全不为零.[伴随矩阵与逆矩阵表达式] 设A ij 为矩阵A =(a ij )的第i 行第j 列元素a ij 的代数余子式,则矩阵A *=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A (2122212)12111称为矩阵A 的伴随矩阵.若A 为非奇异矩阵,即det A ≠0,则A 的逆矩阵表达式为AA A det *1=-注意,A *的第i 行第j 列元素是A 的第j 行第i 列元素的代数余子式.[对角矩阵的逆矩阵] 对角矩阵D =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n d d d 0...021, d i ≠0 (i =1,2,...,n )的逆矩阵为D -1=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---112110...0n d d d 显然对角矩阵的逆矩阵仍是对角矩阵.[三角形矩阵的逆矩阵] 三角形矩阵L =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n l l l l l l ...............0...0...21222111, 00=≠ij ii l l )(),...,2,1(i j n i >= 的逆矩阵为1-L =P =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n p p p p pp ...............0...0 (02)1222111 式中iiii l p 1=(i =1,2,...,n )∑-=-=11i jk kj ikiiij p ll p⎪⎪⎭⎫ ⎝⎛+=-=n j i n j ,...,11,...,2,1 0=ij p)(i j >显然非奇异下(上)三角形矩阵的逆矩阵仍是下(上)三角形矩阵.[正定矩阵的逆矩阵] 1° 高斯—若当法正定矩阵A =(a ij )的逆A -1=(b ij )可由下列递推公式求出:)1(11)(1-=k k nnaa, )1(11)1(1)(1,----=k k jk j n aa a, )1(11)1(1)(,1---=k k i k ni a a a)1(11)1(1)1(1)1()(1,1-------=k k jk i k ij k j i aa a a a )2,...,1,,(-=n n j i ij n ij a a =)((k=1,2,...,n )最后得到)(n ijij a b = 式中n 为该正定矩阵A 的阶. 2° 三角阵法 其步骤如下:(1) 把正定矩阵A =(a ij )表示为A =ΛD Λτ式中D 为实的非奇异对角矩阵D =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n d d d 0021为实的非奇异下三角矩阵.Λ=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡λλλλ-1111,2121n n n n是的转置矩阵.d i (i =1,2,...,n )与λij (i =2,...,n;j=1,…,n )由下面递推公式算出:0=ij λ)(i j > 1=λii ),...,2,1(n i =∑-=-=11j k jk ik ij ij x a x λ)1,...,2,1;,...,2(-==i j n ijij ij d x =λ)1,...,2,1;,...,2(-==i j n i∑-=-=11i k ik ik ii i x a d λ),...,2,1(n i =(2)求出D 的逆矩阵1-D =⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡n d d d 11121(3)求出Λ的逆矩阵1-Λ=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1112121 n n ρρρ 式中⎪⎩⎪⎨⎧=-=∑-=11ii i jk kjik ij ρρλρ ),...,2,1(),...,2,1;1,...,2,1(n i n j j i n j =++=-=(4)求出A 的逆矩阵1-A =(ΛD 1)-τΛ=(1-Λ)τ1-D 1-Λ =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n βββββββββ212222112111式中∑==nik kkjki ij d ρρβ ),,2,1;,,2,1(n i i j ==注意,这种方法的好处是避免了求平方根的运算.[分块矩阵的逆矩阵] 设非奇异矩阵A 的分块矩阵为A =⎥⎦⎤⎢⎣⎡22211211B B B B 式中B 11,B 22为方子阵,那末A 的逆矩阵A -1=⎥⎦⎤⎢⎣⎡22211211C C C C由下面公式求出111211211111111212221221211112112111212222)(-------=-=-=-=B B C B C B B C C C B B C B B B B C[初等变换法求逆矩阵] 设1-A =1212222111211...........................-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n b b b b b b b b b 212222111211=B 对矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡100010001212222111211 nn n n n n a a a a a a a a a 作一系列行的初等变换,使虚线左边一块矩阵化为单位矩阵,而右边一块单位矩阵就变为A 的逆矩阵B =A -1,即⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n b b b b b b b b b212222111211100010001[逆矩阵的近似求法] 设10-A 为矩阵A 的初始近似逆矩阵,可由下列迭代公式求出更精确的逆矩阵:)2(1111---+-=n n n AA I A A (n=0,1,2,...)式中I 为与A 同阶的单位矩阵.[计算机求逆程序的检验矩阵] 用下列n 阶非奇异矩阵及其逆矩阵,来检验大矩阵求逆的计算程序.A =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡++-+------+-++222210221211210002112100002112122100021222n n n n n n1-A =⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--------n n n n n n n n n n n n n13211432341223111221七、 特征值与特征矢量[特征值与特征矢量] 对n 阶方阵A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a 212222111211 和n 维非零列矢量α=(a 1,a 2,...,a n )τ如果有一个数λ,使得A α=λα则称λ为矩阵A 的特征值(特征根),α为矩阵A 的特征值λ所对应的特征矢量. 矩阵A 的所有特征值中绝对值最大的一个称为A 的第一特征值.[特征矩阵特征多项式特征方程] n 阶方阵A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a 212222111211 的特征矩阵定义为=-I A λ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---λλλnn n n n n a a a a a aa a a212222111211 式中I 为n 阶单位矩阵.行列式|A -λI |称为矩阵A 的特征多项式,记作()=|-A λI |方程()=0称为矩阵A 的特征方程.[矩阵的迹与谱] n 阶方阵A 的主对角线上各元素之和称为A 的迹,记作∑==ni ii a A 1tr特征方程()=0的n 个根1,2,...,n 就是矩阵A 的n 个特征值.集合{1,2,...,n }称为矩阵A 的谱,记作ch A .线性齐次方程组0)(=-αλI A i的非零解便是矩阵A 的特征值i 所对应的特征矢量.[特征值与特征矢量的性质]1° 设1,2,...,n 为n 阶方阵A 的n 个特征值,则A k 的特征值为k n k k λλλ,,,21 (k 为正整数). A 的逆矩阵A -1的特征值为11211,,,---n λλλ .A 的伴随矩阵A *的特征值为A A A n 11211,,,---λλλ .2° n 阶方阵A 的n 个特征值之和等于A 的迹,矩阵A 的n 个特征值之积等于A 的行列式,即1+2+...+n =a 11+a 22+...+a nn12...n =A由此可以推出矩阵可逆的另一充分必要条件是:A 的所有特征值都不为零. 3° 若i 是特征方程的k 重根,则对应于i 的线性无关的特征矢量的个数不大于k .当i 为单根时,对应于i 的线性无关特征矢量只有一个.4° 矩阵A 的不同特征值所对应的特征矢量线性无关.若n 阶方阵A 对应于特征值1,2,...,s 的线性无关的特征矢量分别有k 1,k 2,...,k s个,则这∑=s i i k 1个特征矢量线性无关,且n k si i ≤∑=1.5° 实对称矩阵的特征值都是实数,并且有 n 个线性无关(而且是正交)的特征矢量. 6° 矩阵的特征值在相似变换下保持不变,特别,A τ与A 具有相同的特征值.[求第一特征值的迭代法] 在实际问题中,往往不要求算出矩阵A 的全部特征值,只需算出第一特征值,用迭代法计算如下:⎩⎨⎧=λ=α++b αα)0()1()1(1)(k k k A )2,1,0( =k 假定当ε<-+)1()(m m αα时,可以认为(k ) ≈(m +1),那末迭代到m k =即可.这时)1(1+m λ为矩阵A 的第一特征值的近似值,(m +1)为所对应的特征矢量.[求实对称矩阵的雅可比法] 设n 阶实对称矩阵A =(a ij )的特征值是1,2,...,n ,则必存在一正交矩阵Q ,使得Q τAQ =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡λλλn 0021为对角矩阵.正交矩阵Q 可用一系列旋转矩阵的积来逼近:Q =∏pq U式中)()(11cos sin 11sin cos 11)()()(q p u U q p ij pq⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-==θθθθ取pqpp qq a a a 2cot arc 21-=θ因为在这种旋转变换下,消去了矩阵中位于第p 行第q 列(p ≠q )交点上的元素(见本节,五),而矩阵所有元素的平方和保持不变,而且对角线上的元素的平方和增大,因而非对角线元素的平方和随之减小,因此,当旋转次数足够大时,可使非对角线元素的绝对值足够小.对于预先给定的精度>0,如果|a ij |<(i ≠j ),则可认为a ij ≈0.于是得到求矩阵A 的特征值与特征矢量的具体迭代方法.1° 按以下递推公式求特征值1,2,...,n :⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧+=θ=⎪⎪⎩⎪⎪⎨⎧<+->-+=θ=⎪⎩⎪⎨⎧<ςς++ς-≥ςς++ς=θ=-=θ=ς--2221212)()()(1sin )0(11)0(112tan )0()1()0()1(tan 22cot k k k k k k k k k kk k k k k k k k pq k pp k qq k t t s t t t t t t v t a a a⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧===≠≠=≠-+=≠+-=+=-=+++++),2,1(),,2,1,(),,,()()()()()1()1()()()()1()()()()1()()()1()()()1( k n j i a a q p j q p i a a q j a a s a a p j a a s a a a t a a a t a a ij ij kijk ijk qj k k pj k k qj k qj k pj k k qj k k pj k pj k pqk k qq k qq k pqk k pp k pp υυ假定当)()(j i a m ij ≠<ε时,可以认为0)(≈m ij a ,则迭代到1-=m k 即可.而取)(m iia 作为i的近似值:),,2,1(n i a miii =≈λ2° 求特征矢量 从1°有m m m m U U AU U U U 1111-- τττ=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n λλλ0021记P m =U 1…U m-1U m则AP m = P m ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n λλλ0021所以P m 为特征矢量矩阵.P m 由下列递推公式算出:)1,,2,1(),,2,1,(),,2,1(),()()()1()()1()()()()1()()()()1(-=⎪⎪⎪⎩⎪⎪⎪⎨⎧===≠=-+=+-=+++m k n j i u u n i q p j u u u u s u u u u s u u ijij k ijk ij k iq k k ip k k iq k iq k ip k k iq k k ip k ip υυ最后得到 )()(m ij m u P =即 τ),,,()()(2)(1)(m ni m i m i m i u u u u =为对应于特征值i 的特征矢量的近似值.[求对称三对角矩阵特征值的方法]1° 相似变换法 设A 为n 阶对称三对角矩阵:A =⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--n n n d e e d e e d e e d 113222111(1)经过相似变换1211211)(U U U I t A U U U A n k k n k --+-=τττ式中I 为单位矩阵,t k 为适当选定的常数,U i 为雅可比旋转矩阵:)1()(1111)1()(+⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-=+i i c s s c U i i ii i iiτi U 为U i 的转置矩阵.又A 1=A ,A k +1与k k t A -I 相似,且A m 与∑-=-111m j j I t A 相似.因此,若A m 的特征值为),,2,1()(n i m i =λ,则A 1的特征值i (i=1,2,...,n )为∑-=+=11)(m j j m ii t λλ(i =1,2,…,n )假定当),,2,1()(n i e m i =<ε时,可认为0)(≈m i e ,那末可适当选择s i ,c i ,使得当m 充分大时,A m 在该精度下化为对角线矩阵;其特征值),,2,1()()(n i d m i m i =≈λ.)(m i d (i=1,2,...,n )可由下列递推公式算出:()())1,,2,1;1,2,,2,1(,)]([)(//g ])()[(0,,)(1)(1)1(1)(1)(1)1(1)(1)(1)1(1)()()(1)()()(1)1(1)(1)()()()()(1)()()(1)(1)()(1)(1(k)1)()(1(k)1212)(2)(1)(1)()(-=--=⎪⎩⎪⎨⎧===-++=--=====+==-=+++++++++++++++++++++m k n n i q s e q c d r s e t d s g c s h d g s t d c q r e s r q c q c h e c c q rs c t d q k k k k k k k i k i k i k k i k i k i k i k i k i k i k i k i k k i k i k i k i k i k i k i k i k i k i k i i k i k i i k ik i k i k nk n k k n k nt k 的选择对收敛速度影响较大,取t k 为二阶矩阵⎥⎦⎤⎢⎣⎡)(2)(1)(1)(1k k k k d e e d 的接近于)(1k d 的那个特征值,即t k =⎪⎩⎪⎨⎧≥ββ++β-<ββ+-β-)0()1/()0()1/(2)(1)(12)(1)(1k k k k e d e d式中 )(1)(1)(22k k k e d d -=β 2° 二分法 设A 为n 阶对称三对角矩阵(如(1)式),对任意,设序列q 1()=d 1-q i ()=),,2()()(121n i q e d i i i =----λλ中q i ()<0的个数为N ()(在这些关系式中,对于某些i ,如果q i -1()=0,则只需用适当小的数代替即可),则N ()等于矩阵A 的小于的特征值的个数.假定矩阵A 的第k 个特征值k (1≤2≤… ≤k ≤…≤n )在区间[u ,υ]中,令21υ+=u r ,当N (r 1)≥k 时,则k ∈[u , r 1];当N (r 1)<k 时,则k ∈[ r 1,v ];…依此类推,m步之后,k 包含在宽度为mu2-υ的区间中.m 充分大时,便可得到所求的特征值.八、 矩阵多项式与最小多项式[矩阵多项式] 设i a (i=1,2,...,n )为某一数域(实数域或复数域)中的数,A 为这个数域上的n 阶方阵,则表示式f (A )=a 0I+a 1A+...+a n A n称为矩阵A 的多项式,式中I 为n 阶单位矩阵.如果矩阵A 使得f (A )=O那末称A为多项式f(λ)=a0λ+ a1λ+ ...+a nλn的根.[哈密顿-凯莱定理] 任一方阵都是它的特征多项式的根.[最小多项式及其性质] 以矩阵A为根的非零多项式f(λ)中,存在首项系数为1次数最低的多项式(λ),它就称为矩阵A的最小多项式.最小多项式具有性质:1°任一方阵仅有一个最小多项式;2°任一以A为根的多项式f(λ)都可被A的最小多项式(λ)所整除.特别,任一方阵的最小多项式可整除其特征多项式;3°方阵A的特征多项式的根都是A的最小多项式的根:4°相似矩阵具有相同的特征多项式和最小多项式.。

矩阵的四则运算

矩阵的四则运算

矩阵的四则运算
矩阵的四则运算指的是矩阵之间的加法、减法、乘法和除法运算。

1. 加法:两个矩阵的加法定义为将对应元素相加。

要求两个矩阵的行数和列数相等。

例如:
A = [1 2
3 4]
B = [5 6
7 8]
A +
B = [1+5 2+6
3+7 4+8]
= [6 8
10 12]
2. 减法:两个矩阵的减法定义为将对应元素相减。

同样要求两个矩阵的行数和列数相等。

例如:
A = [1 2
3 4]
B = [5 6
7 8]
A -
B = [1-5 2-6
3-7 4-8]
= [-4 -4
-4 -4]
3. 乘法:两个矩阵的乘法定义为将第一个矩阵的每一行与第二个矩阵的每一列进行内积运算。

要求第一个矩阵的列数等于第二个矩阵的行数。

例如:
A = [1 2
3 4]
B = [5 6
7 8]
A *
B = [1*5+2*7 1*6+2*8
3*5+4*7 3*6+4*8]
= [19 22
43 50]
4. 除法:矩阵的除法没有直接定义,但可以通过矩阵的乘法和逆矩阵来实现。

要求被除矩阵的逆矩阵存在且除数矩阵的行数等于被除矩阵的列数。

例如:
A = [1 2
3 4]
B = [5 6
7 8]
A /
B = A * B^(-1)
其中 B^(-1) 是矩阵 B 的逆矩阵。

这些运算规定了矩阵之间的加减乘除运算法则,能够在很多领域中被广泛应用,如线性代数、图像处理、机器学习等。

矩阵的运算

矩阵的运算

第三节矩阵的基本运算§3.1 加和减§3.2矩阵乘法§3.2.1 矩阵的普通乘法§3.2.2 矩阵的Kronecker乘法§3.3 矩阵除法§3.4矩阵乘方§3.5 矩阵的超越函数§3.6数组运算§3.6.1数组的加和减§3.6.2数组的乘和除§3.6.3 数组乘方§3.7 矩阵函数§3.7.1三角分解§3.7.2正交变换§3.7.3奇异值分解§3.7.4 特征值分解§3.7.5秩§3.1 加和减如矩阵A和B的维数相同,则A+B与A-B表示矩阵A与B的和与差.如果矩阵A和B的维数不匹配,Matlab会给出相应的错误提示信息.如:A= B=1 2 3 1 4 74 5 6 2 5 87 8 0 3 6 0C =A+B返回:C =2 6 106 10 1410 14 0如果运算对象是个标量(即1×1矩阵),可和其它矩阵进行加减运算.例如:x= -1 y=x-1= -20 -12 1§3.2矩阵乘法Matlab中的矩阵乘法有通常意义上的矩阵乘法,也有Kronecker乘法,以下分别介绍.§3.2.1 矩阵的普通乘法矩阵乘法用“ * ”符号表示,当A 矩阵列数与B 矩阵的行数相等时,二者可以进行乘法运算,否则是错误的.计算方法和线性代数中所介绍的完全相同.如:A=[1 2 ; 3 4]; B=[5 6 ; 7 8]; C=A*B ,结果为C=⎪⎪⎭⎫ ⎝⎛4321×⎪⎪⎭⎫ ⎝⎛8765=⎪⎪⎭⎫ ⎝⎛⨯+⨯⨯+⨯⨯+⨯⨯+⨯8463745382617251=⎪⎪⎭⎫ ⎝⎛50432219 即Matlab 返回:C =19 2243 50如果A 或B 是标量,则A*B 返回标量A (或B )乘上矩阵B (或A )的每一个元素所得的矩阵.§3.2.2 矩阵的Kronecker 乘法对n ×m 阶矩阵A 和p ×q 阶矩阵B ,A 和B 的Kronecher 乘法运算可定义为:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⊗=B a B a B a B a B a B a B a B a B a B A C nm n n m m (2122221)11211由上面的式子可以看出,Kronecker 乘积A ⊗B 表示矩阵A 的所有元素与B 之间的乘积组合而成的较大的矩阵,B ⊗A 则完全类似.A ⊗B 和B ⊗A 均为np ×mq 矩阵,但一般情况下A ⊗B ≠B ⊗A .和普通矩阵的乘法不同,Kronecker 乘法并不要求两个被乘矩阵满足任何维数匹配方面的要求.Kronecker 乘法的Matlab 命令为C=kron(A,B),例如给定两个矩阵A 和B :A=1234⎛⎝ ⎫⎭⎪ B=132246⎛⎝ ⎫⎭⎪则由以下命令可以求出A 和B 的Kronecker 乘积C :A=[1 2; 3 4]; B=[1 3 2; 2 4 6]; C=kron(A,B)C =1 32 2 6 42 4 6 4 8 123 9 64 12 86 12 18 8 16 24作为比较,可以计算B 和A 的Kronecker 乘积D ,可以看出C 、D 是不同的:A=[1 2; 3 4]; B=[1 3 2; 2 4 6]; D=kron(B,A)D =1 2 3 6 2 43 4 9 12 6 82 4 4 8 6 126 8 12 16 1824§3.3 矩阵除法在Matlab 中有两种矩阵除法符号:“\”即左除和“/”即右除.如果A 矩阵是非奇异方阵,则A\B 是A 的逆矩阵乘B ,即inv(A)*B ;而B/A 是B 乘A 的逆矩阵,即B*inv(A).具体计算时可不用逆矩阵而直接计算.通常:x=A\B就是A*x=B的解;x=B/A就是x*A=B的解.当B与A矩阵行数相等可进行左除.如果A是方阵,用高斯消元法分解因数.解方程:A*x(:, j)=B(:, j),式中的(:, j)表示B矩阵的第j列,返回的结果x具有与B矩阵相同的阶数,如果A是奇异矩阵将给出警告信息.如果A矩阵不是方阵,可由以列为基准的Householder正交分解法分解,这种分解法可以解决在最小二乘法中的欠定方程或超定方程,结果是m×n的x矩阵.m是A矩阵的列数,n是B矩阵的列数.每个矩阵的列向量最多有k个非零元素,k 是A的有效秩.右除B/A可由B/A=(A'\B')'左除来实现.§3.4矩阵乘方A^P意思是A的P次方.如果A是一个方阵,P是一个大于1的整数,则A^P表示A 的P次幂,即A自乘P次.如果P不是整数,计算涉及到特征值和特征向量的问题,如已经求得:[V,D]=eig(A),则:A^P=V*D.^P/V(注:这里的.^表示数组乘方,或点乘方,参见后面的有关介绍)如果B是方阵,a是标量,a^B就是一个按特征值与特征向量的升幂排列的B次方程阵.如果a和B都是矩阵,则a^B是错误的.§3.5 矩阵的超越函数在Matlab中解释exp(A)和sqrt(A)时曾涉及到级数运算,此运算定义在A的单个元素上.Matlab可以计算矩阵的超越函数,如矩阵指数、矩阵对数等.一个超越函数可以作为矩阵函数来解释,例如将“m”加在函数名的后边而成expm(A)和sqrtm(A),当Matlab运行时,有下列三种函数定义:expm 矩阵指数logm 矩阵对数sqrtm 矩阵开方所列各项可以加在多种m文件中或使用funm.请见应用库中sqrtm.m,1ogm.m,funm.m 文件和命令手册.§3.6数组运算数组运算由线性代数的矩阵运算符“*”、“/”、“\”、“^”前加一点来表示,即为“.*”、“./”、“.\”、“.^”.注意没有“.+”、“.-”运算.§3.6.1数组的加和减对于数组的加和减运算与矩阵运算相同,所以“+”、“-”既可被矩阵接受又可被数组接受.§3.6.2数组的乘和除数组的乘用符号.*表示,如果A与B矩阵具有相同阶数,则A.*B表示A和B单个元素之间的对应相乘.例如x=[1 2 3]; y=[ 4 5 6];计算z=x.*y结果z=4 10 18数组的左除(.\)与数组的右除(./),由读者自行举例加以体会.§3.6.3 数组乘方数组乘方用符号.^表示.例如:键入:x=[ 1 2 3]y=[ 4 5 6]则z=x.^y=[1^4 2^5 3^6]=[1 32 729](1) 如指数是个标量,例如x.^2,x同上,则:z=x.^2=[1^2 2^2 3^2]=[ 1 4 9](2) 如底是标量,例如2 .^[x y] ,x、y同上,则:z=2 .^[x y]=[2^1 2^2 2^3 2^4 2^5 2^6]=[2 4 8 16 32 64] 从此例可以看出Matlab算法的微妙特性,虽然看上去与其它乘方没什么不同,但在2和“.”之间的空格很重要,如果不这样做,解释程序会把“.”看成是2的小数点.Matlab 看到符号“^”时,就会当做矩阵的幂来运算,这种情况就会出错,因为指数矩阵不是方阵.§3.7 矩阵函数Matlab的数学能力大部分是从它的矩阵函数派生出来的,其中一部分装入Matlab本身处理中,它从外部的Matlab建立的M文件库中得到,还有一些由个别的用户为其自己的特殊的用途加进去的.其它功能函数在求助程序或命令手册中都可找到.手册中备有为Matlab 提供数学基础的LINPACK和EISPACK软件包,提供了下面四种情况的分解函数或变换函数:(1)三角分解;(2)正交变换;(3) 特征值变换;(4)奇异值分解.§3.7.1三角分解最基本的分解为“LU”分解,矩阵分解为两个基本三角矩阵形成的方阵,三角矩阵有上三角矩阵和下三角矩阵.计算算法用高斯变量消去法.从lu函数中可以得到分解出的上三角与下三角矩阵,函数inv得到矩阵的逆矩阵,det 得到矩阵的行列式.解线性方程组的结果由方阵的“\”和“/”矩阵除法来得到.例如:A=[ 1 2 34 5 67 8 0]LU分解,用Matlab的多重赋值语句[L,U]=lu(A)得出注:L结果只需计算L*U即可.求逆由下式给出:x=inv(A)x =从LU的值可由下式给出:d=det(A)d =27直接由三角分解计算行列式:d=det(L)*det(U)d =27.0000为什么两种d的显示格式不一样呢? 当Matlab做det(A)运算时,所有A的元素都是整数,所以结果为整数.但是用LU分解计算d时,L、U的元素是实数,所以Matlab产生的d也是实数.例如:线性联立方程取b=[ 135]解Ax=b方程,用Matlab矩阵除得到x=A\b结果x=0.33330.33330.0000由于A=L*U,所以x也可以有以下两个式子计算:y=L\b,x=U\y.得到相同的x值,中间值y为:y =5.00000.28570.0000Matlab中与此相关的函数还有rcond、chol和rref.其基本算法与LU分解密切相关.chol 函数对正定矩阵进行Cholesky分解,产生一个上三角矩阵,以使R'*R=X.rref用具有部分主元的高斯-约当消去法产生矩阵A的化简梯形形式.虽然计算量很少,但它是很有趣的理论线性代数.为了教学的要求,也包括在Matlab中.§3.7.2正交变换“QR”分解用于矩阵的正交-三角分解.它将矩阵分解为实正交矩阵或复酉矩阵与上三角矩阵的积,对方阵和长方阵都很有用.例如A=[ 1 2 34 5 67 8 910 11 12]是一个降秩矩阵,中间列是其它二列的平均,我们对它进行QR分解:[Q,R]=qr(A)R的下三角都给出0,并且R(3,3)=0.0000,说明矩阵R与原来矩阵A都不是满秩的.下面尝试利用QR分解来求超定和降秩的线性方程组的解.例如:b=[ 1357]讨论线性方程组Ax=b,我们可以知道方程组是超定的,采用最小二乘法的最好结果是计算x=A\b.结果为:Warning: Rank deficient, rank = 2 tol = 1.4594e-014x =0.50000.1667我们得到了缺秩的警告.用QR分解法计算此方程组分二个步骤:y=Q'*bx=R\y求出的y值为xWarning: Rank deficient, rank = 2 tol = 1.4594e-014x =0.50000.1667用A*x来验证计算结果,我们会发现在允许的误差范围内结果等于b.这告诉我们虽然联立方程Ax=b是超定和降秩的,但两种求解方法的结果是一致的.显然x向量的解有无穷多个,而“QR”分解仅仅找出了其中之一.§3.7.3奇异值分解在Matlab中三重赋值语句[U,S,V]=svd(A)在奇异值分解中产生三个因数:A=U*S*V 'U矩阵和V矩阵是正交矩阵,S矩阵是对角矩阵,svd(A)函数恰好返回S的对角元素,而且就是A的奇异值(其定义为:矩阵A'*A的特征值的算术平方根).注意到A矩阵可以不是方的矩阵.奇异值分解可被其它几种函数使用,包括广义逆矩阵pinv(A)、秩rank(A)、欧几里德矩阵范数norm(A,2)和条件数cond(A).§3.7.4 特征值分解如果A是n×n矩阵,若λ满足Ax=λx,则称λ为A的特征值,x为相应的特征向量.函数eig(A)返回特征值列向量,如果A是实对称的,特征值为实数.特征值也可能为复数,例如:A=[ 0 1-1 0]eig(A)产生结果ans =0 + 1.0000i0 - 1.0000i如果还要求求出特征向量,则可以用eig(A)函数的第二个返回值得到:[x,D]=eig(A)D的对角元素是特征值.x的列是相应的特征向量,以使A*x=x*D.计算特征值的中间结果有两种形式:Hessenberg形式为hess(A),Schur形式为schur(A).schur形式用来计算矩阵的超越函数,诸如sqrtm(A)和logm(A).如果A和B是方阵,函数eig(A,B)返回一个包含一般特征值的向量来解方程Ax= Bx双赋值获得特征向量[X,D]=eig(A,B)产生特征值为对角矩阵D.满秩矩阵X的列相应于特征向量,使A*X=B*X*D,中间结果由qz(A,B)提供.§3.7.5秩Matlab计算矩阵A的秩的函数为rank(A),与秩的计算相关的函数还有:rref(A)、orth(A)、null(A)和广义逆矩阵pinv(A)等.利用rref(A),A的秩为非0行的个数.rref方法是几个定秩算法中最快的一个,但结果上并不可靠和完善.pinv(A)是基于奇异值的算法.该算法消耗时间多,但比较可靠.其它函数的详细用法可利用Help求助.上一页回目录下一页。

矩阵的各种运算详解

矩阵的各种运算详解

一、矩阵的线性运算定义1 设有两个矩阵和,矩阵与的和记作, 规定为注:只有两个矩阵是同型矩阵时,才能进展矩阵的加法运算. 两个同型矩阵的和,即为两个矩阵对应位置元素相加得到的矩阵.设矩阵记,称为矩阵的负矩阵, 显然有.由此规定矩阵的减法为.定义2 数与矩阵A的乘积记作或, 规定为数与矩阵的乘积运算称为数乘运算.矩阵的加法与矩阵的数乘两种运算统称为矩阵的线性运算. 它满足以下运算规律:设都是同型矩阵,是常数,那么(1)(2) ;(3)(4)(5)(6)(7)(8)注:在数学中,把满足上述八条规律的运算称为线性运算.二、矩阵的相乘定义3设矩阵与矩阵的乘积记作, 规定为其中,(记号常读作左乘或右乘.注: 只有当左边矩阵的列数等于右边矩阵的行数时, 两个矩阵才能进展乘法运算.假设,那么矩阵的元素即为矩阵的第行元素与矩阵的第列对应元素乘积的和. 即.矩阵的乘法满足以下运算规律(假定运算都是可行的):〔1〕〔2〕〔3〕〔4〕注: 矩阵的乘法一般不满足交换律, 即例如, 设那么而于是且从上例还可看出: 两个非零矩阵相乘, 可能是零矩阵, 故不能从必然推出或此外, 矩阵乘法一般也不满足消去律,即不能从必然推出例如, 设那么但定义4如果两矩阵相乘, 有那么称矩阵A与矩阵B可交换.简称A与B可换.注:对于单位矩阵, 容易证明或简写成可见单位矩阵在矩阵的乘法中的作用类似于数1.更进一步我们有命题1设是一个n阶矩阵,那么是一个数量矩阵的充分必要条件是与任何n阶矩阵可换。

命题2设均为n阶矩阵,那么以下命题等价:〔1〕〔2〕〔3〕〔4〕三、线性方程组的矩阵表示设有线性方程组假设记那么利用矩阵的乘法, 线性方程组(1)可表示为矩阵形式:(2)其中矩阵称为线性方程组(1)的系数矩阵. 方程(2)又称为矩阵方程.如果是方程组(1)的解, 记列矩阵那么,这时也称是矩阵方程(2)的解; 反之, 如果列矩阵是矩阵方程(2)的解, 即有矩阵等式成立, 那么即也是线性方程组(1)的解. 这样, 对线性方程组(1)的讨论便等价于对矩阵方程(2)的讨论. 特别地, 齐次线性方程组可以表示为将线性方程组写成矩阵方程的形式,不仅书写方便,而且可以把线性方程组的理论与矩阵理论联系起来,这给线性方程组的讨论带来很大的便利.四、矩阵的转置定义6把矩阵的行换成同序数的列得到的新矩阵, 称为的转置矩阵, 记作(或). 即假设那么.矩阵的转置满足以下运算规律(假设运算都是可行的):(1)(2)(3)(4)五、方阵的幂定义5设方阵, 规定称为的次幂.方阵的幂满足以下运算规律〔假设运算都是可行的〕:(1)(2)注: 一般地,为自然数命题3 设均为n阶矩阵,那么有为自然数,反之不成立。

矩阵的运算及其运算规则

矩阵的运算及其运算规则

矩阵的运算及其运算规则一、矩阵的加法与减法1、运算规则设矩阵,,则简言之,两个矩阵相加减,即它们相同位置的元素相加减!注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的.2、运算性质(假设运算都是可行的)满足交换律和结合律交换律;结合律.二、矩阵与数的乘法1、运算规则数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或.特别地,称称为的负矩阵.2、运算性质满足结合律和分配律结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA.分配律:λ(A+B)=λA+λB.典型例题例6.5。

1已知两个矩阵满足矩阵方程,求未知矩阵.解由已知条件知三、矩阵与矩阵的乘法1、运算规则设,,则A与B的乘积是这样一个矩阵:(1)行数与(左矩阵)A相同,列数与(右矩阵)B相同,即.(2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和.典型例题例6。

5.2设矩阵计算解是的矩阵.设它为想一想:设列矩阵,行矩阵,和的行数和列数分别是多少呢是3×3的矩阵,是1×1的矩阵,即只有一个元素.课堂练习1、设,,求.2、在第1道练习题中,两个矩阵相乘的顺序是A在左边,B在右边,称为A左乘B或B右乘A.如果交换顺序,让B在左边,A在右边,即A右乘B,运算还能进行吗?请算算试试看.并由此思考:两个矩阵应当满足什么条件,才能够做乘法运算.3、设列矩阵,行矩阵,求和,比较两个计算结果,能得出什么结论吗?4、设三阶方阵,三阶单位阵为,试求和,并将计算结果与A比较,看有什么样的结论.解:第1题.第2题对于,.求是有意义的,而是无意义的.结论1只有在下列情况下,两个矩阵的乘法才有意义,或说乘法运算是可行的:左矩阵的列数=右矩阵的行数.第3题是矩阵,是的矩阵..结论2在矩阵的乘法中,必须注意相乘的顺序.即使在与均有意义时,也未必有=成立.可见矩阵乘法不满足交换律.第4题计算得:.结论3方阵A和它同阶的单位阵作乘积,结果仍为A,即.单位阵在矩阵乘法中的作用相当于数1在我们普通乘法中的作用.典型例题例6。

矩阵和行列式的运算法则

矩阵和行列式的运算法则

矩阵和行列式的运算法则【矩阵和行列式的运算法则】一. 矩阵的加法和减法运算法则矩阵的加法运算法则:设A和B是两个m×n矩阵,C是它们的和,即C = A + B。

则C的第i 行第j列元素是A的第i行第j列元素与B的第i行第j列元素之和,即cij = aij + bij。

矩阵的减法运算法则:设A和B是两个m×n矩阵,C是它们的差,即C = A - B。

则C的第i 行第j列元素是A的第i行第j列元素与B的第i行第j列元素之差,即cij = aij - bij。

二. 矩阵的数乘运算法则矩阵的数乘运算法则:设k是一个实数,A是一个m×n矩阵,则kA是一个m×n矩阵,其中每个元素都是k与A相应位置上的元素的乘积,即(kA)ij = k·aij。

三. 矩阵的乘法运算法则矩阵的乘法运算法则:设A是一个m×n矩阵,B是一个n×p矩阵,C是它们的乘积,即C = A·B。

则C的第i行第j列元素等于A的第i行与B的第j列对应元素的乘积之和,即cij = a1i·b1j + a2i·b2j + ... + ani·bnj。

注:两个矩阵能够相乘的充分必要条件是第一个矩阵的列数等于第二个矩阵的行数。

四. 矩阵的转置运算法则矩阵的转置运算法则:设A是一个m×n矩阵,其转置记作AT,即A的转置是这样一个n×m矩阵,其第i行第j列元素是A的第j行第i列元素,即(AT)ij = aji。

五. 矩阵的幂运算法则矩阵的幂运算法则:设A是一个n×n矩阵,k是一个正整数,则A的k次幂记作Ak,其中A^1 = A,A^2 = A·A,...,A^k = A·A·...·A。

六. 矩阵的行列式运算法则矩阵的行列式运算法则:设A是一个n×n矩阵,则它的行列式记作A 或det(A)。

矩阵运算法则及性质

矩阵运算法则及性质

矩阵运算法则及性质
1、⽅形矩阵A对应的⾏列式|A|⽤于判断矩阵是否为奇异矩阵,若|A|⾮0,则矩阵为⾮奇异矩阵,若|A|=0,则A为奇异矩阵。

2、|AB| = |A||B|
3、A的伴随矩阵AdjA的求法:
4、A的逆矩阵的求法:
5、系数矩阵加⼀列右端项的矩阵叫增⼴矩阵,英⽂叫做augmented matrix,记作:(A|B)
6、矩阵转置相关运算:
7、矩阵乘以常数的运算
8、矩阵分块后满⾜矩阵乘法规则
9、三种矩阵初等⾏(列)变换:对调两⾏(列);以不为0的数字k乘以某⾏(列);不为0的k乘以某⾏(列)再加到另⼀⾏(列)上。

10、⾏阶梯型矩阵:可以画出⼀条阶梯线,线的下⽅全为0,且每个阶梯之后⼀⾏,台阶数即为⾮零⾏的⾏数。

如下图,3个⾏阶梯的下⽅,全部为0。

11、⾏最简型矩阵,左上⾓是单位阵,是⾏阶梯型矩阵的更简形式:
12、通过增⼴矩阵求解AX=B问题,通过将矩阵(A,B)化为⾏最简型(E,X),可以求解此问题。

13、⾼斯消元法/⾼斯-若尔当消元法:我们可以利⽤类似12的⽅式求解齐次线性⽅程组(B=0,将A化为最简形)及⾮齐次线性⽅程组(B!=0)。

⽽对于XA=B的问题,我们需要将(A/B)做初等列变换。

13、通过将矩阵化为⾏最简形,得到矩阵的秩R(A),其值等于最简形中⾮0⾏的⾏数。

14、关于⽅程组:若⽅程的个数多于未知数的个数,称为“超定⽅程组”;右侧全为0的⽅程组(齐次线性⽅程组)总有解,全零解为平凡解,⾮零解为⾮平凡解;
15、由矩阵分块法可知,⾮满秩矩阵总可以分块为左上⾓的矩阵块A,右上⾓矩阵块B,以及左右下⾓两个矩阵块O,则矩阵对应的⾏列式,值为0。

矩阵的运算的所有公式

矩阵的运算的所有公式

矩阵的运算的所有公式矩阵是数学中一个重要的概念,研究矩阵的运算公式对于理解线性代数和计算机图形学等领域都至关重要。

以下是矩阵的运算公式的详细介绍:1.矩阵的加法:对于两个相同大小的矩阵A和B,它们的加法定义为:C=A+B,其中C的元素等于A和B对应元素的和。

2.矩阵的减法:对于两个相同大小的矩阵A和B,它们的减法定义为:C=A-B,其中C的元素等于A和B对应元素的差。

3.矩阵的数乘:对于一个矩阵A和一个标量k,它们的数乘定义为:B=k*A,其中B的元素等于A的对应元素乘以k。

4.矩阵的乘法:对于两个矩阵A和B,它们的乘法定义为:C=A*B,其中C的元素等于A的行向量与B的列向量的内积。

5.矩阵的转置:对于一个矩阵A,它的转置定义为:B=A^T,其中B的行等于A的列,B的列等于A的行,且B的元素和A的对应元素相同。

6.矩阵的逆:对于一个可逆矩阵A,它的逆定义为:A^{-1},使得A*A^{-1}=I,其中I是单位矩阵。

7.矩阵的行列式:对于一个方阵A,它的行列式定义为:,A,是A的元素的代数余子式之和。

8.矩阵的迹:对于一个方阵A,它的迹定义为:tr(A),是A的主对角线上元素之和。

9.矩阵的转置乘法:对于两个矩阵A和B,它们的转置乘法定义为:C=A^T*B,其中C的元素等于A的列向量与B的列向量的内积。

10.矩阵的伴随矩阵:对于一个方阵A,它的伴随矩阵定义为:adj(A),是A的代数余子式构成的矩阵的转置。

11.矩阵的秩:对于一个矩阵A,它的秩定义为:rank(A),是A的线性无关的行或列的最大数量。

12.矩阵的特征值和特征向量:对于一个方阵A,它的特征值是满足方程det(A - λI) = 0的λ值,特征向量是对应于特征值的非零向量。

13.矩阵的奇异值分解(SVD):对于一个矩阵A,它的奇异值分解定义为:A=U*Σ*V^T,其中U和V 是正交矩阵,Σ是一个对角线上元素非负的矩阵。

14.矩阵的广义逆矩阵:对于一个矩阵A,它的广义逆矩阵定义为:A^+,使得A*A^+*A=A,其中A*A^+和A^+*A均为投影矩阵。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

01 6 B c11 = 1 3 2 @1C A = 1 6] + 3 1] + 2 8] = 25
8 Then we multiply the rst row in A by the second column in B, to get a value for C that is i
01 3 c12 = 1 3 2 B @2C A = 1 3] + 3 2] + 2 7] = 23
7 When we have nished multiplying the rst row of A by the columns of B, we take the second row of A, and multiply by the columns of B again. This time the results go into the second row of C:
Adding matrices
Adding matrices is easy. In order to add two matrices, one of two things must be true. Either the two matrices must have the same number of rows, 1
!
3 9 6 3 = 12 6 21
!
Multiplying matrices is just a little less straightforward. In fact, matrix multiplication - when neither matrix is a scalar - has some rather odd properties: If A is a matrix and B is a matrix, A * B may well not be the same as B * A 如果是两个矩阵相乘,则A*B和B*A的结果不同 In order for it to be possible to determine the result of A * B, A must have the same number of columns that B has rows
081 B 1C B C B C B C 6 B 1 3 2 4 2 7 B3C = 1 8] + 3 1] + 2 6] + 4 3] + 2 9] + 7 5] = 88 C B C B @9C A
5 3
一个矢量行和一个矢量列相乘,得到一个常数
Matrix multiplication is just an extension of vector multiplication. Let's say we want to multiply two matrices - A * B, to get a result C:
01 6 c21 = 4 2 7 B @1C A = 4 6] + 2 1] + 7 8] = 82 8 01 3 c22 = 4 2 7 B @2C A = 4 3] + 2 2] + 7 7] = 65
7 So: 4
and the same number of columns, or one of the matrices must be a scalar. Thus, if you have an a x b matrix, and you want to add this to another matrix, that matrix must either be an a x b matrix, or a scalar. To add a scalar to a matrix, you merely add the scalar value to all the elements in the matrix: 如果是加入一个标量的话,则将原矩阵的所有element 都加了这个标量 1 3 2 +3= 4 6 5 4 2 7 7 5 10
081 B 1C B C B C B C 6 B C = B3C C B C B @9C A
5 The result of R * C is a new matrix, S, and in fact S is a scalar (the result of a 1x6 * 6x1 multiplication is 1x1). The reason that S is a scalar is because the multiplication works like this: each element in R is multiplied by the equivalent element in C. So, you take the rst element in R and multiply it by the rst element in C, then you take the second element in R and multiply it by the second element in C, and so on. If R is a 1 x n vector (so C must be a n by 1 vector), then this gives us n multiplication results. To get the nal value of the vector multiplication, you sum the results of the element by element multiplications. So, for example:
标量
!
!
To add an a x b matrix to another a x b matrix matrix, you take each of the elements in the rst matrix, and add to it the element from the second matrix that is in the same row and the same column. So, say we are adding two matrices, A and B, to get the result matrix C. The element in the rst row and the rst column of C (c11) is a11 + b11 the element in the rst row and the second column of C (c12 ) is a12 + b12 , and the element in row i and column j of C is a + b . Thus: 如果是两个矩阵相加,则是一个矩阵里每个element和另一个矩阵对应的每一个Element相加
R= 1 3 2 4 2 7
If we are going to multiply R by another vector, C (i.e. R * C), then C must either be a scalar (see above) or a column vector, with the same number of elements as R. So, let us say that we have such a column vector:
The joy of matrix maths
Matrices
A matrix is a rectangle of numbers. For example: 3 2 X= 1 4 2 7
!
X is a matrix with 2 rows and 3 columns, a 2 x 3 matrix. In general a matrix with a rows and b columns is an a x b matrix. The individual numbers in the matrix are referred to as elements. If we want to refer to a particular element, we can do so using its row and column number. For example, we could refer to the element in the second row and the third column of A as a23 - in this case a23 is 7. A vector is a matrix with only one row, or only one column. A row vector has only one row - e.g:
为了A。B能够相乘,A的列和B的行需要相等个数
2
To repeat: if you have a matrix A that has a rows and b columns (an a x b matrix), and another matrix B that is c x d, then getting a result of A * B is only possible if b = c. In fact, the result of A * B is a new matrix of size a x d. So, to start with the simplest case - multiplying two vectors. Let us say we have a row vector:
ij ij
1 3 2 + 2 1 1 = 1+2 3+1 2+1 = 3 4 3 4 2 7 6 3 2 4+6 2+3 7+2 10 5 9
相关文档
最新文档