最新平行四边形测试题
【精选】人教版八年级下册数学第十八章《平行四边形》测试卷(含答案)

【精选】人教版八年级下册数学第十八章《平行四边形》测试卷(含答案)一、选择题(每题3分,共30分)1.已知在▱ABCD中,∠B+∠D=200°,则∠B的度数为( ) A.100° B.160° C.80° D.60°2.【2022·广东】如图,在△ABC中,BC=4,点D,E分别为AB,AC的中点,则DE=( )A.14B.12C.1 D.2(第2题) (第4题) (第5题) (第8题) 3.【2022·河北】依据所标数据,下列一定为平行四边形的是( )4.【教材P44例2改编】【2021·恩施州】如图,在▱ABCD中,AB=13,AD=5,AC ⊥BC,则▱ABCD的面积为( )A.30 B.60 C.65 D.65 25.【教材P53例1改编】如图,在矩形ABCD中,对角线AC,BD交于点O,∠AOB =60°,AB=5,则BD的长为( )A.20 B.15 C.10 D.56.【2021·河南】关于菱形的性质,以下说法不正确...的是( )A.四条边相等 B.对角线相等C.对角线互相垂直 D.是轴对称图形7.下列命题中,是真命题的为( )A.一组对边平行,另一组对边相等的四边形是平行四边形B.对角线互相垂直的四边形是菱形C.对角线相等的四边形是矩形D.一组邻边相等的矩形是正方形8.如图,已知在菱形ABCD中,对角线AC与BD交于点O,∠BAD=120°,AC=4,则该菱形的面积是( )A.16 3 B.16 C.8 3 D.89.【2022·青岛】如图,O为正方形ABCD对角线AC的中点,△ACE为等边三角形.若AB=2,则OE的长度为( )A.62B. 6 C.2 2 D.2 3(第9题) (第10题) (第11题) (第13题)10.【教材P68复习题T13拓展】【2022·恩施州】如图,在四边形ABCD中,∠A=∠B=90°,AD=10 cm,BC=8 cm,点P从点D出发,以1 cm/s的速度向点A运动,点M从点B同时出发,以相同的速度向点C运动,当其中一个动点到达端点时,两个动点同时停止运动.设点P的运动时间为t(单位:s),下列结论正确的是( )A.当t=4时,四边形ABMP为矩形B.当t=5时,四边形CDPM为平行四边形C.当CD=PM时,t=4D.当CD=PM时,t=4或6二、填空题(每题3分,共24分)11.如图,在▱ABCD中,AB=5,AC=8,BD=12,则△COD的周长是________.12.在Rt△ABC中,∠C=90°,AC=5,BC=12,则斜边上的中线CD=________. 13.【2021·益阳】如图,已知四边形ABCD是平行四边形,从①AB=AD,②AC =BD,③∠ABC=∠ADC中选择一个作为条件,补充后使四边形ABCD成为菱形,则其选择是________(限填序号).14.如图,平行四边形ABCD的三个顶点的坐标分别为A(1,1),B(4,1),D(2,3),要把顶点A平移到顶点C的位置,则其平移方式可以是:先向右平移________个单位长度,再向上平移________个单位长度.(第14题) (第15题) (第16题) (第17题) 15.【2022·哈尔滨】如图,菱形ABCD的对角线AC,BD相交于点O.点E在OB 上,连接AE,点F为CD的中点,连接OF.若AE=BE,OE=3,OA=4,则线段OF的长为________.16.如图,在矩形ABCD中,E是BC边上一点,AE=AD,DF⊥AE于点F,连接DE,AE=5,BE=4,则DF=________.17.【2022·苏州】如图,在平行四边形ABCD中,AB⊥AC, AB=3, AC=4,分别以A,C为圆心,大于12AC的长为半径画弧,两弧相交于点M,N,过M,N两点作直线,与BC交于点E,与AD交于点F,连接AE,CF.则四边形AECF的周长为________.18.以正方形ABCD的边AD为边作等边三角形ADE,则∠BEC的度数是____________.三、解答题(19,20题每题8分,21,22题每题12分,其余每题13分,共66分)19.【2022·桂林】如图,在▱ABCD中,点E和点F是对角线BD上的两点,且BF =DE.(1)求证:BE=DF;(2)求证:△ABE≌△CDF.20.【2021·郴州】如图,四边形ABCD中,AB=DC,将对角线AC向两端分别延长至点E,F,使AE=CF, 连接BE,DF.若BE=DF,证明:四边形ABCD是平行四边形.21.【教材P55练习T2改编】【2021·长沙】如图,▱ABCD的对角线AC,BD相交于点O,△OAB是等边三角形,AB=4.(1)求证:▱ABCD是矩形;(2)求AD的长.22.【2021·十堰】如图,已知△ABC中,D是AC的中点,过点D作DE⊥AC交BC于点E,过点A作AF∥BC交ED的延长线于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若CF=2,∠FAC=30°,∠B=45°,求AB的长.23.如图,正方形ABCD中,E是BC上的一点,连接AE,过B点作BH⊥AE,垂足为点H,延长BH交CD于点F,连接AF.(1)求证:AE=BF;(2)若正方形的边长是5,BE=2,求AF的长.24.【2022·北京八中模拟】在▱ABCD中,AB≠AD,对角线AC,BD交于点O,AC =10,BD=16.点M,N在对角线BD上,点M从点B出发以每秒1个单位长度的速度向点D运动,到达点D时停止运动,同时点N从点D出发,运动至点B后立即返回,点M停止运动的同时,点N也停止运动,设运动时间为t 秒(t>0).。
(完整版)平行四边形的性质习题(有答案)

平行四边形的性质测试题一、选择题(每题 3 分共 30 分)1.下边的性质中,平行四边形不必定具备的是()A.对角互补B.邻角互补C.对角相等D.内角和为 360°2.在中,∠ A:∠ B:∠ C:∠ D 的值能够是()A .1:2:3:4B .1:2:1:2C .1:1:2:2 D.1: 2:2:13.平行四边形的对角线和它的边能够构成全等三角形()A.3对B.4 对 C .5对D. 6 对A D 4.以下图,在中,对角线 AC、BD交于点 O,?以下式子中一O 定建立的是()B CA.AC⊥ BD B . OA=OC C. AC=BD D .AO=OD5.以下图,在中, AD=5,AB=3,AE均分∠ BAD交BC A D边于点 E,则线段 BE、 EC的长度分别为()BE C A .2和3 B.3和2 C .4和1 D .1和46.的两条对角线订交于点 O,已知 AB=8cm,BC=6cm,△AOB的周长是 18cm,那么△ AOD的周长是()A .14cmB .15cmC .16cmD .17cm7.平行四边形的一边等于14,它的对角线可能的取值是()A .8cm和 16cmB .10cm和 16cmC . 12cm和 16cmD . 20cm和 22cm 8.如图,在中,以下各式不必定正确的选项是()A.∠ 1+∠ 2=180° B .∠ 2+∠ 3=180C.∠ 3+∠ 4=180°D.∠ 2+∠4=180°9.如图,在中,∠ ACD=70°,AE⊥ BD于点E,则∠ ABE等于()A、20°B、25° C 、 30° D 、35°10.如图,在△ MBN中, BM=6,点 A、C、D 分别在 MB、NB、MN上,四边形 ABCD为平行四边形,∠NDC=∠ MDA,那么的周长是()二、填空题(每题 3 分共 18 分)11.在中,∠ A:∠ B=4:5,则∠ C=______.12.在中, AB:BC=1:2,周长为 18cm,则 AB=______cm,AD=_______cm.13.在中,∠A=30°,则∠ B=______,∠C=______,∠D=________.14.如图,已知:点 O是的对角线的交点, ?AC=?48mm,?BD=18mm,AD=16mm,那么△ OBC的周长等于 _______mm.15.如图,在中,E、F是对角线BD上两点,要使△ ADF≌△ CBE,还需增添一个条件是 ________.16.如图,在中,EF∥ AD,MN∥ AB,那么图中共有_______?个平行四边形.三、解答题17.已知:如图,在中,E、F是对角线AC?上的两点,AE=CF.BE与DF的大小有什么关系,并说明原因。
《平行四边形的判别》测试题

.
是平行 四边 形 的是
C
.
1: : : 2 3 4
.
2 : : : 2 3 3
,
2 : : : 3 2 3 A B CD
[
[
D
.
2 : : : 3 3 2
撬,
C C
+
+
D
的度数之 比 其
,
引 引 到
( )
1 1 A C
.
下列条件 中 能判定 四边形
A B
以B
=
是平行 四边 形 的是
G= 180
B
.
现 有
块 等腰 直 角 三 角形 的铁板
一 .
通 过 切 割 焊接成
,
.
一
个含有 点
.
角 的平 行 四边 形 请你设 计
15
.
种 最 简单 的方 案 并说 明理 由
如图
,
6
=
,
在 四边形
.
A B CD
中
,
A B
=
D C A D
,
=
日C
:
点
D
.
E
在
B D
=
B C 上
,
F
在
曰
A D 上 16
.
D F
B E E F 7
,
的
图 2
爿 C
两点
,
当
满足
3
的条件时
四 边 形 A E CF 是
B D
平行 四边形
6
.
如图
,
在 网格 图 中
一 — —
,
以 格 点 A
平行四边形测试题

平行四边形测试题一一、 选择题(本大题共6小题,共18分)1.□ABCD 中,∠A 比∠B 大40°,则∠C 的度数为( )A. 60°B. 70°C. 100°D. 110° 2.一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是( )A. 88°,108°,88°B. 88°,104°,108°C. 88°,92°,92°D.88°,92°,88° 3.□ABCD 的周长为40cm ,△ABC 的周长为25cm ,则对角线AC 长为( )A. 5cmB. 6cmC. 8cmD. 10cm4.如图,在□ABCD 中,EF 过对角线的交点O ,AB =4,AD =3,OF =1.3,则四边形BCEF 的周长为 A. 8.3 B. 9.6 C. 12.6 D. 13.65.如图,在平行四边形ABCD 中,AB=4,∠BAD 的平分线与BC 的延长线交于点E ,与DC 交于点F ,且点F 为边DC 的中点,DG ⊥AE ,垂足为G ,若DG=1,则AE 的边长为( ) A .2B .C .4D .86、如图,在周长为20cm 的□ABCD 中,AB ≠AD ,AC 、BD 相交于点O ,OE ⊥BD 交AD 于E ,则△ABE 的周长为( )(A)4cm (B)6cm (C)8cm (D)10cm 二填空题(每小题3分,共15分)7.平行四边形的周长等于56cm ,两邻边长的比为3︰1,则这个平行四边形较长的长为 . 8.如图,长方形ABCD 中,AB =3,BC =4,如果将该长方形沿对角线BD 折叠,那么图中阴影部分的面积是_________.9.如图,一个平行四边形被分成面积为1S 、2S 、3S 、4S 四个小平行四边形,当CD 沿AB 自左向右在平行四边形内平行滑动时,则1S 4S 与2S 3S 的大小关系为 .10.如图,在△ABC 中,AB =BC ,AB =12cm ,F 是AB 边上的一点,过点F 作FE ∥BC 交CA 于点E ,过点E 作ED ∥AB 交于BC 于点D ,则四边形BDEF 的周是 .ABCDOEA B C D 1S 2S 3S 4S 第9题AB CEFD 第10题 _O _ F _ E _D _ C _B _ A 第4题第5题 第6题第8题(3)(2)(1)C 3B 3A 3A 2C 1B 11CBAC 2B 2B 2C 2ABC1B 1C 1A 2C 1B 11CB A…第23题图FE DCBA11. 如图,在图(1)中,A 1、B 1、C 1分别是△ABC 的边BC 、CA 、AB 的中点,在图(2)中,A 2、B 2、C 2分别是△A 1B 1C 1的边B 1C 1、C 1 A 1、 A 1B 1的中点,…,按此规律,则第n 个图形中平行四边形的个数共有 个.三、解答题1.在△ABC 中,AB=AC ,点D 、E 、F 分别是AC 、BC 、BA 延长线上的点,四边形ADEF 为平行四边形.求证:AD=BF .(13分)2.如图,在□ABCD 中,点E 、F 是对角线AC 上两点,且AE =CF .求证:∠EBF =∠FDE .(13分)3.如图,已知:平行四边形 ABCD 中,BCD ∠的平分线CE 交边AD 于E ,ABC ∠的平分线BG交CE 于F ,交AD 于G .求证:AE DG =.(15分)4.如图,□ABCD 中,AE 平分∠BAD 交BC 于点E ,CF 平分∠BCD 交AD 于点F , 求证:四边形AECF 是平行四边形. (12分)5.如图,E 、F 是对角线AC 上的两点,且BE//DF.求证:(1)△ABE ≌△CDF ;(7分)(2)∠1=∠2(8分)A BCDE FG平行四边形测试题二一选择题(本大题共7小题,共21分)1.四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是……………………………………………………………………………………( ) A .AB ∥DC ,AD ∥BC B .AB=DC ,AD=BC C .AO=CO ,BO=DOD .AB ∥DC ,AD=BC2.如图,在中,与相交于点,点E 是边BC 的中点,4AB =,则OE 的长是……( ) (A )2 (B (C )1 (D ) 3.如图 ,在 ABCD 中,已知∠ODA =90°,AC =10cm ,BD =6cm ,则AD 的长为 ( )A .4cmB .5cmC .6cmD .8cm4. 国家级历史文化名城——金华,风光秀丽,花木葱茏.某广场上一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB EF DC ∥∥,BC GH AD ∥∥,那么下列说法中错误的是……………………………………………………………………( ) A .红花、绿花种植面积一定相等 B .紫花、橙花种植面积一定相等 C .红花、蓝花种植面积一定相等 D .蓝花、黄花种植面积一定相等5.如图,在□ABCD 中,E 是AD 边上的中点.若∠ABE=∠EBC ,AB=2,则平行四边形ABCD 的周长是……………………………………………………………………………( ). A .11 B .12C .13D .106、如图(1),在□ABCD 中,CE AB ⊥,E 为垂足.如果125A = ∠,则BCE =∠( )A.55B.35C.25 D.307.在周长为20cm 的平行四边形ABCD 中,AB ≠AD ,AC 、BD 相交于点O ,OE ⊥BD 交AD 于E ,则△ABE 的周长为………………………………………………………………………( ) A .4cm B.6cm C.8cm D.10cm二、填空题(每小题3分,共27分)8.□ABCD 中,两邻边的差为4cm ,周长为32cm ,则两邻边长分别为第4题A EBCD第6题ODBAABCOE第3题第5题第7题129.如图,E ,F 是 ABCD 对角线BD 上的两点,请你添加一个适当的条件:____________________,使四边形AECF 是平行四边形.10.如图,在□ABCD 中,DB =DC ,∠A =65°,CE ⊥BD 于E ,则∠BCE = .11.如图,□ABCD 的对角线AC 、BD 相交于点O ,点E 是CD 的中点,若AD =4cm ,则OE 的长为 cm . 12.三角形的三条中位线长是3cm ,4cm ,5cm ,则这个三角形的周长为 .14、如图,四边形...ABCD 的对角线AC 、BD 相交于点O ,且BD 平分AC ,若BD=8,AC=6,∠BOC=120°则四边形ABCD 的面积为 .(结果保留根号)15.在□ABCD 中,对角线AC 、BD 相交于点O ,如果AC=14,BD=8,AB=x ,那么x 的取值范围是 .16.如图,△ACE 是以▱ABCD 的对角线AC C 与点E 关于x 轴对称.若E 点的坐标是(7,D 点的坐标是三、解答题1.已知,如图 ,E 、F 是四边形ABCD 的对角线AC 上的两点,AF =CE ,DF =BE ,DF ∥BE .(1)求证:△AFD ≌△CEB (4分)(2)四边形ABCD 是平行四边形吗?请说明理由.(4分)2.如图,已知,在□ABCD 中,AE=CF ,M 、N 分别是DE 、BF 的中点.求证:四边形MFNE 是平行四边形 . (8分)_ E_ D_ C_ B_A第10题D11题ECBAOABDCOHG第14题图F ED CBA第9题第13题第15题3.如图,分别以RtΔABC的直角边AC及斜边AB向外作等边ΔACD、30,EF⊥AB,垂足为F,连结DF.等边ΔABE.已知∠BAC=0(1)试说明AC=EF;(4分)(2)求证:四边形ADFE是平行四边形.(4分)6(10分).四边形ABCD、DEFG都是正方形,连接AE、CG.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.。
最新北师大版八年级下册数学平行四边形单元测试试题以及答案(4套题)

八年级下册平行四边形单元测试试题一、选择题。
(共12道选择题,每道选择题只有一个正确答案)1、平行四边形的周长是36厘米,相邻两个边的比是5:1,则较长边是()。
A、3B、15C、6D、304,取BC的中点为2、在等腰直角三角形ABC中,∠B=90°,AC=2P。
以点P为中心,将△ABC旋转180°,A点的对应点为A’,则AA’的距离是()。
2A、54B、58C、5D、53、如图,在▱ABCD中,AC+BD=24,BC=10,则△AOD的周长是()。
A、24B、22C、29D、174、已知平面直角坐标系中,以O(0,0),P(3,0),M(1,1),N(x,1),若以O,P,M,N为顶点的四边形是平行四边形,则x等于()。
A、﹣4或﹣2B、﹣1或﹣2C、4或﹣1D、4或﹣25、在长方形ABCD中,如下图,E、F、G、H分别是长方形四边的中点,AB=4,BC=10,则图中阴影部分的面积是()。
A、40B、20C、10D、86、如图,在平行四边形ABCD中,O是对角线AC、BD的交点,平行四边形的周长是32,△AOB比△AOD的周长小2,则AB、BC的长分别是()。
A 、6、10B 、7、9C 、5、7D 、8、107、如图,在平行四边形ABCD 中,CE :DE=3:2,则BEF DEF ABF S S S △△△::的比是( )。
A 、25:2:5B 、25:4:9C 、5:2:3D 、25:4:108、一个多边形的内角和是外角和的3倍,这个多边形是()边形。
A 、6B 、7C 、8D 、99、如果从一个等腰三角形的底边上任何一点分别作两腰的平行线,所得的平行四边形的周长等于()。
A、等腰三角形的周长B、等腰三角形周长的一半C、等腰三角形两腰长D、等腰三角形两腰长的一半10、如图,四边形ABCD是平行四边形,BG⊥AF,AF是∠BAD的平分4,则△CEF的面积是()。
线,若CD=6,BC=9,BG=24A、23B、22C、2D、211、如图,在平行四边形ABCD中,E、F在对角线AC上,给出下列四个条件:①AE=CF;②DE=BF;③∠ADE=∠CBF;④∠ABE=∠CDF,能判定四边形DEBF是平行四边形的有()个。
平行四边形测试试题附解析

平行四边形测试试题附解析一、解答题1.综合与实践.问题情境:如图①,在纸片ABCD □中,5AD =,15ABCD S =,过点A 作AE BC ⊥,垂足为点E ,沿AE 剪下ABE △,将它平移至DCE '的位置,拼成四边形AEE D '.独立思考:(1)试探究四边形AEE D '的形状.深入探究:(2)如图②,在(1)中的四边形纸片AEE D '中,在EE '.上取一点F ,使4EF =,剪下AEF ,将它平移至DE F ''的位置,拼成四边形AFF D ',试探究四边形AFF D '的形状;拓展延伸:(3)在(2)的条件下,求出四边形AFF D '的两条对角线长;(4)若四边形ABCD 为正方形,请仿照上述操作,进行一次平移,在图③中画出图形,标明字母,你能发现什么结论,直接写出你的结论.2.在ABCD 中,以AD 为边在ABCD 内作等边ADE ∆,连接BE .(1)如图1,若点E 在对角线BD 上,过点A 作AH BD ⊥于点H ,且75DAB ∠=︒,AB 6=,求AH 的长度; (2)如图2,若点F 是BE 的中点,且CF BE ⊥,过点E 作MNCF ,分别交AB ,CD 于点,M N ,在DC 上取DG CN =,连接CE ,EG .求证:①CEN DEG ∆∆≌;②ENG ∆是等边三角形.3.如图,平行四边形ABCD 的对角线AC BD 、交于点O ,分别过点C D 、作//,//CF BD DF AC ,连接BF 交AC 于点E .(1)求证: FCE BOE ≌;(2)当ADC ∠等于多少度时,四边形OCFD 为菱形?请说明理由.4.如图,点E 为▱ABCD 的边AD 上的一点,连接EB 并延长,使BF =BE ,连接EC 并延长,使CG =CE ,连接FG .H 为FG 的中点,连接DH ,AF .(1)若∠BAE =70°,∠DCE =20°,求∠DEC 的度数;(2)求证:四边形AFHD 为平行四边形;(3)连接EH ,交BC 于点O ,若OC =OH ,求证:EF ⊥EG .5.如图,在Rt ABC ∆中,90,40,60B AC cm A ∠=︒=∠=︒,点D 从点C 出发沿CA 方向以4/cm 秒的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以2/cm 秒的速度向点B 匀速运动,当其中一个点到达终点时,另一个地点也随之停止运动.设点,D E 运动的时间是t 秒(010t <≤).过点D 作DF BC ⊥于点F ,连接,DE EF .(1)试问四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,请说明理由;(2)当t 为何值时,90FDE ∠=︒?请说明理由.6.如图,矩形ABCD 中,AB=4,AD=3,∠A 的角平分线交边CD 于点E .点P 从点A 出发沿射线AE 以每秒2个单位长度的速度运动,Q 为AP 的中点,过点Q 作QH ⊥AB 于点H ,在射线AE 的下方作平行四边形PQHM (点M 在点H 的右侧),设P 点运动时间为t 秒.(1)直接写出AQH 的面积(用含t 的代数式表示).(2)当点M 落在BC 边上时,求t 的值.(3)在运动过程中,整个图形中形成的三角形是否存在全等三角形?若存在,请写出所有全等三角形,并求出对应的t 的值;若不存在请说明理由(不能添加辅助线).7.已知四边形ABCD 是正方形,将线段CD 绕点C 逆时针旋转α(090α︒<<︒),得到线段CE ,联结BE 、CE 、DE . 过点B 作BF ⊥DE 交线段DE 的延长线于F .(1)如图,当BE =CE 时,求旋转角α的度数;(2)当旋转角α的大小发生变化时,BEF ∠的度数是否发生变化?如果变化,请用含α的代数式表示;如果不变,请求出BEF ∠的度数;(3)联结AF ,求证:2DE AF =.8.探究:如图①,△ABC 是等边三角形,在边AB 、BC 的延长线上截取BM =CN ,连结MC 、AN ,延长MC 交AN 于点P .(1)求证:△ACN ≌△CBM ;(2)∠CPN = °;(给出求解过程)(3)应用:将图①的△ABC 分别改为正方形ABCD 和正五边形ABCDE ,如图②、③,在边AB 、BC 的延长线上截取BM =CN ,连结MC 、DN ,延长MC 交DN 于点P ,则图②中∠CPN = °;(直接写出答案)(4)图③中∠CPN = °;(直接写出答案)(5)拓展:若将图①的△ABC 改为正n 边形,其它条件不变,则∠CPN = °(用含n 的代数式表示,直接写出答案).9.如图,正方形ABCD的对角线AC,BD相交于点O,点E是AC的一点,连接EB,过点A做AM⊥BE,垂足为M,AM与BD相交于点F.(1)猜想:如图(1)线段OE与线段OF的数量关系为;(2)拓展:如图(2),若点E在AC的延长线上,AM⊥BE于点M,AM、DB的延长线相交于点F,其他条件不变,(1)的结论还成立吗?如果成立,请仅就图(2)给出证明;如果不成立,请说明理由.10.如图,在平行四边形 ABCD中,AD=30 ,CD=10,F是BC 的中点,P 以每秒1 个单位长→→→路径以每秒3个度的速度从 A向 D运动,到D点后停止运动;Q沿着A B C D单位长度的速度运动,到D点后停止运动.已知动点 P,Q 同时出发,当其中一点停止后,另一点也停止运动.设运动时间为 t秒,问:(1)经过几秒,以 A,Q ,F ,P 为顶点的四边形是平行四边形(2)经过几秒,以A ,Q ,F , P为顶点的四边形的面积是平行四边形 ABCD面积的一半?【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)矩形;(2)菱形;(3)104)见解析【分析】(1)由平移推出AD EE '=,即可证得四边形AEE D '是平行四边形,再根据AE BC ⊥,得到90AEE '∠=︒即可得到结论;(2)由平移推出AD FF '=,证得四边形AFF D '是平行四边形,根据AE EF ⊥得到90AEE '∠=︒,再根据勾股定理求出AF=5=AD ,即可证得四边形AFF D '是菱形; (3)先利用勾股定理求出22221310DF E F E D ''=+=+=,再根据菱形的面积求出F A ';(4)在BC 边上取点E ,连接AE ,平移△ABE 得到△DCF ,可得四边形AEFD 是平行四边形.【详解】(1)四边形AEE D '是矩形,在ABCD □中,//AD BC ,AD BC =,由平移可知:BE CE ''=,∴BC EE '=,∴AD EE '=,∴四边形AEE D '是平行四边形,∵AE BC ⊥,∴90AEE '∠=︒,∴四边形AEE D '是矩形;(2)四边形AFF D '是菱形,在矩形AEE D '中,//AD EE ' ,AD EE '=,由平移可知:EF E F ='',∴EE FF ''=,∴AD FF '=,∴四边形AFF D '是平行四边形,∵AE EF ⊥,∴90AEE '∠=︒,在Rt AEF ,2222345AF AE EF =+=+=, ∴AF AD =,∴四边形AFF D '是菱形;(3)连接F A ',在Rt DFE '△中,22221310DF E F E D ''=+=+=,15ABCD AFF D S S '==平行四边形菱形,∴·30F A FD '=,∴310F A '=;(4)在BC 上取一点E ,连接AE ,平移△ABE 得到△DCF ,可得四边形AEFD 是平行四边形.【点睛】此题考查了平行四边形的性质,矩形的判定定理,菱形的判定及性质,平移的性质的应用,勾股定理.2.(1)3AH 2)①证明见解析;②证明见解析【分析】(1)根据等边三角形的性质得到∠DAE =60°,根据等腰三角形的性质得到∠DAH =∠EAH ,求出∠HAB =45°,根据等腰直角三角形的性质计算,得到答案;(2)①根据线段垂直平分线的性质得到CB =CE ,根据平行四边形的性质得到AD =BC ,得到DE =CE ,利用SAS 定理证明结论;②根据全等三角形的性质得到EN =EG ,根据等边三角形的判定定理证明即可.【详解】(l )∵ADE ∆是等边三角形,∴60DAE ∠=︒.∵AH BD ⊥,∴1302DAH HAE DAE ︒∠=∠=∠=. ∵75DAB ∠=︒,∴753045BAH BAD DAH ︒︒︒∠=∠-∠=-=. ∴232AB AH BH === (2)①∵点F 是BE 的中点,且CF BE ⊥,∴线段CF 是线段BE 的垂直平分线.∴CE CB =,ECF BCF ∠=∠.∵ADE ∆是等边三角形,∴DE AD =.∵四边形ABCD 是平行四边形,∴AD BC =,∴DE CE =.∴EDC ECD ∠=∠.在DEG ∆和CEN ∆中,DG CN GDE NCE DE CE =⎧⎪∠=∠⎨⎪=⎩,∴()CEN DEG SAS ∆∆≌.②由①知:CEN DEG ∆∆≌,∴EN EG =.∵AD BC ∥,∴180ADC BCD ︒∠+∠=.∵60ADE ∠=︒,∴120EDC BCD ︒∠+∠=.∵ECF BCF ∠=∠,EDC ECD ∠=∠,∴60DCF ∠=︒.∵CF MN ,∴60DNE DCF ∠=∠=︒.∴ENG ∆是等边三角形.【点睛】本题考查的是平行四边形的性质、全等三角形的判定和性质、等边三角形的判定和性质,掌握平行四边形的性质定理、全等三角形的判定定理和性质定理是解题的关键.3.(1)见解析;(2)当ADC 满足90ADC ∠=︒时,四边形OCFD 为菱形,证明详见解析【分析】(1)证明四边形OCFD 是平行四边形,得出OD=CF ,证出OB=CF ,再证明全等即可(2)证出四边形ABCD 是矩形,由矩形的性质得出OC=OD ,即可得出四边形OCFD 为菱形.【详解】(1)证明:∵//,//CF BD DF AC ,∴四边形OCFD 是平行四边形, OBE CFE ∠=∠,∴OD CF =,∵四边形ABCD 是平行四边形,∴OB OD =,∴OB CF =,在FCE △和BOE △中, OBE CFE BEO FEC OB CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()FCE BOE AAS ≌.(2)当ADC 满足90ADC ∠=︒时,四边形OCFD 为菱形.理由如下:∵90ADC ∠=︒,四边形ABCD 是平行四边形,∴四边形ABCD 是矩形∴,,,OA OC OB OD AC BD ===∴OC OD =,∴四边形OCFD 为菱形【点睛】本题考查全等三角形判定与性质,平行四边形和菱形的判定与性质等知识,熟练掌握平行四边形的判定和性质和菱形的判定是解题的关键.4.(1)50°;(2)见解析;(3)见解析【分析】(1)由平行四边形的性质和平行线的判定和性质得出答案即可;(2)由平行四边形的性质得出AD =BC ,AD ∥BC ;证明BC 是△EFG 的中位线,得出BC ∥FG ,BC =12FG ,证出AD ∥FH ,AD ∥FH ,由平行四边形的判定方法即可得出结论; (3)连接EH ,CH ,根据三角形的中位线定理以及平行四边形的判定和性质即可得到结论.【详解】明:(1)∵四边形ABCD是平行四边形,∴∠BAE=∠BCD=70°,AD∥BC,∵∠DCE=20°,∵AB∥CD,∴∠CDE=180°﹣∠BAE=110°,∴∠DEC=180°﹣∠DCE﹣∠CDE=50°;(2)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∠BAE=∠BCD,∵BF=BE,CG=CE,∴BC是△EFG的中位线,∴BC∥FG,BC=12 FG,∵H为FG的中点,∴FH=12 FG,∴BC∥FH,BC=FH,∴AD∥FH,AD∥FH,∴四边形AFHD是平行四边形;(3)连接EH,CH,∵CE=CG,FH=HG,∴CH=12EF,CH∥EF,∵EB=BF=12 EF,∴BE=CH,∴四边形EBHC是平行四边形,∴OB=OC,OE=OH,∵OC=OH,∴OE=OB=OC=12 BC,∴△BCE是直角三角形,∴∠FEG=90°,∴EF⊥EG.【点睛】本题考查了平行四边形的判定与性质、三角形中位线定理、等腰三角形的性质以及三角形内角和定理;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.5.(1)四边形AEFD 能够成为菱形,理由见解析;(2)5t =,理由见解析.【分析】(1)能;首先证明四边形AEFD 为平行四边形,当AE =AD 时,四边形AEFD 为菱形,即40﹣4t =2t ,解方程即可解决问题;(2)当∠FDE =90°时,AEFD 为矩形,再根据线段的长度关系列方程求得.【详解】解:(1)四边形AEFD 能够成为菱形,理由如下:在DFC ∆中,90,30DFC C ∠=︒∠=︒,4DC t =,∴2DF t =,又∵2AE t =,∴AE DF =,∵,AB BC DF BC ⊥⊥,∴//AE DF ,又∵AE DF =,∴四边形AEFD 为平行四边形,如图1,当AE AD =时,四边形AEFD 为菱形,即4042t t -=,解得203t =.∴当203t =秒时,四边形AEFD 为菱形. (2)如图2,当90FDE ∠=︒时,四边形EBFD 为矩形,在Rt AED ∆中,60A ∠=︒,则30ADE ∠=︒,∴2AD AE =,即4044t t -=,解得5t =.【点睛】本题考查平行四边形的判定和性质、菱形的判定、直角三角形的判定和性质、矩形的性质等知识,解题的关键是方程思想,学会构建方程解决问题.6.(1)214t ;(2)t =;(3)存在,如图2(见解析),当AHQ HBM ≅时,t =3(见解析),当ADE AHE ≅时,t =4(见解析),当EGQ HBF ≅时,t =【分析】(1)先根据线段中点的定义可得12AQ AP =,再根据矩形的性质、角平分线的定义可得45HAQ ∠=︒,从而可得AQH 是等腰直角三角形,然后根据等腰直角三角形的性质可得AH 的长,最后根据等腰直角三角形的面积公式即可得;(2)先根据平行四边形的性质可得//HQ MP ,从而可得//HQ BP ,再根据三角形中位线定理可得HQ 是ABP △的中位线,从而可得122AH AB ==,然后与(1)所求的2AH =建立等式求解即可得; (3)分①当点H 是AB 的中点时,AHQ HBM ≅;②当点Q 与点E 重合时,ADE AHE ≅;③当EG HB =时,EGQ HBF ≅三种情况,分别求解即可得.【详解】(1)由题意得:2AP t =,点Q 为AP 的中点,12AQ AP t ∴==, 四边形ABCD 是矩形,90B D BAD ∴∠=∠=∠=︒,AE ∵是BAD ∠的角平分线,1452HAQ DAE BAD ∴∠=∠=∠=︒, QH AB ⊥,AQH ∴是等腰直角三角形,22AH HQ AQ t ∴===, 则AQH 的面积为21124AH HQ t ⋅=; (2)如图1,四边形PQHM 是平行四边形,//HQ MP ∴,点M 在BC 边上,//HQ BP ∴,点Q 为AP 的中点,HQ∴是ABP△的中位线,122AH BH AB∴===,由(1)知,22AH t=,则222t=,解得22t=;(3)由题意,有以下三种情况:①如图2,当点H是AB的中点时,则AH HB=,四边形PQHM是平行四边形,//HM PQ∴,HAQ BHM∴∠=∠,在AHQ和HBM△中,90HAQ BHMAH HBAHQ HBM∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,()AHQ HBM ASA∴≅,由(2)可知,此时22t=;②如图3,当点Q 与点E 重合时,在ADE 和AHE 中,9045D AHE DAE HAE AE AE ∠=∠=︒⎧⎪∠=∠=︒⎨⎪=⎩,()ADE AHE AAS ∴≅,3AD AH ∴==, 则232t =, 解得32t =;③如图4,当EG HB =时,四边形ABCD 是矩形,四边形PQHM 是平行四边形,//,//CD AB HM PQ ∴,,90GEQ HAQ BHF EGQ AHQ B ∴∠=∠=∠∠=∠=︒=∠,在EGQ 和HBF 中,GEQ BHF EG HB EGQ B ∠=∠⎧⎪=⎨⎪∠=∠⎩,()EGQ HBF ASA ∴≅,2,4AH AB ==, 242HB AB AH ∴=-=-, 在Rt ADE △中,45,3DAE AD ∠=︒=,Rt ADE ∴是等腰直角三角形,232AE ==32EQ AQ AE t ∴=-=-,在Rt GEQ 中,45GEQ HAQ ∠=∠=︒,Rt GEQ ∴是等腰直角三角形,22622t EG EQ -==, 则由EG HB =得:2624t t -=-, 解得722t =;综上,如图2,当AHQ HBM ≅时,22t =;如图3,当ADE AHE ≅时,32t =4,当EGQ HBF ≅时,722t =【点睛】 本题考查了矩形的性质、三角形中位线定理、三角形全等的判定定理与性质、等腰直角三角形的判定与性质等知识点,较难的是题(3),依据题意,正确分三种情况讨论并画出图形是解题关键.7.(1)30°;(2)不变;45°;(3)见解析【分析】(1)利用图形的旋转与正方形的性质得到△BEC 是等边三角形,从而求得α=∠DCE =30°.(2)因为△CED 是等腰三角形,再利用三角形的内角和即可求∠BEF =18045CED CEB ︒-∠-∠=︒.(3)过A 点与C 点添加平行线与垂线,作得四边形AGFH 是平行四边形,求得△ABG ≌△ADH .从而求得矩形AGFH 是正方形,根据正方形的性质证得△AHD ≌△DIC ,从而得出结论.【详解】(1)证明:在正方形ABCD 中, BC =CD .由旋转知,CE =CD ,又∵BE =CE ,∴BE =CE =BC ,∴△BEC 是等边三角形,∴∠BCE =60°.又∵∠BCD =90°,∴α=∠DCE =30°.(2)∠BEF 的度数不发生变化.在△CED 中,CE =CD ,∴∠CED =∠CDE =1809022︒-αα︒-, 在△CEB 中,CE =CB ,∠BCE =90α︒-,∴∠CEB =∠CBE =1804522BCE α︒-∠=︒+, ∴∠BEF =18045CED CEB ︒-∠-∠=︒.(3)过点A 作AG ∥DF 与BF 的延长线交于点G ,过点A 作AH ∥GF 与DF 交于点H ,过点C 作CI ⊥DF 于点I易知四边形AGFH 是平行四边形,又∵BF ⊥DF ,∴平行四边形AGFH 是矩形.∵∠BAD =∠BGF =90°,∠BPF =∠APD ,∴∠ABG =∠ADH .又∵∠AGB =∠AHD =90°,AB =AD ,∴△ABG ≌△ADH .∴AG =AH ,∴矩形AGFH 是正方形.∴∠AFH =∠FAH =45°,∴AH =AF∵∠DAH +∠ADH =∠CDI +∠ADH =90°∴∠DAH =∠CDI又∵∠AHD =∠DIC =90°,AD =DC ,∴△AHD ≌△DIC∴AH =DI ,∵DE =2DI ,∴DE =2AH AF【点晴】本题考查正方形的性质和判定、图形的旋转、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.(1)见解析;(2)120;(3)90;(4)72;(5)360n. 【分析】(1)利用等边三角形的性质得到BC=AC ,∠ACB=∠ABC ,从而得到△ACN ≌△CBM. (2)利用全等三角形的性质得到∠CAN=∠BCM ,再利用三角形的外角等于与它不相邻的两个内角的和,即可求解.(3)利用正方形(或正五边形)的性质得到BC=DC ,∠ABC=∠BCD ,从而判断出△DCN ≌△CBM ,再利用全等三角形的性质得到∠CDN=∠BCM ,再利用内角和定理即可得到答案.(4)由(3)的方法即可得到答案.(5)利用正三边形,正四边形,正五边形,分别求出∠CPN 的度数与边数的关系式,即可得到答案.【详解】(1)∵△ABC 是等边三角形,∴BC=AC ,∠ACB=∠BAC=∠ABC=60︒,∴∠ACN=∠CBM=120︒,在△CAN 和△CBM 中, CN BM ACN CBM AC BC =⎧⎪∠=∠⎨⎪=⎩,∴△ACN ≌△CBM.(2)∵△ACN ≌△CBM.∴∠CAN=∠BCM ,∵∠ABC=∠BMC+∠BCM ,∠BAN=∠BAC+∠CAN ,∴∠CPN=∠BMC+∠BAN=∠BMC+∠BAC+∠CAN=∠BMC+∠BAC+∠BCM=∠ABC+∠BAC=60︒+60︒,=120︒,故答案为:120.(3)将等边三角形换成正方形,∵四边形ABCD 是正方形,∴BC=DC ,∠ABC=∠BCD=90︒,∴∠MBC=∠DCN=90︒,在△DCN 和△CBM 中,DC BC DCN MBC CN BM =⎧⎪∠=∠⎨⎪=⎩,∴△DCN ≌△CBM ,∴∠CDN=∠BCM ,∵∠BCM=∠PCN ,∴∠CDN=∠PCN ,在Rt △DCN 中,∠CDN+∠CND=90︒,∴∠PCN+∠CND=90︒,∴∠CPN=90︒,故答案为:90.(4)将等边三角形换成正五边形,∴∠ABC=∠DCB=108︒,∴∠MBC=∠DCN=72︒,在△DCN 和△CBM 中,DC BC DCN MBC CN BM =⎧⎪∠=∠⎨⎪=⎩,∴△DCN ≌△CBM ,∴∠BMC=∠CND ,∠BCM=∠CDN ,∵∠BCM=∠PCN ,∴∠CND=∠PCN ,在△CDN 中,∠CDN+∠CND=∠BCD=108︒,∴∠CPN=180︒-(∠CND+∠PCN)=180︒-(∠CND+∠CDN)=180︒-108︒,=72︒,故答案为:72.(5)正三边形时,∠CPN=120︒=3603, 正四边形时,∠CPN=90︒=3604, 正五边形时,∠CPN=72︒=3605, 正n 边形时,∠CPN=360n , 故答案为:360n. 【点睛】 此题考查正多边形的性质,三角形全等的判定及性质,图形在发生变化但是解题的思路是不变的,依据此特点进行解题是解此题的关键.9.(1)OE OF =;(2)成立.理由见解析.【解析】【分析】(1)根据正方形的性质对角线垂直且平分,得到OB=OA ,又因为AM ⊥BE ,所以∠MEA+∠MAE=90°=∠AFO+∠MAE ,从而求证出Rt △BOE ≌Rt △AOF ,得到OE=OF. (2)根据第一步得到的结果以及正方形的性质得到OB=OA ,再根据已知条件求证出Rt △BOE ≌Rt △AOF ,得到OE=OF.【详解】解:(1)正方形ABCD 的对角线AC 、BD 相交于点O ,AM ⊥BE ,∴∠AOB=∠BOE=∠AMB=90°,∵∠AFO=∠BFM (对顶角相等),∴∠OAF=∠OBE (等角的余角相等),又OA=OB (正方形的对角线互相垂直平分且相等),∴△BOE ≌△AOF (ASA ),∴OE=OF.故答案为:OE=OF ;(2)成立.理由如下:证明:∵四边形ABCD 是正方形,∴90BOE AOF ∠=∠=︒,OB OA =又∵AM BE ⊥,∴90F MBF ∠+∠=︒,90E OBE ∠+∠=︒,又∵MBF OBE ∠=∠∴F E ∠=∠∴BOE AOF ∆≅∆,∴OE OF =【点睛】本题是四边形的综合题,考查了正方形的性质、三角形全等的性质和判定,并运用了类比的思想,两个问题都是证明BOE AOF∆≅∆解决问题.10.(1)254秒或252秒;(2)15秒【分析】(1)Q点必须在BC上时,A,Q ,F ,P 为顶点的四边形才能是平行四边形,分Q点在BF和Q点在CF上时分类讨论,利用平行四边形对边相等的性质即可求解;(2)分Q点在AB、BC、CD之间时逐个讨论即可求解.【详解】解:(1)∵以A、Q、F、P为顶点的四边形是平行四边形,且AP在AD上,∴Q点必须在BC上才能满足以A、Q、F、P为顶点的四边形是平行四边形∵四边形ABCD是平行四边形,∴AD=BC=30,AB=CD=10,∵点F是BC的中点,∴BF=CF=12BC=15,AB+BF=25,情况一:当Q点在BF上时,AP=FQ,且AP=t,FQ=35-3t,故t=25-3t,解得254t=;情况二:当Q点在CF上时,AP=FQ,且AP=t,FQ=3t-35,故t=3t-25,解得t=25 2;故经过254或252秒,以A、Q、B、P为顶点的四边形是平行四边形;(2)情况一:当Q点在AB上时,0<t<103,此时P点还未运动到AD的中点位置,故四边形AQFP面积小于平行四边形ABCD面积的一半,情况二:当Q点在BC上且位于BF之间时,1025 33t,此时AP+FQ=t+35-3t=35-2t,∵102533t,∴35-2t <30,四边形AQFP面积小于平行四边形ABCD面积的一半,情况三:当Q点在BC上且位于FC之间时,2540 33t此时AP+FQ=t+3t-35=4t-35∵254033t,∴4t-35<30,四边形AQFP面积小于平行四边形ABCD面积的一半,情况四:当Q点在CD上时,4050 33t<<当AP=BF=15时,t=15,1122 APF ABFP PFQ DCFP S S S S且∴1+2APF PFQ AFPQ ABCDS S S S,∴当t=15秒时,以A、Q、F、P为顶点的四边形面积是平行四边形ABCD面积的一半,故答案为:15秒.【点睛】本题考查了平行四边形的判定和性质,根据动点的位置不同需要分多种情况分类讨论,熟练掌握平行四边形的性质是解决本题的关键.。
平行四边形测试题

平行四边形测试题一、 细心填一填。
1.在平行四边形ABCD 中,若 40=∠-∠B A ,则=∠C ,若 100=∠+∠D B ,则=∠A ;2. 已知平行四边形ABCD 的周长为36cm,5:4:=BC AB ,则AB =,CD =;3. 已知平行四边形ABCD 的面积为16,对角线AC ,BD 相交于点O ,则COD ∆的面积为,若M 为CD 边上任意一点,则MAB ∆的面积为;4. 已知平行四边形ABCD 的周长为28,对角线AC ,BD 相交于一点O ,且AOB ∆的周长比BOC ∆的周长大4,则AB =,BC =;5. 在平行四边形ABCD 中,B ∠的平分线将CD 分成4cm 和2cm 两部分, 则平行四边形ABCD 的周长为;6.如图1, 平行四边形ABCD 中, 60=∠C ,AB DE ⊥于E ,BC DF ⊥于F ,则=∠EDF ;7.如图2:CD AB //,BC AD //,5=AD ,8=BE ,DCF ∆的面积为6,则四边形ABCD 的面积为;8.如图3, 平行四边形ABCD 中,AB BC 2=,点M 为AD 的中点,则=∠BMC ;9.如图4, 平行四边形ABCD 中,BD AE ⊥于E ,且7:3:=DE BE ,20=BD ,10=AB ,则AB ,CD 的距离为;10、在平面直角坐标系中,四边形AOBC 是菱形。
若点A 的坐标是(3 , 4),则菱形的周长为,点C 的坐标是二、精心选一选。
1.平行四边形不一定具有的特征是( )A 两组对边分别平行B 两组对角分别相等C 对角线相D 内角和为 3602.用两个能够完全重合的非等腰三角形拼成四边形则拼成平行四边形的最多个数有 ( )A 1个 B 2个 C 3个 D 4个3.平行四边形相邻两内角的平分线相交所成的角是 ( )A 锐角B 直角C 钝角D 无法确定4. 平行四边形ABCD 中,AD BC CD AB :::可以是 ( )A 5:4:3:2B 3:3:2:2C 3:2:3:2D 2:3:3:25.平行四边形ABCD 的一边为10cm,则两条对角线的长可以是 ()A 12和8 B 26和4 C 24和4 D 24和126. 如图, 平行四边形ABCD 中,P 是形内任意一点,ABP ∆,BCP ∆,CDP ∆,ADP ∆的面积分别为4321,,,S S S S ,则一定成立的是( )A 4321S S S S +>+ B 4321S S S S +=+C 4321S S S S +<+D 4231S S S S +=+7.平行四边形的两条对角线长分别为8和10,则其中每一边长x 的取值范围是 ( )A 182<<xB 91<<xC 100<<xD 80<<x8.如图,四边形ACED 为平行四边形,DF 垂直平分BE 甲乙两虫同时从A 点开图1 图2 图3 图4始爬行到点F,甲虫沿着F-A--的路线爬行,乙ED虫沿着F-的路线爬行,若它们的爬行速度-BCA-相同,则( )A 甲虫先到B 乙虫先到C 两虫同时到D 无法确定9.已知△ABC的周长为1,连结△ABC的三边中点构成第二个三角形,•再连结第二个三角形的三边中点构成第三个三角形,依此类推,第2010个三角形的周长是() A、 B、 C、 D、三、认真答一答。
平行四边形测试题及答案

平行四边形测试题及答案一、选择题1. 平行四边形的定义是什么?A. 两组对边分别平行的四边形B. 两组对边分别相等的四边形C. 对角线互相平分的四边形D. 四边形的对角线互相垂直答案:A2. 平行四边形的对角线具有什么性质?A. 互相垂直B. 互相平分C. 相等D. 互相平行答案:B3. 下列哪个图形不是平行四边形?A. 矩形B. 菱形C. 梯形D. 正方形答案:C4. 平行四边形的对边具有什么性质?A. 相等B. 平行C. 垂直D. 互相垂直答案:B5. 平行四边形的对角线将平行四边形分成几个全等的三角形?A. 1B. 2C. 4D. 8答案:B二、填空题6. 平行四边形的对角线互相________。
答案:平分7. 平行四边形的对边互相________。
答案:平行8. 如果一个四边形的对角线互相平分且相等,那么这个四边形一定是________。
答案:矩形9. 平行四边形的面积可以通过底和高的乘积来计算,公式为________。
答案:面积 = 底× 高10. 菱形是特殊的平行四边形,它的四条边都________。
答案:相等三、简答题11. 请描述平行四边形的判定定理。
答案:一个四边形是平行四边形,如果满足以下任一条件:(1)两组对边分别平行;(2)两组对边分别相等;(3)对角线互相平分;(4)一组对边平行且相等。
12. 在平行四边形中,如果一组对边是垂直的,那么这个平行四边形是什么形状?答案:如果一组对边垂直,那么这个平行四边形是矩形。
四、计算题13. 已知平行四边形的底为10cm,高为5cm,求其面积。
答案:面积= 10cm × 5cm = 50平方厘米14. 已知平行四边形的对角线长度分别为8cm和6cm,且对角线互相平分,求平行四边形的面积。
答案:设平行四边形的面积为S,对角线交点为O,那么OA=4cm,OB=3cm,根据三角形面积公式,S = 2 × (1/2) × OA × OB = 2 × (1/2) × 4cm × 3cm = 12平方厘米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行四边形测试题
姓名:___
1. 用黑白两种颜色的正六边形地面砖按如图1
2.10,。
所示的规律拼成若干个图形⑴ 第4个图形中有白色地面砖 块;⑵ 第n 个图形中有白色地面砖 块.
2. 黑板上画有一个图形,学生甲说它是多边形,学生乙说它是平行四边形,学生丙说它是菱形,学生丁说它是矩形,老师说这四名同学的答案都正确,则黑板上画的图形是______.
3. 四边形ABCD 为菱形,∠A=60°, 对角线BD 长度为10cm , 则此菱形的周长 cm .
4. 已知正方形的一条对角线长为8cm ,则其面积是____cm 2.
5. 平行四边形ABCD 中, AB=6cm ,AC+BD=14cm ,则△AOC 的周长为_____.
6. 平行四边形ABCD 的周长是18,三角形ABC 的周长是14,则对角线AC 的长是 。
7. 平行四边形ABCD 中,若∠A 的补角与∠B 互余,则∠D 的度数是 。
8. 等腰梯形ABCD 中,AD ∥BC ,∠A=120°,两底分别是15cm 和49cm ,则等腰梯形的腰长为______.
9. 用一块面积为450cm 2的等腰梯形彩纸做风筝,为了牢固起见,用竹条做梯形的对角线,对角线恰好互相垂直,那么至少需要竹条 cm .
10. 矩形的两条对角线的一个交角为60 o ,两条对角线的和为8cm ,则这个矩形的一条较短边为 cm 。
11. 如图正方形ABCD 的边BC 的延长线上取点 E ,使CE=AC ,AE 与CD 交于点F ,则∠AFC= 。
12. 梯形的上底长为2,下底长为5,一腰为4,则另一腰m 的范围是 。
13. 梯形ABCD 中,AD ∥BC ,对角线AC=8cm,BD=6cm ,且AC ⊥BD ,则梯形的面积为 。
14. 等腰梯形两底的差等于底边上高的2倍,则这个梯形较小的底角为 度。
15. 给出五种图形:①矩形; ②菱形; ③等腰三角形(腰与底边不相等); ④等边三角形; ⑤平行四边形(不含矩形、菱形).其中,能用完全重合的含有300角的两块三角板拼成的图形是( )
A .②③
B .②③④
C .①③④⑤
D .①②③④⑤ 16. 四边形ABCD 中,∠A ︰∠B ︰∠C ︰∠D=2︰2︰1︰3,则这个四边形是( )
A .梯形
B .等腰梯形
C .直角梯形
D .任意四边形 17. 要从一张长40cm ,宽20cm 的矩形纸片中剪出长为18cm ,
宽为12cm 的矩形纸片则最多能剪出( ) A .1张 B .2张 C .3张 D .4张
18. 如图12.12,在平行四边形ABCD 中,CE 是∠DCB 的平分线,F 是AB 的中点,AB =6,BC =4,则AE ︰EF ︰FB 为( )
A .1︰2︰3
B .2︰1︰3
C .3︰2︰1
D .3︰1︰2 19. 下列说法中错误的个数是( )
①两条对角线互相平分的四边形是平行四边形 ②两条对角线相等的四边形是矩形
③两条对角线互相垂直的矩形是正方形 ④两条对角线相等的菱形是正方形
⑤任何一个具有对称中心的四边形一定是正方形或矩形 ⑥角既是轴对称图形又是中心对称图形
⑦线段、圆、矩形、菱形、正方形都是中心对称图形
⑧正三角形、矩形、菱形、正方形是轴对称图形,且对称轴都有四条
A 。
1个
B 。
2个
C 。
3个
D 。
4个
20. 点A 、B 、C 、D 在同一平面内,从①AB//CD ;②AB =CD ;③BC//AD ;④BC =AD 四个条件中任意选两个,能使四边形ABCD 是平行四边形的选法有( )
A .①②
B .②③
C . ①③
D . ③④
A D C
B F E
图12.12
·
21. 已知ABCD 是平行四边形,下列结论中不一定正确的是( )
A .AB=CD
B .当A
C ⊥B
D 时,它是菱形
C .AC=B
D D .当∠ABC=90°时,它是矩形
22. 已知,在等腰△ABC 中,AB=AC ,分别延长BA ,CA 到D ,E 点,使DA=AB ,EA=CA ,则四边形BCDE 是( ) A .任意四边形 B.矩形 C.菱形 D.正方形
23. 平行四边形一条对角线与一边垂直且此对角线为另一边的一半,则此平行四边形两邻角之比为 ( )
A.1:2
B.1:3
C.1:4
D.1:5
24. 平行四边形ABCD 的对角线AC 、BD 相交于点O ,下列条件中,不能判定它为菱形的是( )
A 、AB=AD
B 、A
C ⊥B
D C 、∠A=∠D D 、CA 平分∠BCD 25. 正方形具有而菱形不一定具有的性质是( ) A 、四条边都相等 B 、对角线相等
C 、对角线互相垂直平分
D 、每条对角线平分一组对角 26. 能识别四边形ABCD 是等腰梯形的条件是( )
A 、AD ∥BC ,AB=CD
B 、∠A :∠B :∠
C :∠D=3:2:3:2 C 、A
D ∥BC ,AD ≠BC ,AB=CD D 、∠A+∠B=180o ,AD=BC 27. 如图12-44,在▱ABCD 中,AD=2DC,M,N 分别在AB 两边的延长线上,且MA=AB=BN,则MC 与DN 的关系是( ). A.相等 B.垂直 C.垂直相等 D.不能确定 28. 若菱形的周长为9.6厘米,两个邻角的比是1:2,则较短对角线的长是 ( ) A.2.1 B.2.2 C.9.6 D.2.4
29. 如图12-48,在▱ABCD 中,AB=8,AD=6,
∠DAB=30°,点E,F 在AC 上,且AE=EF=FC,
则
△BEF 的面积为
( ) A.8 B.4 C.6 D.12
30. 如图12.13,已知四边形ABCD 是等腰梯形, CD//BA,四边形AEBC 是平行四边形.请说明:∠ABD =∠ABE .
图12.64
31. 如图12.15,AD 是△ABC 的角平分线,DE ∥AC 交AB 于点E ,DF ∥AB 交AC 于F .试确定AD 与EF 的位置关系,并说明理由.
32. 如图12-63,在梯形ABCD 中,DC ∥AB,DC+CB=AB,∠A=51°,求证:∠CBA=78°.
33. 如图12.64,以△ABC 的边AB 、AC 为边的等边三角ABD 和等边三角形ACE ,四边形ADFE 是平行四边形(6分) (1) 当∠BAC 满足什么条件时,四边形ADFE 是矩形? (2) 当∠BAC 满足什么条件时,平行四边形ADFE 不存在? (3) 当△ABC 分别满足什么条件时,平行四边形ADFE 是菱形,正方形?
D A
E B
C
图12.13 A
E
B D
C F
1 图12.15
2
O。