中考数学复习 线段和角的计算 专项训练题 含答案

合集下载

中考数学专题复习《线段、角、相交线与平行线》专项检测题(含答案)

中考数学专题复习《线段、角、相交线与平行线》专项检测题(含答案)

线段、角、相交线与平行线专项检测题一、选择题(下列每题所给的四个选项中只有一个正确答案)1.下列图形中,∠1与∠2是对顶角的是()2.下列图形中,∠2>∠1的是()3.如图,直线a∥b,∠A=38°,∠1=46°.则∠ACB的度数是()A. 84°B. 106°C. 96°D. 104°4.如图,已知AB∥CD,∠C=70°,∠F=30°,则∠A的度数为()A. 30°B. 35°C. 40°D. 45°5.如图,AB∥CD,CB平分∠ABD,若∠C=40°,则∠D的度数为()A. 90°B. 100°C. 110°D. 120°6.如图所示,已知AB∥CD,直线EF交AB于点E,交CD于点F,且EG平分∠FEB,∠1=50°,则∠2等于()A. 50°B. 60°C. 70°D. 80°7.如图,已知直线AB∥CD,直线EF与AB、CD相交于N、M两点,MG平分∠EMD,若∠BNE=30°,则∠EMG 等于()A. 15°B. 30°C. 75°D. 150°8.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()A. 52°B. 38°C. 42°D. 60°9.把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为()A. 125°B. 120° C . 140° D. 130°10.下列命题是真命题的是()A. 任何数的0次幂都等于1B. 顺次连接菱形四边中点的线段组成的四边形是正方形C. 图形的旋转和平移会改变图形的形状和大小D. 角平分线上的点到角两边的距离相等11.下列命题正确的是()A. 矩形的对角线互相垂直B. 两边和一角对应相等的两个三角形全等C. 分式方程x-22x-1+1=1.51-2x可化为一元一次方程x-2+(2x-1)=-1.5D. 多项式t2-16+3t因式分解为(t+4)(t-4)+3t12.下列命题中,正确的是()A. 函数y=x-3的自变量x的取值范围是x>3B. 菱形是中心对称图形,但不是轴对称图形C. 一组对边平行,另一组对边相等的四边形是平行四边形D. 三角形的外心到三角形的三个顶点的距离相等13在平面直角坐标系中,任意两点A(x1,y1),B(x2,y2),规定运算:①A⊕B=(x1+x2,y1+y2);②A⊕B=x1x2+y1y2;③当x1=x2且y1=y2时,A=B.有下列四个命题:(1)若A(1,2),B(2,-1),则A⊕B=(3,1),A⊗B=0;(2)若A⊕B=B⊕C,则A=C;(3)若A⊗B=B⊗C,则A=C;(4)对任意点A、B、C,均有(A⊕B)⊕C=A⊕(B⊕C)成立.其中正确命题的个数为()A. 1个B. 2个C. 3个D. 4个二、填空题14.若∠α的补角为76°28′,则∠α=________.15.如图,直线m∥n,△ABC为等腰直角三角形,∠BAC=90°,则∠1=________度.16.如图,AB∥CD,AD与BC交于点E,若∠B=35°,∠D=45°,则∠AEC=________.17如图,若∠1=40°,∠2=40°,∠3=116°30′,则∠4=________.18如图,直线a、b被第三条直线c所截,如果a∥b,∠1=70°,那么∠3的度数是________.19.如图,l∥m,等边△ABC的顶点A在直线m上,则∠α=________.20.如图,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF 于点F,∠AGF=130°,则∠F=________.21.下列命题:①对角线相等的四边形是矩形;②正多边形都是轴对称图形;③通过对足球迷健康状况的调查可以了解我国公民的健康状况;④球的主视图、左视图、俯视图都是圆;⑤如果一个角的两边与另一个角的两边分别平行,那么这两个角相等,其中是真命题的有________(只需填写序号).22.下列命题:①对角线互相垂直的四边形是菱形;②点G是△ABC的重心,若中线AD=6,则AG=3;③若直线y=kx+b经过第一、二、四象限,则k<0,b>0;④定义新运算:a※b=2a-b2,若(2x)※(x-3)=0,则x=1或9;⑤抛物线y=-2x2+4x+3的顶点坐标是(1,1).其中是真命题的有________.(只填序号)参考答案1. C【解析】A.∠1、∠2没有公共顶点,不是对顶角,故A选项错误;B.∠1、∠2两边不互为反向延长线,不是对顶角,故B选项错误;C.∠1、∠2有公共顶点,两边互为反向延长线,是对顶角,故C选项正确;D.∠1、∠2两边不互为反向延长线,不是对顶角,故D选项错误.2. C【解析】根据对顶角相等,平行四边形的性质和平行线的性质,可以知道A、B、D中∠1=∠2,而在C中,三角形的一个外角大于和它不相邻的一个内角,可得∠2>∠1,故选C.3. C【解析】∵a∥b, ∴∠ABC=∠1=46°,又∵∠A=38°,∴∠ACB=180°-∠A-∠ABC=180°-38°-46°=96°.4. C【解析】∵AB∥CD,∴∠FEB=∠C=70°.∵∠FEB是△AFE的一个外角,∴∠FEB=∠A+∠F,∴∠A=∠FEB-∠F=70°-30°=40°.5. B【解析】∵AB∥CD,∴∠C=∠ABC=40°,∵CB平分∠ABD,∴∠CBD=∠ABC=40°,∴∠D=180°-∠C-∠CBD=180°-40°-40°=100°.6. D【解析】∵EG平分∠BEF,∴∠BEF=2∠1,∵∠1=50°,∴∠BEF=100°,∵AB∥CD,∴∠BEF+∠2=180°,∴∠2=180°-∠BEF=180°-100°=80°.【一题多解】∵AB∥CD,∴∠1=∠EGF,∵EG平分∠FEB,∴∠1=∠FEG,∴∠FEG=∠EGF,∴由三角形内角和为180°得,∠2=180°-2∠EGF=180°-2×50°=80°.7. A【解析】∵AB∥CD,∴∠ENB=∠EMD=30°,又∵MG平分∠EMD,∴∠EMG=∠DMG=12∠EMD=15°.8. A【解析】如解图,∵直尺的两边互相平行,∴∠3=∠2=38°,∵∠1+∠3+∠4=180°,∠4=90°,∴∠1=180°-∠4-∠3=180°-90°-38°=52°.9. D【解析】如解图,在Rt△ABC中,∠A=90°,∵∠1=40°,∴∠3=90°-∠1=50°,∴∠4=180°-∠3=130°.∵EF∥MN,∴∠2=∠4=130°.选项逐项分析正误A任何非零数的0次幂都等于1×B 顺次连接菱形四边中点的线段组成的四边形是矩形×C图形的旋转和平移不会改变图形的形状和大小×D 根据角平分线的性质可知:角平分线上一点到角两边的距离相等√选项逐项分析正误A矩形的对角线相等,不一定垂直×B 已知两边及其夹角对应相等,两个三角形才能全等×C 方程两边同乘以2x-1,得x-2+(2x-1)=-1.5√D 没有把多项式化成整式的积的形式,不是因式分解×12. D【解析】选项逐项分析正误A函数y=x-3的自变量x的取值范围是x≥3×B 菱形是中心对称图形,也是轴对称图形,两条对角线所在直线就是对称轴×C 一组对边平行,另一组对边相等的四边形可能是平行四边形,也可能是等腰梯形×D三角形的外心是三边中垂线的交点,所以到三角形的三个顶点的距离相等√13. C【解析】设C(x3,y3)序号逐项分析正误(1)若A(1,2),B(2,-1),则A⊕B=(1+2,2+(-1))=(3,1),A⊗B=1×2+2×(-1)=0√(2) A⊕B=(x1+x2,y1+y2),B⊕C=(x2+x3,y2+y3),若A⊕B=B⊕C,则,∴x1=x3,y1=y3,∴A=C√(3) A⊗B=x1x2+y1y2,B⊗C=x2x3+y2y3,若A⊗B=B⊗C,则x1x2+y1y2=x2x3+y2y3,并不能确定x1=x3,y1=y3,∴A不一定等于C×(4) (A ⊕B)⊕C =(x 1+x 2,y 1+y 2)⊕C =(x 1+x 2+x 3,y 1+y 2+y 3),A ⊕(B ⊕C)=A ⊕(x 2+x 3,y 2+y 3)=(x 1+x 2+x 3,y 1+y 2+y 3),∴(A ⊕B)⊕C =A ⊕(B ⊕C)√综上,正确命题有(1)(2)(4)共3个.14. 103°32′ 【解析】求一个角的补角,只需用180°减去它即可,但须注意进制,180°-76°28′=179°60′-76°28′=103°32′15. 45 【解析】∵△ABC 为等腰直角三角形,∠BAC =90°,∴∠ABC =45°.又∵m ∥n ,∴∠1=∠ABC =45°.16. 80° 【解析】∵AB ∥CD ,∴∠B =∠C =35°,∵∠AEC =∠C +∠D ,∴∠AEC =35°+45°=80°.【一题多解】∵AB ∥CD ,∴∠C =∠B =35°,又∵∠D =45°,∴∠CED =180°-∠C -∠D =100°.∴∠AEC =180°-∠CED =80°.17. 63°30′ 【解析】∵∠1=40°,∠2=40°,∴a ∥b, ∴∠4=180°-∠3=180°-116°30′=63°30′.18. 70° 【解析】因为a ∥b ,所以根据平行线的性质有∠1=∠2,又因为∠2和∠3为对顶角,所以∠2=∠3=70°.19. 20° 【解析】如解图,延长CB ,交直线m 于点D ,则∠CDA =40°,因为△ABC 为等边三角形,所以∠CBA =60°.根据三角形内外角的关系,得∠α=∠CBA -∠CDA =60°-40°=20°20. 9.5° 【解析】∵AB ∥CD ,∴∠BED =∠CDE =119°,∵EF 平分∠BED ,∴∠BEF =12∠BED =12×119°=59.5°,∵∠AGF =130°,∴∠EGF =180°-∠AGF =180°-130°=50°,∵∠BEF 是△EFG的外角,∴∠F=∠BEF-∠EGF=59.5°-50°=9.5°.序号逐项分析正误①对角线相等且互相平分的四边形是矩形×②正多边形都是轴对称图形√③足球迷比其他人更热爱运动,所以抽样调查的样本不具代表性×④从任意角度看球得到的平面图形都是圆√⑤如解图所示,∠1与∠2的两边分别平行,但不相等×序号逐项分析正误①对角线互相垂直平分的四边形是菱形,故①错×②重心到顶点的距离与重心到对边中点的距离之比为2∶1,画草图如解图,即AG∶GD=2∶1,若×。

线与角测试题

线与角测试题

线与角测试题一、选择题1. 下列哪个选项不是线段的基本性质?A. 线段有两个端点B. 线段的长度可以无限延长C. 线段是直线的一部分D. 线段可以度量2. 直线AB和直线CD相交于点O,如果∠AOC = 30°,那么∠BOC的度数是多少?A. 30°B. 60°C. 120°D. 150°3. 在一个直角三角形中,如果一个锐角是30°,那么另一个锐角的度数是多少?A. 30°B. 45°C. 60°D. 90°4. 以下哪个选项描述的是一条射线?A. 直线B. 线段C. 从一点出发,无限延伸的线D. 两点之间的连线5. 如果一个角是直角的两倍,那么这个角的度数是多少?A. 120°B. 180°C. 240°D. 360°二、填空题6. 直线是无限延伸的,它没有______。

7. 如果两条直线相交,形成的角中有一个是锐角,那么其余的角都是______。

8. 平行线之间的距离是______的。

9. 一个角的度数为90°,这个角被称为______。

10. 在一个三角形中,如果两个角的度数分别是50°和60°,那么第三个角的度数是______。

三、简答题11. 解释什么是垂线,并给出垂线的基本性质。

12. 描述什么是对顶角,并解释为什么对顶角相等。

13. 如果一个三角形的内角和为180°,解释为什么这个性质适用于所有三角形。

四、计算题14. 在一个直角三角形中,已知一个角是30°,另一个角是60°,求斜边与较短直角边的比例。

15. 如果一个角的补角是120°,求这个角的度数。

五、应用题16. 在一个平面上,有两条平行线l1和l2,它们之间的距离是5cm。

如果从点A到l1的距离是3cm,求点A到l2的距离。

2019-2020年中考数学专题复习《线段、角》提高测试

2019-2020年中考数学专题复习《线段、角》提高测试

2019-2020年中考数学专题复习《线段、角》提高测试(一)判断题(每小题1分,共6分):1.经过一点可以画无数条直线,经过两点可以画一条直线,经过三点可以画三条直线………………………………………………………………………………………()【提示】错的是第三句话,因为三点可在一条直线上,也可不在一条直线上,当三点在一条直线上时(我们称之三点共线),经过这三点只可以画一条直线.【答案】×.2.两条直线如果有两个公共点,那么它们就有无数个公共点…………………()【提示】两点确定唯一的直线.【答案】√.3.射线AP与射线PA的公共部分是线段PA……………………………………()【提示】线段是射线的一部分.【答案】如图:显然这句话是正确的.4.线段的中点到这条线段两端点的距离相等……………………………………()【提示】两点的距离是连结两点的线段的长度.【答案】√.5.有公共端点的两条射线叫做角…………………………………………………()【提示】角是有公共端点的两条射线组成的图形......【答案】×.【答案】×.【点评】互补两角的和是180°,平角为180°.就量数来说,两者是相同的,但从“形”上说,互补两角不一定有公共顶点,故不一定组成平角.所以学习概念时,一定要注意区别它们的不同点,以免混淆.二.填空题(每小题2分,共16分):7.如图,图中有________条直线,有________条射线,有________条线段,以E为顶点的角有________个.【提示】直线没有端点,可向两方无限延伸.射线有一个端点,可向一方无限延伸,线段有两个端点,不延伸.直线上一点将一条直线分成两条射线.直线上两点和它们之间的部分是线段.【答案】1,9,12,4.12条线段分别是:线段AF、AD、FD、DC、DB、CB、BE、BF、EF、CE、CA、EA.8.如图,点C、D在线段AB上.AC=6 cm,CD=4 cm,AB=12 cm,则图中所有线段的和是________cm.【提示】1.数出图中所有的线段;2.算出不同线段的长度;3.将所有线段的长度相加,得和.【答案】40.9.线段AB=12.6 cm,点C在BA的延长线上,AC=3.6 cm,M是BC中点,则AM的长是________cm.【提示】画出符合题意的图形,以形助思.【答案】4.5.∵BC=AB+AC,M是BC中点,∴AM=CM-AC=BC-AC=(AB+AC)-AC=(AB-AC)=(12.6-3.6)=4.5(cm).【点评】在进行线段长度计算时,可是对其表达式进行变形、最后将值代入,求出结果.这样可简化计算,提高正确率.10.如图,∠AOB=∠COD=90°,∠AOD=146°,则∠BOC=________°.【提示】∠BOC=360°-∠AOB-∠AOD-∠DOC.【答案】34.11.如图,OB平分∠AOC.且∠2∶∠3∶∠4=3∶5∶4,则∠2=________°,∠3=________°,∠4=________°.【提示】1周角=360°.设1份为x°,列方程求解.【答案】72;120;96.12.∠A与∠B互补,∠A与∠C互余,则2∠B-2∠C=________°.【提示】∠A+∠B=180°.∠A+∠C=90°.代入要求的式子,化简即得.【答案】180°.∵∠A+∠B=180°,∠A+∠C=90°,∴∠B=180°-∠A.∴2∠B-2∠C=2(180°-∠A)-2∠C=360°-2∠A-2∠C=360°-2(∠A+∠C)=360°-2×90°=180°.【点评】由已知可得关于∠A、∠B、∠C的方程组,此时不能确定∠B、∠C的大小,但只要将两式的两边分别相减,使得∠B-∠C=90°,2∠B-2∠C便不难求得.这种整体代入的思想是求值题中常用的方法.13.已知:∠的余角是52°38′15″,则∠的补角是________.【提示】分步求解:先求出∠的度数,再求∠的补角的度数.【答案】142°38′15″.∵∠的余角是52°38′15″,∴∠=90°-52°38′15″=89°59′60″-52°38′15″=37°21′45″.∴∠的补角=180°-37°21′45″=179°59′60″-37°21′45″=142°38′15″.【点评】题中∠只起过渡作用,可考虑到而不求,作整体代入.∵∠=90°-52°38′15″,∴∠的补角=180°-∠=180°-(90°-52°38′15″)=90°+52°38′15″=142°38′15″.这样避开了单位换算,利于提高运算速度及正确率.若将已知条件反映到如图所示的图形上,运用数形结合的思想观察图形,则一目了然.一般地,已知∠的余角,求∠的补角,则∠的补角=90°+∠的余角,即任一锐角的补角比它的余角大90°.利用这个结论解该题就更准确、快捷.14.由2点30分到2点55分,时钟的时针旋转了________度,分针旋转了________度,此刻时针与分针的夹角是________度.【提示】分针1小时旋转360°,1分旋转6°,时钟1小时旋转30°,1分旋转0.5°.【答案】12.5,150,117.5.(三)选择题(每小题3分,共24分)15.已知线段AB=10 cm,AC+BC=12 cm,则点C的位置是在:①线段AB上;②线段AB的延长线上;③线段BA的延长线上;④直线AB外.其中可能出现的情况有………………………………………………………………………………()(A)0种(B)1种(C)2种(D)3种【提示】用数形结合的方式考虑.【答案】D.若点C在线段AB上,如下图,则AC+BC=AB=10 cm.与AC+BC=12 cm 不合,故排除①.若点C在线段AB的延长线上,如下图,AC=11 cm,BC=1 cm,则AC+BC =11+1=12(cm),符合题意.若点C在线段BA的延长线上,如下图,AC=1 cm,BC=11 cm,则AC+BC =1+11=12(cm),符合题意.若点C在直线AB外,如下图,则AC+BC=12(cm),符合题意.综上所述:可能出现的情况有3种,故选D.16.分别在线段MN的延长线和MN的反向延长线上取点P、Q,使MP=2NP.MQ =2MN.则线段MP与NQ的比是…………………………………………()(A)(B)(C)(D)【提示】根据条件画出符合题意的图形,以形助思.【答案】B.根据题意可得下图:解法一:∵MP=2NP,∴N是MP的中点.∴MP=2MN.∵MQ=2MN,∴NQ=MQ+MN=2MN+MN=3MN.∴MP∶NQ=2MN∶3MN=2∶3=.解法二:设MN=x.∵MP=2NP,∴N是MP的中点.∴MP=2MN=2x.∵MQ=2MN=2x,∴NQ=MQ+MN=2MN+MN=3MN=3x.∴MP∶NQ=2MN∶3MN=2 x∶3 x=.故选B.17.一条直线可以将平面分成两部分,两条直线最多可以将平面分成四部分,三条直线最多可以将平面分成n部分,则n等于………………………………………()(A)6 (B)7 (C)8 (D)9【提示】画图探索.一条线两条直线三条直线【答案】B.【点评】平面内一条直线将平面分成两部分,记作a1=1+1=2;平面内两条直线将平面最多分成四部分,记作a2=1+1+2=4;平面内三条直线将平面最多分成七部分,记作a3=1+1+2+3=7;平面内四条直线将平面最多分成几部分?由图可知,共可分成11个部分,记作a4=1+1+2+3+4=11.若平面上有n条直线,最多可将平面分成多少部分,此时n条直线的相对位置如何?从前面的分析不难推出平面上有n条直线时,最多可将平面分成a n=1+1+2+3+4+…+n=1+=个部分,此时每两条直线都相交,且没有三条直线交于一点.18.若互补两角有一条公共边,则这两个角的平分线所组成的角………………()(A)一定是直角(B)一定是锐角(C)一定是钝角(D)是直角或锐角【提示】分两种情况:①互补两角有公共顶点,有一条公共边没有重叠部分;②互补两角有公共顶点有一条公共边有重叠部分.【答案】D.如图:19.已知、都是钝角,甲、乙、丙、丁四人计算的结果依次是30°、35°、60°、75°,其中恰有正确结果.这个正确结果是…………………()(A)30°(B)35°(C)60°(D)75°【提示】列不等式求解.【答案】C.∵、都是钝角,∴180°<<360°.∴36°<<72°.∵30°、35°、75°都不在此等圆内,仅60°属此等圆.∴选C.20.如图,∠AOB=∠BOC=∠COD=∠DOE=30°.图中互补的角有……()(A)10对(B)4对(C)3对(D)4对【提示】两个角的和为180°,这两个角叫互为补角.补角的概念仅与角的大小有关而与角的位置无关.【答案】B.原因如下:∵∠AOB=∠BOC=∠COD=∠DOE=30°∴∠AOE+∠AOC=120°+60°=180°,∠AOE+∠BOD=120°+60°=180°,∠AOE+∠COE=120°+60°=180°,∠AOD+∠BOE=90°+90°=180°.∴∠AOE与∠AOC、∠AOE与∠BOD、∠AOE与∠COE、∠AOD与∠BOE 是4对互补的角.21.∠1、∠2互为补角,且∠1>∠2,则∠2的余角是…………………………()(A)(B)∠1 (C)(D)∠2【提示】将已知条件反映到图形上,运用数形结合的方法观察图形,便知结果,或根据互补、互余的定义进行推理.【答案】C.由图可知:∠2的余角=∠1-90°=∠1-=∠1-∠1-∠2=.或:∵∠1、∠2互为补角,∴∠1+∠2=180°.∴∠2的余角=90°-∠2=-∠2=∠1+∠2-∠2=.故选C.22.设时钟的时针与分针所成角是,则正确的说法是………………………()(A)九点一刻时,∠是平角(B)十点五分时,∠是锐角(C)十一点十分时,∠是钝角(D)十二点一刻时,∠是直角【提示】时钟的时针1小时转30°,1分转0.5°;分针1小时转360°,1分转6°,还可画图,以形助思.【答案】B.(四)计算题(每小题3分,共9分)23.118°12′-37°37′×2.【提示】先算乘,再求差.【答案】42°58′.计算过程如下:118°12′-37°37′×2=118°12′-75°14′=117°72′-75°14′=42°58′.24.132°26′42″-41.325°×3.【提示】将132°26′42″化成以“度”为单位的量再计算;或将41.325°×3的积化成“度”、“分”、“秒”后再算.【答案】解法一132°26′42″-41.325°×3=132.445°-123.975°=8.47°.解法二132°26′42″-41.325°×3=132°26′42″-123.975°=132°26′42″-123°58′30″=131°86′42″-123°58′30″=8°28′12″.【点评】在“度”、“分”、“秒”的混合运算中,若将“分”、“秒”化成度,则可将“度”“分”“秒”的计算转化成小数运算,免去繁杂的“进位”或“退位”.提高运算速度和正确率.25.360°÷7(精确到分).【提示】按四舍五入取近似值,满30″或超过30″即可进为1″.【答案】约为51°26′.计算过程如下:360°÷7=51°+3°÷7=51°+25′+5′÷7=51°+25′+300″÷7≈51°+25′+43″≈51°26′.(五)画图题(第26小题4分,第27小题5分,第28小题6分,共15分)26.已知:线段a、b、c(b>c),画线段AB,使AB=2a-(b-c).【提示】AB=2a-(b-c)=2a+c-b.【答案】方法一:量得a=20 mm,b=28 mm,c=18 mm.AB=2a-(b-c)=2×20-(28-18)=40-5=35(mm).画线段AB=35 mm(下图),则线段AB就是所要画的线段.方法二:画法如下(如上图):(1)画射线AM.(2)在射线AM上依次截取AC=CD=a,DE=c.(3)在线段EA上截取EB=b.则线段AB就是所要画的线段.27.已知∠,∠,∠,画∠AOB,使∠AOB=2∠+∠-∠.【提示】方法一:先量、后算、再画;方法二:叠加法,逐步画出.【答案】方法一:量得∠=25°,∠=54°,∠=105°,∠AOB=2∠+∠-∠=2×25°+54°-×105°=50°+54°-35°=69°.画∠AOB=69°,则∠AOB就是所要画的角.方法二:画法:(1)画∠AOC=∠,(2)以O为顶点,OC为一边在∠AOC的外部画∠COD=∠.(3)以O为顶点,OD为一边在∠AOD的外部画∠DOE=∠.(4)以O为顶点,OE为一边在∠EOA的内部画∠EOB=∠.则∠AOB就是所要画的角.28.读句画图,填空:(1)画线段AB=40 mm;(2)以A为顶点,AB为一边,画∠BAM=60°;(3)以B为顶点,BA为一边,在∠BAM的同侧画∠ABN=30°,AM与BN相交于点C;(4)取AB的中点G,连结CG;(5)用量角器量得∠ACB=______度;(6)量得CG的长是_____mm,AC的长是_____mm,图中相等的线段有________.【提示】按语句的顺序,抓住概念用语(如线段、角等)和位置术语(如以……为顶点,在……同侧等)依次画图.【答案】90,20,20.AC=CG=AG=BG.(六)解答题(每小题5分,共30分)29.如图,线段AB被点C、D分成了3︰4︰5三部分,且AC的中点M和DB的中点N之间的距离是40 cm,求AB的长.【提示】引入未知数,列方程求解.【答案】60 cm.设一份为x cm,则AC=3 x cm,CD=4 x cm,DB=5 x cm.∵M是AC的中点,∴CM=AC=x cm.∵N是DB的中点,∴DN=DB=x cm.∵MN=MC+CD+DN,又MN=40 cm,∴x+4 x+x=40,8x=40.∴x=5.∴AB=AC+CD+DB=12 x=12×5=60(cm).30.一个角的补角与20°角的和的一半等于这个角的余角的3倍,求这个角.【提示】两角互余和为90°,两角互补和为180°.设这个角为x°,列方程求解.【答案】68°.设这个角为x°,根据题意得(180°-x+20°)=3(90°-x),100°-x=270°-3 x,x=170°,∴x=68°,即这个角为68°.31.如图,直线AB、CD相交于点O,OB平分∠EOD,∠COE=100°,求∠AOD 和∠AOC的度数.【提示】由∠COE=100°,OB平分∠EOD,可求出∠BOD的度数,进而求出∠AOD 和∠AOC的度数.【答案】∠AOD=140°,∠AOC=40°.计算过程如下:∵∠COD=180°,∠COE=100°(已知),∴∠EOD=∠COD-∠COE=180°-100°=80°.∵OB平分∠EOD(已知),∴∠BOD=∠EOD=×80°=40°(角平分线定义).∵∠AOB=180°(平角定义),∴∠AOD=∠AOB-∠BOD=180°-40°=140°,∠AOC=∠COD-AOD=180°-140°=40°.【点评】由计算可知,∠BOC=∠COE+∠EOB=100°+40°=140°.∴∠AOD=∠BOC,又知∠AOC=∠BOD,这是一种偶然的巧合,还是必然的结果?在第二章“相交线、平行线”中可揭开这个谜.32.如图,∠AOC、∠BOD都是直角,且∠AOB与∠AOD的度数比是2︰11,求∠AOB和∠BOC的度数.【提示】设∠AOB=x°,∠BOC=y°,列方程组求解.【答案】∠AOB=20°,∠BOC=70°.计算过程如下:∵∠AOC、∠BOD都是直角(已知),∴∠AOB+∠BOC=90°,∠COD+∠BOC=90°(直角的定义).∴∠AOB=∠COD(同角的余角相等).设∠AOB=∠COD=x°,∠BOC=y°.由题意得即解得即∠AOB=20°,∠BOC=70°.33.考察队从营地P处出发,沿北偏东60°前进了5千米到达A地,再沿东南方向前进到达C地,C地恰好在P地的正东方向.(1)按1︰100 000画出考察队行进路线图.(2)量出∠PAC、∠ACP的度数(精确到1°).(3)测算出考察队从A到C走了多少千米?此时他们离开营地多远?(精确到0.1千米).【提示】比例尺=图上距离︰实际距离,先根据1︰100 000的比例尺算出PA的图上距离,然后再画图.【答案】(1)考察队行进的路线图如右图所示.(2)量得∠PAC=105°,∠ACP=45°.(3)算得AC≈3.5千米;PC≈6.8千米.略解如下:(1)算出PA的图上距离,由5千米=500 000厘米.∴=.∴PA=5厘米.(3)量得AC≈3.5厘米,PC=6.8厘米.∴AC的实际距离约为:3.5厘米×100 000=350 000厘米=3.5千米;PC的实际距离约为:6.8厘米×100 000=680 000厘米=6.8千米.34.已知直角∠AOB,以O为顶点,在∠AOB的内部画出100条射线,则以OA、OB 及这些射线为边的锐角共有多少个?若以O为项点,在∠AOB的内部画出几条射线(n ≥1的自然数),则OA、OB以及这些射线为边的锐角共有多少个?【提示】在∠AOB的内部,以O为顶点,画1,2,3,4条射线,数数各有多少个锐角,找出规律,再计算100条射线、n条射线所构成的锐角的个数.【答案】5 150个锐角;个锐角.1条射线1+1=2(个锐角),2条射线2+2+1=5(个锐角),3条射线3+3+2+1=9(个锐角),4条射线4+4+3+2+1=14(个锐角),……100条射线100+100+99+98+…+3+2+1=100+=100+5 050=5 150(个锐角),n条射线n+n+(n-1)+(n-2)+…+3+2+1=n+=(个锐角).【点评】数锐角的个数与数线段的条数一样,以OA为始边,另一条射线为角的终边依次去数,这样可不遗漏不重复地将要数的锐角个数数准确.注意∠AOB是直角,故这个角不在计数的范围内.若题目改成:已知∠AOB,以O为顶点,在∠AOB的内部画出n条射线,n为非零自然数,以OA、OB以及这些射线为边的角共有多少个?答案是:共有个角..。

2019年中考数学真题分类汇编:三角形的边与角(含解析)

2019年中考数学真题分类汇编:三角形的边与角(含解析)

中考数学复习三角形的边与角中考真题专项练习一.选择题(共16小题)1.(2019•徐州)下列长度的三条线段,能组成三角形的是( )A.2,2,4B.5,6,12C.5,7,2D.6,8,10【分析】根据三角形两边之和大于第三边可以判断各个选项中的三天线段是否能组成三角形,本题得以解决.【解答】解:∵2+2=4,∴2,2,4不能组成三角形,故选项A错误,∵5+6<12,∴5,6,12不能组成三角形,故选项B错误,∵5+2=7,∴5,7,2不能组成三角形,故选项C错误,∵6+8>10,∴6,8,10能组成三角形,故选项D正确,故选:D.2.(2019•淮安)下列长度的3根小木棒不能搭成三角形的是( )A.2cm,3cm,4cm B.1cm,2cm,3cmC.3cm,4cm,5cm D.4cm,5cm,6cm【分析】看哪个选项中两条较小的边的和大于最大的边即可.【解答】解:A、2+3>4,能构成三角形,不合题意;B、1+2=3,不能构成三角形,符合题意;C、4+3>5,能构成三角形,不合题意;D、4+5>6,能构成三角形,不合题意.故选:B.3.(2019•毕节市)在下列长度的三条线段中,不能组成三角形的是( )A.2cm,3cm,4cm B.3cm,6cm,6cmC.2cm,2cm,6cm D.5cm,6cm,7cm【分析】根据三角形任意两边的和大于第三边,进行分析判断.【解答】解:A、2+3>4,能组成三角形;B、3+6>6,能组成三角形;C、2+2<6,不能组成三角形;D、5+6>7,能够组成三角形.故选:C.4.(2019•扬州)已知n是正整数,若一个三角形的3边长分别是n+2、n+8、3n,则满足条件的n的值有( )A.4个B.5个C.6个D.7个【分析】分两种情况讨论::①若n+2<n+8≤3n,②若n+2<3n≤n+8,分别依据三角形三边关系进行求解即可.【解答】解:①若n+2<n+8≤3n,则,解得,即4≤n<10,∴正整数n有6个:4,5,6,7,8,9;②若n+2<3n≤n+8,则,解得,即2<n≤4,∴正整数n有2个:3和4;综上所述,满足条件的n的值有7个,故选:D.5.(2019•台州)下列长度的三条线段,能组成三角形的是( )A.3,4,8B.5,6,10C.5,5,11D.5,6,11【分析】根据三角形的三边关系即可求【解答】解:A选项,3+4=7<8,两边之和小于第三边,故不能组成三角形B选项,5+6=11>10,10﹣5<6,两边之各大于第三边,两边之差小于第三边,故能组成三角形C选项,5+5=10<11,两边之和小于第三边,故不能组成三角形D选项,5+6=11,两边之和不大于第三边,故不能组成三角形故选:B.6.(2019•自贡)已知三角形的两边长分别为1和4,第三边长为整数,则该三角形的周长为( )A.7B.8C.9D.10【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围;再根据第三边是整数,从而求得周长.【解答】解:设第三边为x,根据三角形的三边关系,得:4﹣1<x<4+1,即3<x<5,∵x为整数,∴x的值为4.三角形的周长为1+4+4=9.故选:C.7.(2019•金华)若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是( )A.1B.2C.3D.8【分析】根据三角形三边关系定理得出5﹣3<a<5+3,求出即可.【解答】解:由三角形三边关系定理得:5﹣3<a<5+3,即2<a<8,即符合的只有3,故选:C.8.(2019•大庆)如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是( )A.15°B.30°C.45°D.60°【分析】根据角平分线的定义得到∠EBM=∠ABC、∠ECM=∠ACM,根据三角形的外角性质计算即可.【解答】解:∵BE是∠ABC的平分线,∴∠EBM=∠ABC,∵CE是外角∠ACM的平分线,∴∠ECM=∠ACM,则∠BEC=∠ECM﹣∠EBM=×(∠ACM﹣∠ABC)=∠A=30°,故选:B.9.(2019•百色)三角形的内角和等于( )A.90°B.180°C.270°D.360°【分析】根据三角形的内角和定理进行解答便可.【解答】解:因为三角形的内角和等于180度,故选:B.10.(2019•赤峰)如图,点D在BC的延长线上,DE⊥AB于点E,交AC于点F.若∠A =35°,∠D=15°,则∠ACB的度数为( )A.65°B.70°C.75°D.85°【分析】根据三角形外角与内角的关系及三角形内角和定理解答.【解答】解:∵DE⊥AB,∠A=35°∴∠AFE=∠CFD=55°,∴∠ACB=∠D+∠CFD=15°+55°=70°.故选:B.11.(2019•广西)将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为( )A.60°B.65°C.75°D.85°【分析】利用三角形外角性质(三角形的一个外角等于不相邻的两个内角和)解题或利用三角形内角和解题皆可.【解答】解:如图:∵∠BCA=60°,∠DCE=45°,∴∠2=180°﹣60°﹣45°=75°,∵HF∥BC,∴∠1=∠2=75°,故选:C.12.(2019•眉山)如图,在△ABC中,AD平分∠BAC交BC于点D,∠B=30°,∠ADC=70°,则∠C的度数是( )A.50°B.60°C.70°D.80°【分析】由∠B=30°,∠ADC=70°,利用外角的性质求出∠BAD,再利用AD平分∠BAC,求出∠BAC,再利用三角形的内角和,即可求出∠C的度数.【解答】解:∵∠B=30°,∠ADC=70°∴∠BAD=∠ADC﹣∠B=70°﹣30°=40°∵AD平分∠BAC∴∠BAC=2∠BAD=80°∴∠C=180°﹣∠B﹣∠BAC=180°﹣30°﹣80°=70°故选:C.13.(2019•绍兴)如图,墙上钉着三根木条a,b,C,量得∠1=70°,∠2=100°,那么木条a,b所在直线所夹的锐角是( )A.5°B.10°C.30°D.70°【分析】根据对顶角相等求出∠3,根据三角形内角和定理计算,得到答案.【解答】解:∠3=∠2=100°,∴木条a,b所在直线所夹的锐角=180°﹣100°﹣70°=10°,故选:B.14.(2019•杭州)在△ABC中,若一个内角等于另外两个内角的差,则( )A.必有一个内角等于30°B.必有一个内角等于45°C.必有一个内角等于60°D.必有一个内角等于90°【分析】根据三角形内角和定理得出∠A+∠B+∠C=180°,把∠C=∠A+∠B代入求出∠C即可.【解答】解:∵∠A+∠B+∠C=180°,∠A=∠C﹣∠B,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故选:D.15.(2019•青岛)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为( )A.35°B.40°C.45°D.50°【分析】根据角平分线的定义和垂直的定义得到∠ABD=∠EBD=∠ABC=,∠AFB=∠EFB=90°,推出AB=BE,根据等腰三角形的性质得到AF=EF,求得AD=ED,得到∠DAF=∠DEF,根据三角形的外角的性质即可得到结论.【解答】解:∵BD是△ABC的角平分线,AE⊥BD,∴∠ABD=∠EBD=∠ABC=,∠AFB=∠EFB=90°,∴∠BAF=∠BEF=90°﹣17.5°,∴AB=BE,∴AF=EF,∴AD=ED,∴∠DAF=∠DEF,∵∠BAC=180°﹣∠ABC﹣∠C=95°,∴∠BED=∠BAD=95°,∴∠CDE=95°﹣50°=45°,故选:C.16.(2019•枣庄)将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是( )A.45°B.60°C.75°D.85°【分析】先根据三角形的内角和得出∠CGF=∠DGB=45°,再利用∠α=∠D+∠DGB 可得答案.【解答】解:如图,∵∠ACD=90°、∠F=45°,∴∠CGF=∠DGB=45°,则∠α=∠D+∠DGB=30°+45°=75°,故选:C.二.填空题(共2小题)17.(2019•南京)在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是 4<BC≤ .【分析】作△ABC的外接圆,求出当∠BAC=90°时,BC是直径最长=;当∠BAC =∠ABC时,△ABC是等边三角形,BC=AC=AB=4,而∠BAC>∠ABC,即可得出答案.【解答】解:作△ABC的外接圆,如图所示:∵∠BAC>∠ABC,AB=4,当∠BAC=90°时,BC是直径最长,∵∠C=60°,∴∠ABC=30°,∴BC=2AC,AB=AC=4,∴AC=,∴BC=;当∠BAC=∠ABC时,△ABC是等边三角形,BC=AC=AB=4,∵∠BAC>∠ABC,∴BC长的取值范围是4<BC≤;故答案为:4<BC≤.18.(2019•哈尔滨)在△ABC中,∠A=50°,∠B=30°,点D在AB边上,连接CD,若△ACD为直角三角形,则∠BCD的度数为 60°或10 度.【分析】当△ACD为直角三角形时,存在两种情况:∠ADC=90°或∠ACD=90°,根据三角形的内角和定理可得结论.【解答】解:分两种情况:①如图1,当∠ADC=90°时,∵∠B=30°,∴∠BCD=90°﹣30°=60°;②如图2,当∠ACD=90°时,∵∠A=50°,∠B=30°,∴∠ACB=180°﹣30°﹣50°=100°,∴∠BCD=100°﹣90°=10°,综上,则∠BCD的度数为60°或10°;故答案为:60°或10;。

中考数学复习线段和角的计算专项训练题含答案

中考数学复习线段和角的计算专项训练题含答案

中考数学复习线段和角的计算专项训练题1.已知线段AB=10 cm,在直线AB上有一点C,且BC=2 cm,则线段AC 的长为( )A.12 cm B.8 cm C.12 cm或8 cm D.不能确定2. 如图,C,D是线段AB上两点,若CB=4 cm,DB=7 cm,且点D是AC的中点,则AC的长等于( )A.3 cm B.6 cm C.11 cm D.14 cm3. 如图所示,C,D为线段AB上的两点,则下列各式中错误的是( )A.AB=AD+DB B.CB=AB-AC C.CB-DB=CD D.CB-DB=AC4. 如图,AB=12 cm,C为AB上的一点,D是AC的中点,E是BC 的中点,则DE的长是()A.3 cm B.6 cm C.7.5 cm D.9 cm5. 一个角是70°18′,则这个角等于( )A.70.18° B.70.3° C.70.018° D.70.03°6. 如图,∠1+∠2等于( )A.60° B.90° C.110° D.180°7. 如图,如果在阳光下你的身影的方向为北偏东60°方向,那么太阳相对A.南偏西60° B.南偏西30° C.北偏东60° D.北偏东30°8. 已知线段AB=8 cm,在直线AB上画线段BC,使它等于3 cm,则线段AC =______________________.9. 如图,长度为12 cm的线段AB的中点为M,C为线段MB上一点,且MC∶CB =1∶2,则线段AC的长度为 cm.10. (1)27.38°=____°____′____″;(2)26°30′36″=_______°.11. 如图,已知∠EOA=90°,射线OD在北偏东35°的方向,反向延长射线OD于点C,∠DOE的度数为____,∠AOC的度数为______.12. 如图,已知线段AD=6 cm,线段AC=BD=4 cm,E,F分别是线段AB,CD的中点,求线段EF的长.13. 已知线段AB=8 cm,延长AB到C,使BC=7 cm,D是AB的中点,E是AC的中点,求线段DE的长.14. 已知线段AB=10 cm,直线AB上有一点C,且BC=4 cm,M是线段AC 的中点,求AM的长.15. 如图,C是线段AB的一个三等分点,点D在线段CB上,CD∶DB=17∶2,且CD-AC=3,求线段AB的长.16. 如图,O为直线AB上一点,∠COE=90°,OF平分∠AOE,∠COF=30°,求∠BOE的度数.17. 如图,BD平分∠ABC,BE分∠ABC为2∶5两部分,∠DBE=21°,求∠ABC的度数.18. 如图,已知∠AOB=40°,以O为顶点,OB为边作∠BOC=10°,若OD平分∠AOC,求∠AOD的度数.参考答案: 1---7 CBDBB BA 8. 11cm 或5cm 9. 810. (1) 27 22 48 (2) 26.5111. 35° 55°12. 解:AB =AD -BD =6-4=2 cm ,因为E 是AB 的中点,所以AE =12AB =1cm ;CD =AD -AC =6-4=2 cm ,因为F 是CD 的中点,所以DF =12CD =1 cm ;所以EF =AD -AE -DF =6-1-1=4 cm13. 解:因为AB =8 cm ,BC =7 cm ,所以AC =AB +BC =15 cm.又D ,E 分别为AB ,AC 的中点,所以AD =12AB =4 cm ,AE =12AC =7.5 cm ,所以DE =AE-AD =3.5 cm14. 解:(1)当C 点在线段AB 的外部时,如图①,AC =AB +BC =10+4=14 cm ,因为M 是线段AC 的中点,所以AM =12AC =7 cm ;(2)当C 点在线段AB的内部时,如图②,AC =AB -BC =10-4=6 cm ,因为M 是线段AC 的中点,所以AM =12AC =3 cm15. 解:设CD =17x ,则BD =2x ,CB =19x ,因为C 是AB 的一个三等分点.所以AC =12BC =192x ,由CD -AC =3得:17x -192x =3,解得x =0.4,所以AC=192×0.4=3.8,AB =3AC =11.4 16. 解:∠EOF =∠COE -∠COF =60°,因为OF 平分∠AOE ,所以∠AOE =2∠EOF =120°,所以∠BOE =∠AOB -∠AOE =60°17. 解:设∠ABE =2x ,则∠CBE =5x ,∠ABC =7x.因为BD 平分∠ABC ,所以∠ABD =12∠ABC =72x.所以∠DBE =∠ABD -∠ABE =72x -2x =21°,所以x=14°,所以∠ABC =7x =98°18. 解:(1)当射线OC 在∠AOB 的外部时,∠AOC =∠AOB +∠BOC =50°,因为OD 平分∠AOC ,所以∠AOD =12∠AOC =25° (2)当射线OC 在∠AOB 的内部时,∠AOC =∠AOB -∠BOC =30°,因为OD 平分∠AOC ,所以∠AOD =12∠AOC =15°。

中考数学三角形的边与角真题归类(附答案)

中考数学三角形的边与角真题归类(附答案)

中考数学三角形的边与角真题归类(附答案)以下是查字典数学网为您推荐的中考数学三角形的边与角真题归类(附答案),希望本篇文章对您学习有所帮助。

中考数学三角形的边与角真题归类(附答案)一.选择题1. (2019荆门)已知:直线l1∥l2,一块含30角的直角三角板如图所示放置,1=25,则2等于()A. 30B. 35C. 40D. 45解析:∵3是△ADG的外角,A+1=30+25=55,∵l1∥l2,4=55,∵EFC=90,EFC=90﹣55=35,2=35.故选B.2.(2019中考)如图,在△ABC中,C=70,沿图中虚线截去C,则2=【 B 】A.360B.250C.180D.1403.(2019连云港)如图,将三角尺的直角顶点放在直线a上,a∥b,1=50,2=60,则3的度数为()A. 50B. 60C. 70D. 80考点:平行线的性质;三角形内角和定理。

分析:先根据三角形内角和定理求出4的度数,由对顶角的性质可得出5的度数,再由平行线的性质得出结论即可. 解答:解:∵△BCD中,1=50,2=60,4=1801-2=180-50-60=70,4.(2019深圳)如图所示,一个60o角的三角形纸片,剪去这个600角后,得到一个四边形,则么的度数为【】A. 120OB. 180O.C. 240OD. 3000【答案】C。

【考点】三角形内角和定理,平角定义。

【分析】如图,根据三角形内角和定理,得4+600=1800,又根据平角定义,3=1800,4=1800,1800-1+1800-2+600=1800。

2=240O。

故选C。

5.(2019聊城)将一副三角板按如图所示摆放,图中的度数是()A.75B.90C.105D.120考点:三角形的外角性质;三角形内角和定理。

专题:探究型。

分析:先根据直角三角形的性质得出BAE及E的度数,再由三角形内角和定理及对顶角的性质即可得出结论.解答:解:∵图中是一副直角三角板,BAE=45,E=30,6.(2019毕节)如图,△ABC的三个顶点分别在直线a、b上,且a∥b,若1=120,2=80,则3的度数是( )A.40B.60C.80D.120解析:根据平行线性质求出ABC,根据三角形的外角性质得出1-ABC,代入即可得出答案.7.(2019十堰)如图,直线BD∥EF,AE与BD交于点C,若ABC=30,BAC=75,则CEF的大小为( D )A.60B.75C.90D.105【考点】平行线的性质;三角形内角和定理.【专题】探究型.【分析】先根据三角形外角的性质求出1的度数,再由平行线的性质即可得出结论.【解答】解:∵1是△ABC的外角,ABC=30,BAC=75,ABC+BAC=30+75=105,∵直线BD∥EF,CEF=1=105.故选D.【点评】本题考查的是平行线的性质及三角形外角的性质,熟知两直线平行,同位角相等是解答此题的关键.8.(2019梅州)如图,在折纸活动中,小明制作了一张△ABC 纸片,点D、E分别是边AB、AC上,将△ABC沿着DE折叠压平,A与A重合,若A=75,则2=()A.150B.210C.105D.75考点:三角形内角和定理;翻折变换(折叠问题)。

初二数学线段和角度练习题

初二数学线段和角度练习题1. 直线段练习题(1) 请画出一条长度为5cm的直线段。

(2) 请画出一条长度为8cm的直线段,并在直线段上任意选择一点P。

(3) 在直线段AB上,现在已知A点的坐标是(2, 3),B点的坐标是(7, 1),请问直线段AB的长度是多少?2. 角度练习题(1) 请画出一个直角,并标注其内角、外角和相邻补角。

(2) 请画出一个钝角,并标注其内角、外角和对角。

(3) 请画出一个锐角,并标注其内角、外角和对角。

(4) 角ABC是一个直角,角ABD是一个钝角,角BCD是一个锐角。

请问角A和角D的关系是什么?3. 线段和角度的计算练习题(1) 如果直线段AB的长度是3cm,直线段AC的长度是5cm,直线段AD的长度是7cm,请问直线段BC的长度是多少?(2) 在三角形ABC中,已知∠ABC是一个锐角,∠ACB的度数是30°,边AB的长度是4cm,请问边AC的长度是多少?(3) 在直角三角形ABC中,已知∠BAC是一个直角,边AB的长度是5cm,边AC的长度是12cm,请问边BC的长度是多少?4. 实际问题运用练习题(1) 一辆汽车以每小时60km的速度行驶,行驶5个小时后停下来。

请问汽车总共行驶了多少千米?(2) 一张长方形的长是10cm,宽是6cm,请问长方形的周长是多少厘米?(3) 在一个直角三角形中,一条直角边的长度是3cm,斜边的长度是5cm,请问另一条直角边的长度是多少厘米?通过以上练习题,我们可以巩固对于初二数学中线段和角度的基础知识。

通过练习画线段、计算线段长度,以及练习画角度、确定角度的类型和计算角度的相关问题,我们可以提高自己的数学能力,加深对于数学概念的理解。

祝你在数学学习中取得优异的成绩!。

中考数学复习 线段、角、相交线和平行线 专项复习检测 含答案和部分解析

中考数学复习 线段、角、相交线与平行线 专项复习检测1.如图,直线a ,b 被直线c 所截,那么∠1的同位角是( )A .∠2B .∠3C .∠4D .∠5 2. 如图,AB ∥CD ,∠A =70°,∠C =40°,则∠E 等于( )A .30°B .40°C .60°D .70° 3. 下列命题正确的是( )A .对角线相等的四边形是平行四边形B .对角线相等的四边形是矩形C .对角线互相垂直的平行四边形是菱形D .对角线互相垂直且相等的四边形是正方形4. 能说明命题“对于任何实数a ,|a|>-a ”是假命题的一个反例可以是( ) A .a =-2B .a =13 C .a =1D .a = 25. 下面各图中,∠1与∠2互为余角的是( )6. 下列图形中,∠1与∠2是对顶角的是( )A B C D7. 如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b 于点D.若∠1=50°,则∠2的度数是( )A.50° B.70° C.80° D.110°8. 如图,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC的大小为()A.160°B.70°C.60°D.20°9. 如图,∠B的同位角可以是( )A.∠1 B.∠2 C.∠3 D.∠410. 如图,将一张含有30°角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠2=44°,则∠1的度数为()A.14°B.16°C.90°-α D.α-44°11. 如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB 垂直.若AD=8,则点P到BC的距离是()A.8B.6 C.4D.212. 若线段AM,AN分别是△ABC的BC边上的高线和中线,则()A.AM>AN B.AM≥AN C.AM<AN D.AM≤AN13. 如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E 处.若∠AGE=32°,则∠GHC等于( )A.112° B.110° C.108° D.106°14. 某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是()A.甲B.甲与丁C.丙D.丙与丁15. 已知下列命题:①若a3>b3,则a2>b2;②若点A(x1,y1)和点B(x2,y2)在二次函数y=x2-2x-1的图象上,且满足x1<x2<1,则y1>y2>-2;③在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a∥c;④周长相等的所有等腰直角三角形全等.其中真命题的个数是( )A.4 B.3 C.2 D.116. 下列命题为真命题的是( )A.六边形的内角和为360° B.三角形的两边之和大于第三边C.矩形的对角线互相垂直 D.多边形的外角和与边数有关17. 如图,已知a∥b,直线c与直线a,b分别交于点A,B.若∠1=45°,则∠2= .18. 如图,已知l1∥l2,直线l与l1,l2相交于C,D两点,把一块含30°角的三角尺按如图位置摆放.若∠1=130°,则∠2= .19. 如图,在线段AC上取一点B,则AB+BC=AC;AB=AC-BC ;BC=AC-.20. 将一个含有45°角的三角尺摆放在矩形上,如图,若∠1=40°,则∠2= .21. 如图,∠AOB=40°,OP平分∠AOB,点C为射线OP上一点,作CD⊥OA于点D,在∠POB的内部作CE∥OB,则∠DCE=°.22. 用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a=,b=,c= .23. 以下四个命题:①若一个角的两边和另一个角的两边分别互相垂直,则这两个角互补;②边数相等的两个正多边形一定相似;③在等腰三角形ABC中, D是底边BC上的一点,E是一腰AC上的一点,若∠BAD =60°且AD=AE,则∠EDC=30°;④任意三角形的外接圆的圆心一定是三角形三条边的垂直平分线的交点.其中正确命题的序号为.24. 如图,已知EF∥AD,∠1=∠2,∠BAC=87°,求∠AGD的度数.答案与解析: 1. C 2. A 3. C 4. A5. C 解析:直接根据余角的定义:互余两角的和为90°判断即可.6. C7. C 解析:要求∠2的度数,可先求出它的补角或同位角,根据∠BAC 的平分线交直线b 于点D 和∠1=50°,可求出∠BAD,进而可求得∠CAB,从而可求得∠2. 8. A 9. D 10. A 11. C 12. D13. D 解析: 如图,∵∠AGE =32°,∴∠DGE =180°-∠AGE =148°.由折叠,得∠1=12∠DGE=74°.∵AD ∥BC ,∴∠GHC =180°-∠1=106°.故选D .14. B 解析: ∵甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,∴甲得分为7分,胜2场平1场,乙得分为5分,胜1场平2场,丙得分为3分,胜1场平0场,丁得分为1分,胜0场平1场.∵甲、乙都没有输球,∴甲一定与乙平.∵丙得3分,胜1场平0场,乙得5分,胜1场平2场,∴与乙打平的球队是甲与丁.故选B.15. C 解析:举反例a=-1,b=-2,满足a3>b3,但a2<b2;依据二次函数y =x2-2x-1图象的顶点坐标以及对称轴的位置,可得y1>y2>-2;依据a∥b,b⊥c,可得a⊥c;依据周长相等的所有等腰直角三角形的边长对应相等,即可得到它们全等.16. B17. 135°18. 20°19. AB20. 85°21. 13022. 1 2 0 (答案不唯一)23. ②③④.解析:①若一个角的两边和另一个角的两边分别互相垂直,则这两个角相等或互补,①错误;②边数相等的两个正多边形一定相似,②正确;③如图,∵∠AED=∠C+∠EDC=∠B+∠EDC,∴∠ADC=∠ADE+∠EDC=∠AED+∠EDC=∠B +2∠ED C.又∵∠ADC=∠B+∠BAD=∠B+60°,∴∠B+2∠EDC=∠B+60°,∴∠EDC=30°,故③正确;④任意三角形的外接圆的圆心一定是三角形三条边的垂直平分线的交点,④正确.故答案为②③④.24. 解:∵EF∥AD,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴AB∥DG,∴∠BAC+∠AGD=180°.∵∠BAC=87°,∴∠AGD=93°.。

初中数学线段和角的测试卷

初中数学线段和角的测试卷一、填空题。

1.线段是直的,有( )个端点;将线段向两个方向无限延长,就形成了( )线;从线段的一个端点向一个方向无限延长,就得到一条( )线。

2.从一点引出两条射线所组成的图形叫做( )。

这个点叫做它的( ),这两条射线叫做它的( )。

3.测量角的大小要用( ),直角的度数是( ),平角的度数是( ),周角的度数是( )。

4.把我们所认识的角的种类按度数从小到大排列。

( )角<( )角<( )角<( )角<( )角5.过一点可以画出( )条直线,过两点只能画出( )条直线;从一点出发可以画( )条射线。

6.1个周角=( )个平角=( )个直角;1个平角=( )个直角。

7.如果∠1和65°角正好组成一个直角,则∠1等于( );如果∠2和65°角正好组成一个平角,则∠2等于( )。

8.3时整时和( )时整时,时针和分针所成的角是直角;( )时整时,时针和分针所成的角是平角。

二、判断题。

(对的画“√”,错的画“✕”)1.直线总比射线长。

( )2.大于90°的角一定是钝角。

( )3.平角是一条直线。

( )4.任意两个锐角度数之和一定比钝角要大。

( )5.用放大镜去看90°的角,角的大小不会发生变化。

( )6.线段是直线上两点之间的部分。

( )7.过一点只能画出一条直线。

( )8.一条射线长6厘米。

( )9.过两点只能画一条直线。

( )10.两边越长,角的度数越大。

( )三、选择题。

(把正确答案的序号填在括号里)1.角的两条边是( )。

A.直线B.线段C.射线2.下面不能用三角板画出的角是( )的角。

A .15°B .70°C .105°3.丫丫画了一条长20厘米的( )。

A.直线B.射线C.线段四、分别画出90°、40°、125°的角。

五、下图中已知∠2=130°,求∠1、∠3、∠4的度数。

2021年中考数学专项复习 专题 三角形全等的相关证明及计算含答案

专题二三角形全等的相关证明及计算1.如图,线段AC、BD相交于点E,AE=DE,BE=CE.求证:∠B=∠C.第1题图2.已知,如图,AB=AE,AB∥DE,∠ECB=70°,∠D=110°,求证:△ABC≌△EA D.第2题图3.如图,在Rt△ACB和Rt△ADB中,∠C=∠D=90°,AD=BC,AD、BC相交于点O.求证:CO=DO.第3题图4.如图,AB=AD,AC=AE,∠BAE=∠DA C.求证:∠C=∠E.第4题图5.如图,点E,F在线段BD上,且BE=DF,AE=CF,AD=C B.求证:∠A=∠C.第5题图6.如图,D是AC上一点,AB=AD,DE∥AB,∠B=∠DAE.求证:BC=AE.第6题图7.如图,已知点E,C在线段BF上,BE=CF,AC∥DF,请添加一个条件(不得添加辅助线),使得△ABC ≌△DEF,并说明理由.第7题图8.如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交于点G、H,若AB=C D.求证:AG=DH.第8题图9.如图,菱形ABCD中,作BE⊥AD、CF⊥AB,分别交AD、AB的延长线于点E、F.(1)求证:AE=BF;(2)若点E恰好是AD的中点,AB=2,求BD的值.第9题图10.如图,在△ABC中,D是BC边上一点,AB=DB,BE平分∠ABC,交AC边于点E,连接DE.(1)求证:△ABE≌△DBE;(2)若∠A=100°,∠C=50°,求∠AEB的度数.第10题图参考答案专题二 三角形全等的相关证明及计算1. 证明:在△AEB 和△DEC 中,⎩⎪⎨⎪⎧AE =DE ,∠AEB =∠DEC ,BE =CE ,∴△AEB ≌△DEC (SAS).∴∠B =∠C .2. 证明:∵∠ECB =70°,∴∠ACB =110°.又∵∠D =110°,∴∠ACB =∠D .∵AB ∥DE ,∴∠CAB =∠E .在△ABC 和△EAD 中,⎩⎪⎨⎪⎧∠ACB =∠D ,∠CAB =∠E ,AB =EA ,∴△ABC ≌△EAD (AAS ).3. 证明:在Rt △ACB 和Rt △BDA 中,∠C =∠D =90°,⎩⎪⎨⎪⎧AB =BA ,AD =BC , ∴Rt △ACB ≌Rt △BDA (HL).∴∠CBA =∠DAB .∴OA =OB .又∵AD =BC ,∴CO =DO .4. 证明:∵∠BAE =∠DAC ,∴∠BAE +∠CAE =∠DAC +∠CAE .∴∠BAC =∠DAE .在△ABC 和△ADE 中,⎩⎪⎨⎪⎧AB =AD ,∠BAC =∠DAE ,AC =AE ,∴△ABC ≌△ADE (SAS).∴∠C =∠E .5. 证明:∵BE =DF ,∴BE -EF =DF -EF ,即BF =DE .在△ADE 和△CBF 中,⎩⎪⎨⎪⎧DE =BF ,AE =CF ,AD =CB ,∴△ADE ≌△CBF (SSS).∴∠A =∠C .6. 证明:∵DE ∥AB ,∴∠CAB =∠EDA .在△CBA 和△EAD 中,⎩⎪⎨⎪⎧∠B =∠DAE ,AB =AD ,∠CAB =∠EDA ,∴△CBA ≌△EAD (ASA).∴BC =AE .7. 解:添加AC =DF .(答案不唯一)理由:∵BE =CF ,∴BE +EC =CF +EC ,即BC =EF .∵AC ∥DF ,∴∠ACB =∠DFE .在△ABC 与△DEF 中,⎩⎪⎨⎪⎧AC =DF ,∠ACB =∠DFE ,BC =EF ,∴△ABC ≌△DEF (SAS).8. 证明:∵AB ∥CD , ∴∠A =∠D .又∵CE ∥BF , ∴∠AHB =∠DGC .在△ABH 和△DCG 中,⎩⎪⎨⎪⎧∠AHB =∠DGC ,∠A =∠D ,AB =CD ,∴△ABH ≌△DCG (AAS ).∴AH =DG .又∵AH =AG +GH , DG =DH +GH ,∴AG =DH .9. (1)证明:∵四边形ABCD 是菱形,∴AD ∥BC ,AB =BC .∴∠A =∠CBF .∵BE ⊥AD ,CF ⊥AB ,∴∠AEB =∠BFC =90°.在△ABE 和△BCF 中,⎩⎪⎨⎪⎧∠AEB =∠BFC ,∠A =∠CBF ,AB =BC ,∴△ABE ≌△BCF (AAS ).∴AE =BF ;(2)解:∵BE ⊥AD ,点E 恰好是AD 中点,∴BE 垂直平分AD .∴BD =AB =2.10. (1)证明:∵BE 平分∠ABC ,∴∠ABE =∠DBE .在△ABE 与△DBE 中,⎩⎪⎨⎪⎧AB =DB ,∠ABE =∠DBE ,BE =BE ,∴△ABE ≌△DBE (SAS);(2)解:∵∠A =100°,∠C =50°,∴∠ABC =30°.∴∠ABE =12∠ABC =15°. ∴∠AEB =180°-∠A -∠ABE =180°-100°-15°=65°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学复习线段和角的计算专项训练题
1.已知线段AB=10 cm,在直线AB上有一点C,且BC=2 cm,则线段AC的长为( )
A.12 cm B.8 cm C.12 cm或8 cm D.不能确定2. 如图,C,D是线段AB上两点,若CB=4 cm,DB=7 cm,且点D是AC的中点,则AC的长等于( )
A.3 cm B.6 cm C.11 cm D.14 cm
3. 如图所示,C,D为线段AB上的两点,则下列各式中错误的是( )
A.AB=AD+DB B.CB=AB-AC C.CB-DB=CD D.CB-DB=AC
4. 如图,AB=12 cm,C为AB上的一点,D是AC的中点,E是BC的中点,则DE的长是()
A.3 cm B.6 cm C.7.5 cm D.9 cm
5. 一个角是70°18′,则这个角等于( )
A.70.18° B.70.3° C.70.018° D.70.03°
6. 如图,∠1+∠2等于( )
A.60° B.90° C.110° D.180°
7. 如图,如果在阳光下你的身影的方向为北偏东60°方向,那么太阳相对于你的方向是( )
A.南偏西60° B.南偏西30° C.北偏东60° D.北偏东30°
8. 已知线段AB=8 cm,在直线AB上画线段BC,使它等于3 cm,则线段AC=______________________.
9. 如图,长度为12 cm的线段AB的中点为M,C为线段MB 上一点,且MC∶CB=1∶2,则线段AC的长度为cm.
10. (1)27.38°=____°____′____″;
(2)26°30′36″=_______°.
11. 如图,已知∠EOA=90°,射线OD在北偏东35°的方向,反向延长射线OD于点C,∠DOE的度数为____,∠AOC的度数为______.
12. 如图,已知线段AD=6 cm,线段AC=BD=4 cm,E,F分别是线段AB,CD的中点,求线段EF的长.
13. 已知线段AB=8 cm,延长AB到C,使BC=7 cm,D是AB 的中点,E是AC的中点,求线段DE的长.
14. 已知线段AB=10 cm,直线AB上有一点C,且BC=4 cm,M是线段AC的中点,求AM的长.
15. 如图,C是线段AB的一个三等分点,点D在线段CB 上,CD∶DB=17∶2,且CD-AC=3,求线段AB的长.
16. 如图,O为直线AB上一点,∠COE=90°,OF平分∠AOE,∠COF=30°,求∠BOE的度数.
17. 如图,BD平分∠ABC,BE分∠ABC为2∶5两部分,∠DBE=21°,求∠ABC的度数.
18. 如图,已知∠AOB=40°,以O为顶点,OB为边作∠BOC=10°,若OD平分∠AOC,求∠AOD的度数.
参考答案:
1---7 CBDBB BA
8. 11cm或5cm
9. 8
10. (1) 27 22 48 (2) 26.51
11. 35° 55°
12. 解:AB =AD -BD =6-4=2 cm ,因为E 是AB 的中点,所以AE =1
2AB =1 cm ;CD =AD -AC =6-4=2 cm ,因为F 是
CD 的中点,所以DF =1
2CD =1 cm ;所以EF =AD -AE -DF =6-
1-1=4 cm
13. 解:因为AB =8 cm ,BC =7 cm ,所以AC =AB +BC =15 cm.又D ,E 分别为AB ,AC 的中点,所以AD =1
2AB =4 cm ,AE
=1
2
AC =7.5 cm ,所以DE =AE -AD =3.5 cm 14. 解:(1)当C 点在线段AB 的外部时,如图①,AC =AB +BC =10+4=14 cm ,因为M 是线段AC 的中点,所以AM =1
2AC
=7 cm ;(2)当C 点在线段AB 的内部时,如图②,AC =AB -BC =10-4=6 cm ,因为M 是线段AC 的中点,所以AM =1
2AC =
3 cm
15. 解:设CD =17x ,则BD =2x ,CB =19x ,因为C 是AB 的一个三等分点.所以AC =12BC =19
2
x ,由CD -AC =3得:17x -
192x =3,解得x =0.4,所以AC =19
2×0.4=3.8,AB =3AC =11.4
16. 解:∠EOF =∠COE -∠COF =60°,因为OF 平分∠AOE ,所以∠AOE =2∠EOF =120°,所以∠BOE =∠AOB -∠AOE =60° 17. 解:设∠ABE =2x ,则∠CBE =5x ,∠ABC =7x.因为BD 平分∠ABC ,所以∠ABD =12∠ABC =7
2x.所以∠DBE =∠ABD -∠
ABE =7
2x -2x =21°,所以x =14°,所以∠ABC =7x =98°
18. 解:(1)当射线OC 在∠AOB 的外部时,∠AOC =∠AOB +∠BOC =50°,因为OD 平分∠AOC ,所以∠AOD =1
2∠AOC =25°
(2)当射线OC 在∠AOB 的内部时,∠AOC =∠AOB -∠BOC =30°,因为OD 平分∠AOC ,所以∠AOD =1
2∠AOC =15°。

相关文档
最新文档