高三数学第一轮复习 对数与对数函数教案 文

合集下载

高中数学 高三一轮第二章第6课时 对数与对数函数(教案)

高中数学 高三一轮第二章第6课时 对数与对数函数(教案)

1。

对数的概念如果a(a>0,a≠1)的b次幂等于N,即a b=N,那么数b 叫作以a为底N的对数,记作log a N=b,其中__a__叫作对数的底数,__N__叫作真数。

2。

对数的性质与运算法则(1)对数的运算法则如果a〉0且a≠1,M〉0,N〉0,那么①log a(MN)=log a M+log a N;②log a错误!a M-log a N;③log a M n=n log a M(n∈R);④log am M n=错误!log a M(m,n∈R,且m≠0).(2)对数的性质①a log a N=__N__;②log a a N =__N__(a>0且a≠1)。

(3)对数的重要公式①换底公式:log b N=错误!(a,b均大于零且不等于1);②log a b=1log b a,推广log ab·log b c·log c d=log a d。

3.对数函数的图像与性质a>10〈a〈1图像性质(1)定义域:(0,+∞)(2)值域:R (3)过定点(1,0),即x=1时,y=0(4)当x>1时,y>0当0〈x<1时,y<0(5)当x〉1时,y〈0当0〈x〈1时,y>04.反函数指数函数y=a x与对数函数y=log a x互为反函数,它们的图像关于直线__y=x__对称.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×")(1)若MN〉0,则log a(MN)=log a M+log a N.(×)(2)log a x·log a y=log a(x+y).(×)3x都是对数函数。

( ×) (3)函数y=log2x及y=log13(4)对数函数y=log a x(a>0,且a≠1)在(0,+∞)上是增函数。

( ×)(5)函数y=ln错误!与y=ln(1+x)-ln(1-x)的定义域相同.(√)(6)对数函数y=log a x(a>0且a≠1)的图像过定点(1,0),且过点(a,1),错误!,函数图像只在第一、四象限。

苏教版版高考数学一轮复习第二章函数对数与对数函数教学案

苏教版版高考数学一轮复习第二章函数对数与对数函数教学案

1.对数的概念如果a x=N(a>0且a≠1),那么x叫做以a为底N的对数,记作x=log a N ,其中a 叫做对数的底数,N叫做真数.2.对数的性质、换底公式与运算性质(1)对数的性质:1a log a N=N;2log a a b=b(a>0,且a≠1).(2)换底公式:log a b=错误!(a,c均大于0且不等于1,b>0).(3)对数的运算性质:如果a>0,且a≠1,M>0,N>0,那么:1log a(M·N)=log a M+log a N;2log a错误!=log a M—log a N;3log a M n=n log a M(n∈R).3.对数函数的定义、图象与性质定义函数y=log a x(a>0且a≠1)叫做对数函数图象a>10<a<1性质定义域:(0,+∞)值域:R当x=1时,y=0,即过定点(1,0)当0<x<1时,y<0;当x>1时,y>0当0<x<1时,y>0;当x>1时,y<0在(0,+∞)上为增函数在(0,+∞)上为减函数4.反函数指数函数y=a x(a>0且a≠1)与对数函数y=log a x(a>0且a≠1)互为反函数,它们的图象关于直线y=x对称.错误!1.换底公式的两个重要结论(1)log a b=错误!;(2)log am b n=错误!log a b.其中a>0且a≠1,b>0且b≠1,m,n∈R,m≠0.2.对数函数的图象与底数大小的比较如图,作直线y=1,则该直线与四个函数图象交点的横坐标为相应的底数,故0<c<d<1<a<b.由此我们可得到以下规律:在第一象限内从左到右底数逐渐增大.一、思考辨析(正确的打“√”,错误的打“×”)(1)函数y=log2(x+1)是对数函数.()(2)log2x2=2log2x. ()(3)函数y=ln错误!与y=ln(1+x)—ln(1—x)的定义域相同.()(4)对数函数y=log a x(a>0且a≠1)的图象过定点(1,0),且过点(a,1),错误!,函数图象不在第二、三象限.()[答案](1)×(2)×(3)√(4)√二、教材改编1.(log29)·(log34)=()A.错误!B.错误!C.2D.4D[(log29)·(log34)=错误!×错误!=错误!×错误!=4.故选D.]A.a>b>cB.a>c>bC.c>b>aD.c>a>bD[因为0<a<1,b<0,c=log错误!错误!=log23>1.所以c>a>b.故选D.]3.函数y=的定义域是________.[由(2x—1)≥0,,得0<2x—1≤1.,∴错误!<x≤1.,∴函数y=的定义域是.]4.函数y=log a(4—x)+1(a>0,且a≠1)的图象恒过点________.(3,1)[当4—x=1即x=3时,y=log a1+1=1.,所以函数的图象恒过点(3,1).]考点1对数式的化简与求值对数运算的一般思路(1)拆:首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后利用对数运算性质化简合并.(2)合:将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.1.设2a=5b=m,且错误!+错误!=2,则m等于()A.错误!B.10C.20 D.100A[由已知,得a=log2m,b=log5m,,则错误!+错误!=错误!+错误!,=log m2+log m5=log m 10=2.,解得m=错误!.]2.计算:错误!÷100错误!=________.—20 [原式=(lg 2—2—lg 52)×100错误!=lg错误!×10=lg 10—2×10=—2×10=—20.]3.计算:错误!=________.1[原式=错误!=错误!=错误!=错误!=错误!=1.]对数运算法则是在化为同底的情况下进行的,因此经常会用到换底公式及其推论.在对含有字母的对数式进行化简时,必须保证恒等变形.考点2对数函数的图象及应用对数函数图象的识别及应用方法(1)在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.(1)(2019·浙江高考)在同一直角坐标系中,函数y=错误!,y=log a(a >0,且a≠1)的图象可能是()A BC D(2)当0<x≤错误!时,4x<log a x,则a的取值范围是()A.0,错误!B.错误!,1C.(1,错误!)D.(错误!,2)(1)D(2)B[(1)对于函数y=log a,当y=0时,有x+错误!=1,得x=错误!,即y=log a的图象恒过定点错误!,0,排除选项A、C;函数y=错误!与y=log a在各自定义域上单调性相反,排除选项B,故选D.(2)构造函数f(x)=4x和g(x)=log a x,当a>1时不满足条件,当0<a<1时,画出两个函数在的图象,可知f<g,即2<log a错误!,则a>错误!,所以a的取值范围为.][母题探究]1.(变条件)若本例(2)变为:若不等式x2—log a x<0对x∈恒成立,求实数a的取值范围.[解] 由x2—log a x<0得x2<log a x,设f1(x)=x2,f2(x)=log a x,要使x∈时,不等式x2<log a x恒成立,只需f1(x)=x2在上的图象在f2(x)=log a x图象的下方即可.当a >1时,显然不成立;当0<a<1时,如图所示.要使x2<log a x在x∈上恒成立,需f1≤f2,所以有错误!≤log a错误!,解得a≥错误!,所以错误!≤a<1.即实数a的取值范围是.2.(变条件)若本例(2)变为:当0<x≤错误!时,错误!<log a x,求实数a的取值范围.[解] 若错误!<log a x在x∈成立,则0<a<1,且y=错误!的图象在y=log a x图象的下方,如图所示,由图象知错误!<log a错误!,所以解得错误!<a<1.即实数a的取值范围是.1.(2019·合肥模拟)函数y=ln(2—|x|)的大致图象为(),A BC DA[令f(x)=ln(2—|x|),易知函数f(x)的定义域为{x|—2<x<2},且f(—x)=ln(2—|—x|)=ln(2—|x|)=f(x),,所以函数f(x)为偶函数,排除选项C,D.,当x=错误!时,f错误!=ln 错误!<0,排除选项B,故选A.]2.已知函数y=log a(x+c)(a,c为常数,其中a>0,a≠1)的图象如图,则下列结论成立的是()A.a>1,c>1B.a>1,0<c<1C.0<a<1,c>1D.0<a<1,0<c<1D[由对数函数的图象和性质及函数图象的平移变换知0<a<1,0<c<1.]3.设方程10x=|lg(—x)|的两个根分别为x1,x2,则()A.x1x2<0 B.x1x2=0C.x1x2>1D.0<x1x2<1D[作出y=10x与y=|lg(—x)|的大致图象,如图.显然x1<0,x2<0.不妨令x1<x2,则x1<—1<x2<0,所以10x1=lg(—x1),10x2=—lg(—x2),此时10x1<10x2,即lg(—x1)<—lg(—x2),由此得lg(x1x2)<0,所以0<x1x2<1,故选D.]考点3对数函数的性质及应用解与对数函数有关的函数性质问题的3个关注点(1)定义域,所有问题都必须在定义域内讨论.(2)底数与1的大小关系.(3)复合函数的构成,即它是由哪些基本初等函数复合而成的.比较大小(1)(2019·天津高考)已知a=log52,b=log0.50.2,c=0.50.2,则a,b,c 的大小关系为()A.a<c<bB.a<b<cC.b<c<aD.c<a<b(2)已知a=log2e,b=ln 2,c=log错误!错误!,则a,b,c的大小关系为()A.a>b>cB.b>a>cC.c>b>aD.c>a>b(1)A(2)D[(1)因为a=log52<log5错误!=错误!,b=log0.50.2>log0.50.5=1,c=0.50.2=错误!错误!>错误!,0.50.2<1,所以a<c<b,故选A.(2)因为a=log2e>1,b=ln 2∈(0,1),c=log错误!错误!=log23>log2e>1,所以c >a>b,故选D.]对数值大小比较的主要方法(1)化同底数后利用函数的单调性.(2)化同真数后利用图象比较.(3)借用中间量(0或1等)进行估值比较.解简单对数不等式(1)若log a错误!<1(a>0且a≠1),则实数a的取值范围是________.(2)若log a(a2+1)<log a2a<0,则a的取值范围是________.(1)错误!∪(1,+∞)(2)错误![(1)当0<a<1时,log a错误!<log a a=1,∴0<a<错误!;当a>1时,log a错误!<log a a=1,∴a>1.∴实数a的取值范围是错误!∪(1,+∞).(2)由题意得a>0且a≠1,故必有a2+1>2a,又log a(a2+1)<log a2a<0,所以0<a<1,同时2a>1,所以a>错误!.综上,a∈错误!.]对于形如log a f(x)>b的不等式,一般转化为log a f(x)>log a a b,再根据底数的范围转化为f(x)>a b或0<f(x)<a b.而对于形如log a f(x)>log b g(x)的不等式,一般要转化为同底的不等式来解.和对数函数有关的复合函数解决与对数函数有关的函数的单调性问题的步骤已知函数f(x)=log a(3—ax).(1)当x∈[0,2]时,函数f(x)恒有意义,求实数a的取值范围;(2)是否存在这样的实数a,使得函数f(x)在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a的值;如果不存在,请说明理由.[解](1)因为a>0且a≠1,设t(x)=3—ax,则t(x)=3—ax为减函数,x∈[0,2]时,t(x)的最小值为3—2a,当x∈[0,2]时,f(x)恒有意义,即x∈[0,2]时,3—ax>0恒成立.所以3—2a>0.所以a<错误!.又a>0且a≠1,所以a∈(0,1)∪错误!.(2)t(x)=3—ax,因为a>0,所以函数t(x)为减函数.因为f(x)在区间[1,2]上为减函数,所以y=log a t为增函数,所以a>1,当x∈[1,2]时,t(x)最小值为3—2a,f(x)最大值为f(1)=log a(3—a),所以错误!即错误!故不存在这样的实数a,使得函数f(x)在区间[1,2]上为减函数,并且最大值为1.利用对数函数的性质,求与对数函数有关的函数值域、最值和复合函数的单调性问题,必须弄清三方面的问题:一是定义域,所有问题都必须在定义域内讨论;二是底数与1的大小关系;三是复合函数的构成,即它是由哪些基本初等函数复合而成的,另外,解题时要注意数形结合、分类讨论、转化与化归思想的使用.1.已知函数f(x)=log0.5(x2—ax+3a)在[2,+∞)单调递减,则a的取值范围为()A.(—∞,4] B.[4,+∞)C.[—4,4] D.(—4,4]D[令g(x)=x2—ax+3a,因为f(x)=log0.5(x2—ax+3a)在[2,+∞)单调递减,所以函数g(x)在区间[2,+∞)内单调递增,且恒大于0,所以错误!a≤2且g(2)>0,所以a≤4且4+a>0,所以—4<a≤4.故选D.]2.函数y=log a x(a>0且a≠1)在[2,4]上的最大值与最小值的差是1,则a=________.2或错误![分两种情况讨论:1当a>1时,有log a4—log a2=1,解得a=2;2当0<a<1时,有log a2—log a4=1,解得a=错误!.所以a=2或错误!.]3.设函数f(x)=若f(a)>f(—a),则实数a的取值范围是________.(—1,0)∪(1,+∞)[由题意得错误!或解得a>1或—1<a<0.]。

高考数学一轮复习 3.2 对数与对数函数教案 新课标

高考数学一轮复习 3.2 对数与对数函数教案 新课标

2.对数与对数函数一.知识归纳 一)对数1、定义: 如果)1,0(≠>=a a N a b,那么b 叫做以a 为底N 的对数,记)1,0(log ≠>=a a N b a即有:⇔=N a b)1,0(log ≠>=a a N b a2、性质:①零与负数没有对数 ②01log =a ③1log =a a ;3、恒等式:N aNa =log ;b a b a =log )1,0(≠>a a4、运算法则:M n M a n a log log )3(= 其中a>0,a≠0,M>0,N>05、换底公式:)10,10,0(log log log ≠>≠>>=m m a a N aNN m m a 且且二)对数函数y=log a x (a>0 , a≠1)的图象与性质:名称 对数函数 一般形式 y=log a x (a>0 , a≠1)定义域 (0,+ ∞) 值域 (-∞,+ ∞) 过定点 (1,0)图像单调性 a>1,在(0,+ ∞)上为增函数0<a<1, 在(0,+ ∞)上为减函数 值分布情况何时y>0? y<0?注意:研究指数,对数函数问题,尽量化为同底,并注意对数问题中的定义域限制 二、题型讲解题型一.对数式的化简和运算 例1、计算下列各式(1)12lg )2(lg 5lg 2lg )2(lg 222+-+⋅+(2)06.0lg 61lg)2(lg )1000lg 8(lg 5lg 23++++ (3)设函数)1,0(log )(≠>=a a x x f a ,若1005)...(201021=⋅⋅⋅x x x f ,求)()()(220102221x f x f x f +⋅⋅⋅++的值。

解:(1)原式=1)2lg 1()5lg 2(lg 2lg )12(lg )5lg 2lg 2(2lg 2=-++=-++ (2)原式=12325lg 32lg 325lg 32lg 32lg 5lg 322lg 3)32lg 3(5lg 22=-=-+=-++⋅=-++(3)代入)1,0(log )(≠>=a a x x f a ,即得)()()(220092221x f x f x f +⋅⋅⋅++=2010。

对数及对数函数教案8篇

对数及对数函数教案8篇

写教案能帮助教师更好地安排课堂教学时间,教案要结合实际的教学进度和学生的学习能力,才能更好地帮助学生提高学习效果,下面是范文社小编为您分享的对数及对数函数教案8篇,感谢您的参阅。

对数及对数函数教案篇1【学习目标】一、过程目标1通过师生之间、学生与学生之间的互相交流,培养学生的数学交流能力和与人合作的精神。

2通过对对数函数的学习,树立相互联系、相互转化的观点,渗透数形结合的数学思想。

3通过对对数函数有关性质的研究,培养学生观察、分析、归纳的思维能力。

二、识技能目标1理解对数函数的概念,能正确描绘对数函数的图象,感受研究对数函数的意义。

2掌握对数函数的性质,并能初步应用对数的性质解决简单问题。

三、情感目标1通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的.学习兴趣。

2在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时培养学生倾听、接受别人意见的优良品质。

教学重点难点:1对数函数的定义、图象和性质。

2对数函数性质的初步应用。

教学工具:多媒体学前准备】对照指数函数试研究对数函数的定义、图象和性质。

对数及对数函数教案篇2对数函数及其性质教学设计1.教学方法建构主义学习观,强调以学生为中心,学生在教师指导下对知识的主动建构。

它既强调学习者的认知主体作用,又不忽视教师的指导作用。

高中一年级的学生正值身心发展的过渡时期,思维活跃,具有一定的独立性,喜欢新鲜事物,敢于大胆发表自己的见解,不过思维还不是很成熟.在目标分析的基础上,根据建构主义学习观,及学生的认知特点,我拟采用“探究式”教学方法。

将一节课的核心内容通过四个活动的形式引导学生对知识进行主动建构。

其理论依据为建构主义学习理论。

它很好地体现了“学生为主体,教师为主导,问题为主线,思维为主攻”的“四为主”的教学思想。

2.学法指导新课程强调“以学生发展为核心”,强调培养学生的自主探索能力与合作学习能力。

高考数学一轮复习 2.8 对数与对数函数教案

高考数学一轮复习 2.8 对数与对数函数教案

2.8 对数与对数函数●知识梳理 1.对数(1)对数的定义:如果a b=N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b .(2)指数式与对数式的关系:a b=N ⇔log a N =b (a >0,a ≠1,N >0). 两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数运算性质:①log a (MN )=log a M +log a N .②log aN M=log a M -log a N . ③log a M n=n log a M .(M >0,N >0,a >0,a ≠1)④对数换底公式:log b N =bNa a log log (a >0,a ≠1,b >0,b ≠1,N >0).2.对数函数(1)对数函数的定义 函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). (2)对数函数的图象底数互为倒数的两个对数函数的图象关于x 轴对称. (3)对数函数的性质: ①定义域:(0,+∞). ②值域:R . ③过点(1,0),即当x =1时,y =0.④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数. ●点击双基1.(2005年春季北京,2)函数f (x )=|log 2x |的图象是 解析:f (x )=⎩⎨⎧<<-≥.10,log ,1,log 22x x x x答案:A2.(2004年春季北京)若f -1(x )为函数f (x )=lg (x +1)的反函数,则f -1(x )的值域为___________________.解析:f -1(x )的值域为f (x )=lg (x +1)的定义域.由f (x )=lg (x +1)的定义域为(-1,+∞),∴f -1(x )的值域为(-1,+∞). 答案:(-1,+∞)3.已知f (x )的定义域为[0,1],则函数y =f [log 21(3-x )]的定义域是__________.解析:由0≤log 21(3-x )≤1⇒log 211≤log 21(3-x )≤log 2121⇒21≤3-x ≤1⇒2≤x ≤25.答案:[2,25] 4.若log x 7y =z ,则x 、y 、z 之间满足 A.y 7=x zB.y =x 7zC.y =7x zD.y =z x解析:由log x 7y =z ⇒x z=7y ⇒x 7z=y ,即y =x 7z.答案:B5.已知1<m <n ,令a =(log n m )2,b =log n m 2,c =log n (log n m ),则 A.a <b <c B.a <c <b C.b <a <c D.c <a <b 解析:∵1<m <n ,∴0<log n m <1.∴log n (log n m )<0. 答案:D ●典例剖析【例1】 已知函数f (x )=⎪⎩⎪⎨⎧<+≥,4),1(,4,)21(x x f x x则f (2+log 23)的值为A.31B.61C.121D.241剖析:∵3<2+log 23<4,3+log 23>4,∴f (2+log 23)=f (3+log 23)=(21)3+log 23=241.答案:D【例2】 求函数y =log 2|x |的定义域,并画出它的图象,指出它的单调区间. 解:∵|x |>0,∴函数的定义域是{x |x ∈R 且x ≠0}.显然y =log 2|x |是偶函数,它的图象关于y 轴对称.又知当x >0时,y =log 2|x |⇔y =log 2x .故可画出y =log 2|x |的图象如下图.由图象易见,其递减区间是(-∞,0),递增区间是(0,+∞).评述:研究函数的性质时,利用图象更直观.深化拓展已知y =log 21[a 2x+2(ab )x -b 2x +1](a 、b ∈R +),如何求使y 为负值的x 的取值范围?提示:要使y <0,必须a 2x +2(ab )x -b 2x +1>1,即a 2x +2(ab )x -b 2x>0. ∵b 2x>0,∴(b a )2x +2(b a )x-1>0. ∴(b a )x >2-1或(b a )x<-2-1(舍去).再分b a >1,b a =1,ba<1三种情况进行讨论.答案:a >b >0时,x >log ba (2-1);a =b >0时,x ∈R ;0<a <b 时,x <log ba (2-1).【例3】 已知f (x )=log 31[3-(x -1)2],求f (x )的值域及单调区间.解:∵真数3-(x -1)2≤3,∴log 31[3-(x -1)2]≥log 313=-1,即f (x )的值域是[-1,+∞).又3-(x -1)2>0,得1-3<x <1+3,∴x ∈(1-3,1]时,3-(x -1)2单调递增,从而f (x )单调递减;x ∈[1,1+3)时,f (x )单调递增.特别提示讨论复合函数的单调性要注意定义域.●闯关训练 夯实基础1.(2004年天津,5)若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于A.42 B.22 C.41 D.21 解析:∵0<a <1,∴f (x )=log a x 是减函数.∴log a a =3·log a 2a .∴log a 2a =31.∴1+log a 2=31.∴log a 2=-32.∴a =42.答案:A2.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于A. 21B.-21C.2D.-2解析:y =log 2|ax -1|=log 2|a (x -a 1)|,对称轴为x =a 1,由a 1=-2得a =-21.答案:B评述:此题还可用特殊值法解决,如利用f (0)=f (-4),可得0=log 2|-4a -1|.∴|4a +1|=1.∴4a +1=1或4a +1=-1.∵a ≠0,∴a =-21.3.(2004年湖南,理3)设f -1(x )是f (x )=log 2(x +1)的反函数,若[1+ f-1(a )][1+ f -1(b )]=8,则f (a +b )的值为A.1B.2C.3D.log 23解析:∵f -1(x )=2x -1,∴[1+ f -1(a )][1+ f -1(b )]=2a ·2b =2a +b .由已知2a +b=8,∴a +b =3.答案:C4.(2004年春季上海)方程lg x +lg (x +3)=1的解x =___________________.解析:由lg x +lg (x +3)=1,得x (x +3)=10,x 2+3x -10=0. ∴x =-5或x =2. ∵x >0,∴x =2. 答案:25.已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围.解:∵a >0且a ≠1,∴t =3-ax 为减函数.依题意a >1,又t =3-ax 在[0,2]上应有t >0,∴3-2a >0.∴a <23.故1<a <23. 6.设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和g (x )的公共定义域内比较|f (x )|与|g (x )|的大小.解:f (x )、g (x )的公共定义域为(-1,1). |f (x )|-|g (x )|=|lg (1-x )|-|lg (1+x )|.(1)当0<x <1时,|lg (1-x )|-|lg (1+x )|=-lg (1-x 2)>0; (2)当x =0时,|lg (1-x )|-|lg (1+x )|=0;(3)当-1<x <0时,|lg (1-x )|-|lg (1+x )|=lg (1-x 2)<0.综上所述,当0<x <1时,|f (x )|>|g (x )|;当x =0时,|f (x )|=|g (x )|;当-1<x <0时,|f (x )|<|g (x )|.培养能力7.函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是 解析:∵f (x )与g (x )都是偶函数,∴f (x )·g (x )也是偶函数,由此可排除A 、D.又由x →+∞时,f (x )·g (x )→-∞,可排除B. 答案:C8.若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2[f (a )]=2(a ≠1). (1)求f (log 2x )的最小值及对应的x 值;(2)x 取何值时,f (log 2x )>f (1)且log 2[f (x )]<f (1)?解:(1)∵f (x )=x 2-x +b ,∴f (log 2a )=log 22a -log 2a +b .由已知有log 22a -log 2a +b =b ,∴(log 2a -1)log 2a =0. ∵a ≠1,∴log 2a =1.∴a =2.又log 2[f (a )]=2,∴f (a )=4. ∴a 2-a +b =4,b =4-a 2+a =2.故f (x )=x 2-x +2,从而f (log 2x )=log 22x -log 2x +2=(log 2x -21)2+47. ∴当log 2x =21即x =2时,f (log 2x )有最小值47. (2)由题意⎪⎩⎪⎨⎧<+->+-2)2(log 22log log 22222x x x x ⇒⎩⎨⎧<<-<<>⇒21102x x x 或0<x <1. 探究创新9.(2004年苏州市模拟题)已知函数f (x )=3x+k (k 为常数),A (-2k ,2)是函数y = f -1(x )图象上的点.(1)求实数k 的值及函数f -1(x )的解析式;(2)将y = f -1(x )的图象按向量a =(3,0)平移,得到函数y =g (x )的图象,若2 f -1(x +m -3)-g (x )≥1恒成立,试求实数m 的取值范围.解:(1)∵A (-2k ,2)是函数y = f -1(x )图象上的点,∴B (2,-2k )是函数y =f (x )上的点.∴-2k =32+k .∴k =-3.∴f (x )=3x -3.∴y = f -1(x )=log 3(x +3)(x >-3).(2)将y = f -1(x )的图象按向量a =(3,0)平移,得到函数y =g (x )=log 3x (x >0),要使2 f -1(x +m -3)-g (x )≥1恒成立,即使2log 3(x +m )-log 3x ≥1恒成立,所以有x +x m +2m ≥3在x >0时恒成立,只要(x +x m+2m )min ≥3. 又x +x m ≥2m (当且仅当x =x m ,即x =m 时等号成立),∴(x +xm+2m )min =4m ,即4m ≥3.∴m ≥169.●思悟小结1.对数的底数和真数应满足的条件是求解对数问题时必须予以特别重视的.2.比较几个数的大小是对数函数性质应用的常见题型.在具体比较时,可以首先将它们与零比较,分出正负;正数通常都再与1比较分出大于1还是小于1,然后在各类中间两两相比较.3.在给定条件下,求字母的取值范围是常见题型,要重视不等式知识及函数单调性在这类问题上的应用.●教师下载中心 教学点睛1.本小节的重点是对数函数图象和性质的运用.由于对数函数与指数函数互为反函数,所以它们有许多类似的性质,掌握对数函数的性质时,与掌握指数函数的性质一样,也要结合图象理解和记忆.2.由于在对数式中真数必须大于0,底数必须大于零且不等于1,因此有关对数的问题已成了高考的热点内容.希望在讲解有关的例题时,要强化这方面的意识.拓展题例【例1】 求函数y =2lg (x -2)-lg (x -3)的最小值.解:定义域为x >3,原函数为y =lg 3)2(2--x x .又∵3)2(2--x x =3442-+-x x x =31)3(2)3(2-+-+-x x x =(x -3)+31-x +2≥4,∴当x =4时,y min =lg4.【例2】 (2003年北京宣武第二次模拟考试)在f 1(x )=x 21,f 2(x )=x 2,f 3(x )=2x,f 4(x )=log 21x 四个函数中,x 1>x 2>1时,能使21[f (x 1)+f (x 2)]<f (221x x +)成立的函数是A.f 1(x )=x 21B.f 2(x )=x 2C.f 3(x )=2xD.f 4(x )=log 21x解析:由图形可直观得到:只有f 1(x )=x 21为“上凸”的函数. 答案:A。

高三数学一轮复习精品教案4:2.6 对数与对数函数教学设计

高三数学一轮复习精品教案4:2.6 对数与对数函数教学设计

2.6 对数与对数函数★ 知识要点 1.对数的概念①定义:如果)1,0(≠>a a a 且的b 次幂等于N ,就是N a b=,那么数b 称以a 为底N 的对数,记作,log b N a =其中a 称对数的底,N 称真数。

1)以10为底的对数称常用对数,N 10log 记作N lg ;2)以无理数)71828.2( =e e 为底的对数称自然对数,N e log ,记作N ln ; ②基本性质:1)真数N 为正数(负数和零无对数);2)01log =a ; 3)1log =a a ;4)对数恒等式:N aNa =log 。

③运算性质:如果,0,0,0,0>>≠>N M a a 则1)N M MN a a a log log )(log +=;2)N M NMa a a log log log -=; 3)∈=n M n Ma na (log log R )。

④换底公式:),0,1,0,0,0(log log log >≠>≠>=N m m a a aNN m m a1)1log log =⋅a b b a ;2)b mnb a na m log log =。

2. 对数函数:①定义:函数)1,0(log ≠>=a a x y a 且称对数函数, 1)函数的定义域为),0(+∞;2)函数的值域为R ; 3)当10<<a 时函数为减函数,当1>a 时函数为增函数;4)对数函数x y a log =与指数函数)1,0(≠>=a a a y x且互为反函数。

②函数图像:1)对数函数的图象都经过点(0,1),且图象都在第一、四象限;2)对数函数都以y 轴为渐近线(当10<<a 时,图象向上无限接近y 轴;当1>a 时,图象向下无限接近y 轴);4)对于相同的)1,0(≠>a a a 且,函数x y x y aa 1log log ==与的图象关于x 轴对称。

数学(文)一轮教学案:第二章第6讲 对数与对数函数 Word版含解析

数学(文)一轮教学案:第二章第6讲 对数与对数函数 Word版含解析

第6讲 对数与对数函数 考纲展示 命题探究1 对数的概念如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.2 对数的性质与运算法则 (1)对数的性质几个恒等式(M ,N ,a ,b 都是正数,且a ,b ≠1)①a log a N =N ;②log a a N=N ;③log b N =log a N log ab ;④log am b n=n m log a b ;⑤log a b =1log ba ,推广log ab ·log bc ·log cd =log a d .(2)对数的运算法则(a >0,且a ≠1,M >0,N >0)①log a (M ·N )=log a M +log a N ;②log a MN =log a M -log a N ;③log a M n=n log a M (n ∈R );④log anM =1n log a M .3 对数函数的图象及性质a >10<a <1图 象续表a >10<a <1性 质定义域:(0,+∞)值域:R过点(1,0),即x =1时,y =0当x >1时,y >0 当0<x <1时,y <0 当x >1时,y <0 当0<x <1时,y >0 在(0,+∞)上是增函数在(0,+∞)上是减函数注意点 对数的运算性质及公式成立的条件对数的运算性质以及有关公式都是在式子中所有的对数符号有意义的前提下才成立的,不能出现log 212=log 2[(-3)×(-4)]=log 2(-3)+log 2(-4)等错误.1.思维辨析(1)若log 2(log 3x )=log 3(log 2y )=0,则x +y =5.( ) (2)2log 510+log 5(3)已知函数f (x )=lg x ,若f (ab )=1,则f (a 2)+f (b 2)=2.( ) (4)当x >1时,log a x >0.( ) (5)函数y =ln 1+x1-x与y =ln (1+x )-ln (1-x )的定义域相同.( )(6)若log a m <log a n ,则m <n .( )答案 (1)√ (2)× (3)√ (4)× (5)√ (6)× 2.函数y =ln (x +1)-x 2-3x +4 的定义域为( ) A .(-4,-1) B .(-4,1) C .(-1,1) D .(-1,1]答案 C解析 要使函数有意义,须使⎩⎪⎨⎪⎧x +1>0,-x 2-3x +4>0,解得-1<x <1,所以函数的定义域为(-1,1).3.(1)若2a =5b =10,则1a +1b =________. (2)已知a 23 =49(a >0),则log 23 a =________.答案 (1)1 (2)3解析 (1)∵2a=5b=10,∴a =log 210,b =log 510,∴1a =lg 2,1b =lg 5,∴1a +1b =lg 2+lg 5=1.(2)因为a 23 =49(a >0),所以a =⎝ ⎛⎭⎪⎫49 32 =⎝ ⎛⎭⎪⎫233,故log 23 a =log 23⎝ ⎛⎭⎪⎫233=3.[考法综述] 考查对数运算,换底公式及对数函数的图象和性质,对数函数与幂指数函数相结合.综合考查利用单调性比较大小、解不等式等是高考热点.主要以选择题、填空题形式出现.典例 (1)函数f (x )=2ln x 的图象与函数g (x )=x 2-4x +5的图象的交点个数为( )A .3B .2C .1D .0(2)⎝ ⎛⎭⎪⎫1681 -34+log 354+log 345=________. (3)已知a >0,b >0,ab =8,则当a 的值为________时,log 2a ·log 2(2b )取得最大值.[解析] (1)在同一直角坐标系下画出函数f (x )=2ln x 与函数g (x )=x 2-4x +5=(x -2)2+1的图象,如图所示.∵f (2)=2ln 2>g (2)=1,∴f (x )与g (x )的图象的交点个数为2.(2)原式=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫234-34 +log 3⎝ ⎛⎭⎪⎫54×45=⎝ ⎛⎭⎪⎫23-3+log 31=278.(3)当log 2a 与log 2(2b )有一个为负数时,log 2a ·log 2(2b )<0显然不是最大值.当log 2a 与log 2(2b )都大于零时,log 2a ·log 2(2b )≤⎣⎢⎡⎦⎥⎤log 2a +log 2(2b )22=⎣⎢⎡⎦⎥⎤log 2(2ab )22=4,当且仅当a =2b ,即a =4,b =2时“=”成立.[答案] (1)B (2)278 (3)4【解题法】 对数运算及对数函数问题解题策略(1)将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.(2)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想求解.(3)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.1.设f (x )=ln x,0<a <b ,若p =f (ab ),q =f ⎝ ⎛⎭⎪⎫a +b 2,r =12(f (a )+f (b )),则下列关系式中正确的是( )A .q =r <pB .p =r <qC .q =r >pD .p =r >q答案 B解析 ∵0<a <b ,∴a +b2>ab ,又f (x )=ln x 在(0,+∞)上单调递增,故f (ab )<f ⎝⎛⎭⎪⎫a +b 2,即q >p ,∵r =12(f (a )+f (b ))=12(ln a +ln b )=ln ab =f ()ab =p ,∴p =r <q .故选B.2.函数f (x )=log 12 (x 2-4)的单调递增区间为( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2) 答案 D解析 由x 2-4>0得x >2或x <-2,因此函数定义域为(-∞,-2)∪(2,+∞).令t =x 2-4,当x ∈(-∞,-2)时,t 随x 的增大而减小,y =log 12 t 随t 的增大而减小,所以y =log 12 (x 2-4)随x 的增大而增大,即f (x )在(-∞,-2)上单调递增.故选D.3.设a =log 37,b =2,c ,则( )A .b <a <cB .c <a <bC .c <b <aD .a <c <b答案 B解析 由3<7<9得log 33<log 37<log 39,∴1<a <2,由2>21=2得b 0=1得c <1,因此c <a <b ,故选B.4.已知关于x 的方程⎝ ⎛⎭⎪⎫12x =1+lg a1-lg a有正根,则实数a 的取值范围是( )A .(0,1)D .(10,+∞)答案 C解析 当x >0时,0<⎝ ⎛⎭⎪⎫12x <1,∵关于x 的方程⎝ ⎛⎭⎪⎫12x =1+lg a1-lg a有正根,∴0<1+lg a1-lg a <1,∴⎩⎪⎨⎪⎧1+lg a1-lg a<1,1+lg a1-lg a >0,解得-1<lg a <0,∴a <1.故选C.5.函数y =2log 4(1-x )的图象大致是( )答案 C解析 函数y =2log 4(1-x )的定义域为(-∞,1),排除A 、B ;又函数y =2log 4(1-x )在定义域内单调递减,排除D.选C.6.若a =log 43,则2a +2-a =________. 答案433解析 ∵a =log 43=log 23,∴2a +2-a=2log 23 +2-log 23 =3+13=433.函数y =log 12(x 2-2x )的单调递减区间是________.[错解][错因分析] 易出现两种错误:一是不考虑定义域,二是应用复合函数的单调性法则时出错.[正解] 由x 2-2x >0,得函数y =log 12(x 2-2x )的定义域为(-∞,0)∪(2,+∞).令u =x 2-2x ,则u 在(-∞,0)上是减函数,在(2,+∞)上是增函数,又y =log 12u 在(0,+∞)上是减函数,所以函数y =log 12(x 2-2x )在(-∞,0)上是增函数,在(2,+∞)上是减函数.故函数y =log 12(x 2-2x )的单调递减区间是(2,+∞).故填(2,+∞).[心得体会]………………………………………………………………………………………………时间:60分钟基础组1.[2016·衡水中学模拟]已知log 7[log 3(log 2x )]=0,那么x - 12等于( )A.13B.36C.33D.24答案 D解析 由log 7[log 3(log 2x )]=0,得log 3(log 2x )=1,即log 2x =3,解得x =8,所以x - 12 =8- 12 =18=122=24.故选D.2.[2016·武邑中学仿真]lg 51000-8 23 =( ) A.235 B .-175 C .-185 D .4答案 B解析 lg 51000-8 23 =lg 5103-8 23 =lg 1035 -(23) 23 =35-4=-175.3.[2016·冀州中学猜题]已知x =log 23,y =log 4π,z ,则( ) A .x <y <z B .z <y <x C .y <z <x D .y <x <z答案 A解析 y =log 4π=log 2πlog 24=log 2π>log 23,即y >x ,z >1,所以x <y <z .故选A.4.[2016·枣强中学期中]已知函数f (x )=log 2x ,若在[1,8]上任取一个实数x 0,则不等式1≤f (x 0)≤2成立的概率是( )A.14B.13C.27D.12答案 C解析 1≤f (x 0)≤2⇒1≤log 2x 0≤2⇒2≤x 0≤4,∴所求概率为4-28-1=27.5. [2016·衡水二中仿真]已知函数g (x )是偶函数,f (x )=g (x -2),且当x ≠2时其导函数f ′(x )满足(x -2)f ′(x )>0,若1<a <3,则( )A .f (4a )<f (3)<f (log 3a )B .f (3)<f (log 3a )<f (4a )C .f (log 3a )<f (3)<f (4a )D .f (log 3a )<f (4a )<f (3) 答案 B解析 ∵(x -2)f ′(x )>0,∴x >2时,f ′(x )>0;x <2时,f ′(x )<0.∴f (x )在(2,+∞)上递增,在(-∞,2)上递减.∵g (x )是偶函数,∴g (x -2)关于x =2对称,即f (x )关于x =2对称,∵1<a <3,∴f (3)<f (log 3a )<f (4a ).故选B.6.[2016·枣强中学期末]已知函数f (x )=|log 12 x |,若m <n ,有f (m )=f (n ),则m +3n 的取值范围是( )A .[23,+∞)B .(23,+∞)C .[4,+∞)D .(4,+∞)答案 D解析 ∵f (x )=⎪⎪⎪⎪⎪⎪log 12 x ,若m <n ,有f (m )=f (n ),∴log 12 m =-log 12n .∴mn =1.∴0<m <1,n >1.∴m +3n =m +3m 在m ∈(0,1)上单调递减.当m =1时,m +3n =4,∴m +3n >4.7.[2016·衡水二中模拟]已知函数f (x )=log(x 2-ax +3a )在[2,+∞)上单调递减,则a 的取值范围是( )A .(-∞,4]B .[4,+∞)C .[-4,4]D .(-4,4]答案 D解析 令t =g (x )=x 2-ax +3a ,∵f (x )=log t 在定义域上为减函数,要使f (x )=log(x 2-ax +3a )在[2,+∞)上单调递减,则t =g (x )=x 2-ax +3a 在[2,+∞)上单调递增,且t =g (x )=x 2-ax +3a >0,即⎩⎨⎧--a 2≤2,g (2)>0,∴⎩⎪⎨⎪⎧a ≤4,a >-4,即-4<a ≤4,选D. 8.[2016·武邑中学预测]函数y =lg 1|x +1|的大致图象为( )答案 D解析 y =lg 1|x |是偶函数,关于y 轴对称,且在(0,+∞)上单调递减,而y =lg1|x +1|的图象是由y =lg 1|x |的图象向左平移一个单位长度得到的.故选D.9.[2016·冀州中学仿真]函数y =ax 2+bx 与y =log x (ab ≠0,|a |≠|b |)在同一直角坐标系中的图象可能是( )答案 D解析 从对数的底数入手进行讨论,结合各个选项的图象从抛物线对称轴的取值范围进行判断,D 选项0<⎪⎪⎪⎪⎪⎪b a <1,0<⎪⎪⎪⎪⎪⎪b 2a <12,0<-b 2a <12或-12<-b2a <0,故选D.10. [2016·武邑中学猜题]若直角坐标平面内的两个不同点M ,N 满足条件:①M ,N 都在函数y =f (x )的图象上; ②M ,N 关于原点对称.则称点对[M ,N ]为函数y =f (x )的一对“友好点对”.(注:点对[M ,N ]与[N ,M ]为同一“友好点对”)已知函数f (x )=⎩⎪⎨⎪⎧log 3x (x >0),-x 2-4x (x ≤0),此函数的“友好点对”有( )A .0对B .1对C .2对D .3对答案 C解析 由题意,当x >0时,将f (x )=log 3x 的图象关于原点对称后可知,g (x )=-log 3(-x )(x <0)的图象与x ≤0时f (x )=-x 2-4x 的图象存在两个交点,如图所示,故“友好点对”的个数为2,故选C.11.[2016·衡水二中期末]已知a >0且a ≠1,若函数f (x )=alg (x2-2x+3)有最大值,则不等式log a (x 2-5x +7)>0的解集为________. 答案 (2,3)解析 因为x 2-2x +3=(x -1)2+2≥2有最小值2,所以lg (x 2-2x +3)≥lg 2,所以要使函数f (x )有最大值,则函数f (x )必须单调递减,所以0<a <1.由log a (x 2-5x +7)>0得0<x 2-5x +7<1,即⎩⎪⎨⎪⎧0<x 2-5x +7,x 2-5x +7<1,解得2<x <3,即原不等式的解集为(2,3). 12.[2016·冀州中学预测]已知函数f (x )=log 12 (x 2-2ax +3).(1)若函数f (x )的定义域为(-∞,1)∪(3,+∞),求实数a 的值; (2)若函数f (x )的定义域为R ,值域为(-∞,-1],求实数a 的值; (3)若函数f (x )在(-∞,1]上为增函数,求实数a 的取值范围. 解 (1)由题意可知,x 2-2ax +3=0的两根为x 1=1, x 2=3,∴x 1+x 2=2a ,∴a =2.(2)因为函数f (x )的值域为(-∞,-1],则f (x )max =-1, 所以y =x 2-2ax +3的最小值为y min =2, 由y =x 2-2ax +3=(x -a )2+3-a 2,得3-a 2=2, 所以a 2=1,所以a =±1.(3)f (x )在(-∞,1]上为增函数,则y =x 2-2ax +3在(-∞,1]上为减函数,有y >0,所以⎩⎪⎨⎪⎧ a ≥1,1-2a +3>0,即⎩⎪⎨⎪⎧a ≥1,a <2,故1≤a <2.所以实数a 的取值范围是[1,2).能力组13.[2016·枣强中学模拟]设a =log 32,b =ln 2,c =5- 12 ,则( )A .a <b <cB .b <c <aC .c <a <bD .c <b <a 答案 C解析 ∵12<log 32=ln 2ln 3<ln 2,而c =5- 12 =15<12,∴c <a <b . 14. [2016·衡水二中期中]已知函数f (x )=⎩⎪⎨⎪⎧|2x +1|,x <1log 2(x -m ),x >1,若f (x 1)=f (x 2)=f (x 3)(x 1,x 2,x 3互不相等),且x 1+x 2+x 3的取值范围为(1,8),则实数m 的值为________.答案 1解析 作出f (x )的图象,如图所示,可令x 1<x 2<x 3,则由图知点(x 1,0),(x 2,0)关于直线x =-12对称,所以x 1+x 2=-1.又1<x 1+x 2+x 3<8,所以2<x 3<9.由f (x 1)=f (x 2)=f (x 3)(x 1,x 2,x 3互不相等),结合图象可知点A 的坐标为(9,3),代入函数解析式,得3=log 2(9-m ),解得m =1.15.[2016·衡水中学热身]已知函数f (x )=log a (8-ax )(a >0,a ≠1),若f (x )>1在区间[1,2]上恒成立,则实数a 的取值范围为________.答案 ⎝ ⎛⎭⎪⎫1,83 解析 当a >1时,f (x )=log a (8-ax )在[1,2]上是减函数, 由f (x )>1恒成立,则f (x )min =log a (8-2a )>1,解之得1<a <83,若0<a <1时,f (x )在x ∈[1,2]上是增函数, 由f (x )>1恒成立,则f (x )min =log a (8-a )>1, 且8-2a >0,所以a >4,且a <4,故不存在.综上可知,实数a 的取值范围是⎝⎛⎭⎪⎫1,83. 16.[2016·武邑中学月考]已知f (x )=log a x (a >0且a ≠1),如果对于任意的x ∈⎣⎢⎡⎦⎥⎤13,2都有|f (x )|≤1成立,试求a 的取值范围. 解 ∵f (x )=log a x ,则y =|f (x )|的图象如右图.由图知,要使x ∈⎣⎢⎡⎦⎥⎤13,2时恒有|f (x )|≤1,只需|f (13)|≤1, 即-1≤log a 13≤1,即log a a -1≤log a 13≤log a a .当a >1时,得a -1≤13≤a ,即a ≥3; 当0<a <1时得a -1≥13≥a ,得0<a ≤13.综上所述,a 的取值范围是⎝ ⎛⎦⎥⎤0,13∪[3,+∞).。

高三数学第一轮复习 对数与对数函数教案 文

高三数学第一轮复习 对数与对数函数教案 文

对数与对数函数一、知识梳理:(阅读教材必修1第62页—第76页)1、对数与对数的运算性质(1)、一般地,如果 (a>0,且) 那么数x叫做以a为底的对数,记做x= ,其中a叫做对数的底,叫做对数的真数。

(2)、以10为底的对数叫做常用对数,并把记为lgN, 以e为底的对数称为自然对数,并把记为lnN.(3)、根据对数的定义,可以得到对数与指数和关系:(4)、零和负数没有对数; =1; =0;=N(5)、对数的运算性质:如果,M>0,N>0 ,那么=+==n(n)换底公式:=对数恒等式:=N2、对数函数与对数函数的性质(1)、一般地,我们把函数f(x)=)叫做对函数,其中x是自变量,函数的定义域是(0,+。

(2)、对数函数的图象及性质图象的性质:①定义域②值域③单调性④奇偶性⑤周期性⑥特殊点⑦特殊线图象分a1 与a<1两种情况。

3、反函数:对数函数f(x)=)与指数函数f(x)=)互为反函数。

原函数的定义域是反函数的值域,原函数的值域是反函数的定义域。

互为反函数的图象在同一坐标系关于直线y=x 对称。

【关于反函数注意大纲的要求】二、题型探究 探究一:对数的运算 例1:(15年安徽文科)=-+-1)21(2lg 225lg 。

【答案】-1 【解析】试题分析:原式=12122lg 5lg 2lg 22lg 5lg -=-=-+=-+- 考点:对数运算.例2:【2014辽宁高考】已知132a -=,21211log ,log 33b c ==,则( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >>例3:【2015高考浙江】若4log 3a =,则22a a-+= .【答案】334.【考点定位】对数的计算 探究二:对数函数及其性质例4:【2014江西高考】函数)ln()(2x x x f -=的定义域为( )A.)1,0(B. ]1,0[C. ),1()0,(+∞-∞D. ),1[]0,(+∞-∞例5:下列关系 中,成立的是 (A )、lo>> (B) >> lo (C) lo> > (D) lo>探究三、应用对数函数的单调性解方程、不等式问题例7:【15年天津文科】已知定义在R 上的函数||()21()x m f x m -=-为实数为偶函数,记0.5(log 3),a f =2b (log 5),c (2)f f m ==,则,,a b c ,的大小关系为( )(A) b c a << (B) b c a << (C) b a c << (D) b c a << 【答案】B 【解析】试题分析:由()f x 为偶函数得0m =,所以2,4,0a b c ===,故选B. 考点:1.函数奇偶性;2.对数运算.例8:【2014陕西高考】已知,lg ,24a x a==则x =________.三、方法提升:1、 处理对数函数问题时要特别注意函数的定义域问题,尤其在大题中【最后的导数题】,一定要首先考虑函数的定义域,然后在定义域中研究问题,以避免忘记定义域出现错误;2、 在2015年高考小题中,考察主要是针对对数的大小比较、指数与对数的关系,中档难度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对数与对数函数一、知识梳理:(阅读教材必修1第62页—第76页)1、对数与对数的运算性质(1)、一般地,如果 (a>0,且) 那么数x叫做以a为底的对数,记做x= ,其中a叫做对数的底,叫做对数的真数。

(2)、以10为底的对数叫做常用对数,并把记为lgN, 以e为底的对数称为自然对数,并把记为lnN.(3)、根据对数的定义,可以得到对数与指数和关系:(4)、零和负数没有对数; =1; =0;=N(5)、对数的运算性质:如果,M>0,N>0 ,那么=+==n(n)换底公式:=对数恒等式:=N2、对数函数与对数函数的性质(1)、一般地,我们把函数f(x)=)叫做对函数,其中x是自变量,函数的定义域是(0,+。

(2)、对数函数的图象及性质图象的性质:①定义域②值域③单调性④奇偶性⑤周期性⑥特殊点⑦特殊线图象分a1 与a<1两种情况。

3、反函数:对数函数f(x)=)与指数函数f(x)=)互为反函数。

原函数的定义域是反函数的值域,原函数的值域是反函数的定义域。

互为反函数的图象在同一坐标系关于直线y=x 对称。

【关于反函数注意大纲的要求】二、题型探究探究一:对数的运算例1:(15年安徽文科)=-+-1)21(2lg225lg。

【答案】-1【解析】试题分析:原式=12122lg5lg2lg22lg5lg-=-=-+=-+-考点:对数运算.例2:【2014辽宁高考】已知132a-=,21211log,log33b c==,则()A.a b c>>B.a c b>>C.c a b>>D.c b a>>例3:【2015高考浙江】若4log3a=,则22a a-+=.【答案】334.【考点定位】对数的计算探究二:对数函数及其性质例4:【2014江西高考】函数)ln()(2xxxf-=的定义域为()A.)1,0(B. ]1,0[C. ),1()0,(+∞-∞Y D. ),1[]0,(+∞-∞Y例5:下列关系 中,成立的是 (A )、lo>> (B) >> lo (C) lo> > (D) lo>探究三、应用对数函数的单调性解方程、不等式问题 例7:【15年天津文科】已知定义在R 上的函数||()21()x m f x m -=-为实数为偶函数,记0.5(log 3),a f =2b (log 5),c (2)f f m ==,则,,a b c ,的大小关系为( )(A) b c a << (B) b c a << (C) b a c << (D) b c a << 【答案】B 【解析】试题分析:由()f x 为偶函数得0m =,所以2,4,0a b c ===,故选B. 考点:1.函数奇偶性;2.对数运算.例8:【2014陕西高考】已知,lg ,24a x a==则x =________.三、方法提升:1、 处理对数函数问题时要特别注意函数的定义域问题,尤其在大题中【最后的导数题】,一定要首先考虑函数的定义域,然后在定义域中研究问题,以避免忘记定义域出现错误;2、 在2015年高考小题中,考察主要是针对对数的大小比较、指数与对数的关系,中档难度。

四、反思感悟五、 课时作业对数与对数函数一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.)1.【2014浙江高考】在同意直角坐标系中,函数x x g x x x f a a log )(),0()(=≥=的图像可能是( )答案:D 解析:函数()0ay xx =≥,与()log 0a y x x =>,答案A没有幂函数图像,答案B()0a y x x =≥中1a >,()log 0a y x x =>中01a <<,不符合,答案C()0a y x x =≥中01a <<,()log 0a y x x =>中1a >,不符合,答案D()0a y x x =≥中01a <<,()log 0a y x x =>中01a <<,符合,故选D考点:函数图像.2.(2013年高考广东卷(文))函数lg(1)()1x f x x +=-的定义域是( )A .(1,)-+∞B .[1,)-+∞C .(1,1)(1,)-+∞UD .[1,1)(1,)-+∞U【答案】C3.函数y =log 12(2x 2-3x +1)的递减区间为( )A .(1,+∞) B.⎝ ⎛⎦⎥⎤-∞,34 C.⎝ ⎛⎭⎪⎫12,+∞ D.⎝⎛⎦⎥⎤-∞,12 解析:由2x 2-3x +1>0,得x >1或x <12,易知u =2x 2-3x +1⎝ ⎛⎭⎪⎫x >1或x <12在(1,+∞)上是增函数,而y =log 12(2x 2-3x +1)的底数12<1,且12>0,所以该函数的递减区间为(1,+∞).答案:A4.【2014陕西高考】下列函数中,满足“()()()f x y f x f y+=”的单调递增函数是()(A)()12f x x=(B)()3f x x=(C)()12xf x⎛⎫= ⎪⎝⎭(D)()3xf x= 5.设a=log32,b=ln2,c=5-12,则( )A.a<b<c B.b<c<a C.c<a<b D.c<b<a解析:a=log32=ln2ln3<ln2=b,又c=5-12=15<12,a=log32>log33=12,因此c<a<b,故选C.6.(2013年高考重庆卷(文))函数21log(2)yx=-的定义域为()A.(,2)-∞B.(2,)+∞C.(2,3)(3,)+∞U D.(2,4)(4,)+∞U 【答案】C二、填空题:(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上.) 7.函数y=log0.5(4x2-3x)的定义域是________.解析:由题意知,log0.5(4x2-3x)≥0=log0.51,由于0<0.5<1,所以⎩⎪⎨⎪⎧4x2-3x>0,4x2-3x≤1.从而可得函数的定义域为⎣⎢⎡⎭⎪⎫-14,0∪⎝ ⎛⎦⎥⎤34,1. 8.函数f (x )=ln 1+ax1+2x(a ≠2)为奇函数,则实数a 等于________.解析:依题意有f (-x )+f (x )=ln 1-ax 1-2x +ln 1+ax 1+2x =0,即1-ax 1-2x ·1+ax 1+2x =1,故1-a 2x2=1-4x 2,解得a 2=4,但a ≠2,故a =-2.9.已知f (3x )=4x log 23+233,则f (2)+f (4)+f (8)+…+f (28)的值等于________.解析:∵f (3x )=4x log 23+233=4log 23x+233,∴f (2)+f (4)+…+f (28)=4(1+2+…+8)+233×8=2008.10.若函数f (x )=⎝ ⎛⎭⎪⎫12lg(ax 2-x +1)的值域是(0,+∞),则实数a 的取值范围是________.解析:令t =lg(ax 2-x +1),则y =⎝ ⎛⎭⎪⎫12t 的值域是(0,+∞),∴t 应取到每一个实数,即函数t =lg(ax 2-x +1)的值域为R .当a =0时,t =lg(-x +1)的值域为R ,适合题意,当a ≠0时,应有⎩⎪⎨⎪⎧a >0,1-4a ≥0.⇒0<a ≤14.综上,a 的取值范围是0≤a ≤14.三、解答题:(本大题共3小题,11、12题13分,13题14分,写出证明过程或推演步骤.)11.已知f (x )=log 4(2x +3-x 2), (1)求函数f (x )的单调区间;(2)求函数f (x )的最大值,并求取得最大值时的x 的值. 解:(1)单调递增区间为(-1,1],递减区间为[1,3) (2)因为μ=-(x -1)2+4≤4,所以y =log 4μ≤log 44=1, 所以当x =1时,f (x )取最大值1.评析:在研究函数的性质时,要在定义域内研究问题,定义域“优先”在对数函数中体现的更明确.12.已知a >0,a ≠1,f (log a x )=a (x 2-1)x (a 2-1).试判断f (x )在定义域上是否为单调函数?若是,是增函数还是减函数?若不是,请说明理由.解:用换元法求出f (x )的解析式,由于其中含有字母,故需讨论. 设t =log a x ,则x =a t,∵f (t )=aa 2-1·a 2t -1a t 即f (t )=a a 2-1(a t -a -t ).∴f (x )=a a 2-1(a x -a -x).f (x )的定义域是(-∞,+∞),设x 1<x 2,则f (x 1)-f (x 2)=a a 2-1[(ax 1-a -x 1)-(ax 2-a -x 2)]=a a 2-1·(ax 1-ax 2)(1+ax 1ax 2)ax 1ax 2.∵a >0,a ≠1,∴ax 1ax 2>0,1+ax 1ax 2>0.若0<a <1,则ax 1>ax 2,ax 1-ax 2>0. 此时aa 2-1<0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).同理若a >1,f (x 1)<f (x 2).综上所述,当a >0且a ≠1时,f (x )在(-∞,+∞)上是单调函数,是单调增函数. 评析:对于y =a x,由于其单调性与a 的取值有关,故需分0<a <1和a >1两种情况讨论.。

相关文档
最新文档