时域离散信号的产生与基本运算
离散时间信号的时域分析实验报告

离散时间信号的时域分析实验报告实验报告:离散时间信号的时域分析一、实验目的本实验旨在通过MATLAB软件,对离散时间信号进行时域分析,包括信号的显示、基本运算(如加法、减法、乘法、反转等)、以及频域变换(如傅里叶变换)等,以加深对离散时间信号处理的基本概念和原理的理解。
二、实验原理离散时间信号是在时间轴上离散分布的信号,其数学表示为离散时间函数。
与连续时间信号不同,离散时间信号只能在特定的时间点取值。
离散时间信号的时域分析是研究信号的基本属性,包括幅度、时间、频率等。
通过时域分析,我们可以对信号进行各种基本运算和变换,以提取有用的信息。
三、实验步骤1.信号生成:首先,我们使用MATLAB生成两组简单的离散时间信号,一组为正弦波,另一组为方波。
我们将这些信号存储在数组中,以便后续分析和显示。
2.信号显示:利用MATLAB的绘图功能,将生成的信号在时域中显示出来。
这样,我们可以直观地观察信号的基本属性,包括幅度和时间关系。
3.基本运算:对生成的信号进行基本运算,包括加法、减法、乘法、反转等。
将这些运算的结果存储在新的数组中,并绘制出运算后的信号波形。
4.傅里叶变换:使用MATLAB的FFT(快速傅里叶变换)函数,将信号从时域变换到频域。
我们可以得到信号的频谱,进而分析信号的频率属性。
5.结果分析:对上述步骤得到的结果进行分析,包括比较基本运算前后的信号波形变化,以及傅里叶变换前后的频谱差异等。
四、实验结果1.信号显示:通过绘制图形,我们观察到正弦波和方波在时域中的波形特点。
正弦波呈现周期性的波形,方波则呈现明显的阶跃特性。
2.基本运算:通过对比基本运算前后的信号波形图,我们可以观察到信号经过加法、减法、乘法、反转等运算后,其波形发生相应的变化。
例如,两个信号相加后,其幅度和时间与原信号不同。
反转信号则使得波形在时间轴上反向。
3.傅里叶变换:通过FFT变换,我们将时域中的正弦波和方波转换到频域。
正弦波的频谱显示其频率为单一的直流分量,方波的频谱则显示其主要频率分量是直流分量和若干奇数倍的谐波分量。
离散时间信号的基本运算

信号绝对值的积分
总结词
信号绝对值的积分是指将离散时间信号中每个值的绝对值与其对应的权系数相乘,并求和得到的结果 。
详细描述
信号绝对值的积分在处理一些具有正负性质的问题时非常有用,例如计算信号的能量或幅度。对于离散时 间信号 $x(n)$,其绝对值的积分可以表示为 $sum_{n=0}^{N-1} |x(n)| cdot Delta t$。
符号相加主要用于处理具有正负符号 的信号,使得正负符号能够相互抵消, 从而得到一个新的符号较少的信号。
02
离散时间信号的乘法
离散时间信号的乘法 信号相乘
信号相乘
离散时间信号的乘法是指将两个信号对应时刻的数值相乘。当两个信号相乘时,其输出信号的幅度将等于两个输入信 号幅度相乘的结果。
信号的绝对值相乘
04
离散时间信号的微分
信号的微分
信号的微分是指将信号中的每个值都 减去前一个值,得到的结果就是微分 后的信号。在离散时间信号中,微分 运算可以用于分析信号的变化趋势。
例如,如果一个离散时间信号为 [1, 3, 5, 7, 9],其微分为 [0, 2, 2, 2, 2],表 示信号在每个时刻的变化量。
信号符号的积分
总结词
信号符号的积分是指将离散时间信号中 每个值的符号与其对应的权系数相乘, 并求和得到的结果。
VS
详细描述
信号符号的积分可以用于处理一些具有正 负性质的问题,例如计算信号的极性或方 向。对于离散时间信号 $x(n)$,其符号的 积分可以表示为 $sum_{n=0}^{N-1} text{sgn}(x(n)) cdot Delta t$,其中 $text{sgn}(x(n))$ 表示 $x(n)$ 的符号函数。
03
信号与系统-离散信号与系统

(1)
y (k + 3) − 2 2 y (k + 2) + y (k + 1) + 0 y (k ) = f (k ) 1 y (k + 2) − y (k + 1) + y (k ) = f (k ) 4
(2)
解:用转移算子法求。
1 (1) H ( E ) = 3 2 E − 2 2E + E 1 = E ( E − 2 − 1)( E − 2 + 1) 1 1 1 2( 2 + 1) 2( 2 − 1) = + − E E − 2 −1 E − 2 + 1
f ( n )= ∑ i=-∞ f(i) ∗ δ (k-i)=f(n) ∗ δ (n)
∞
四 离散信号的卷积和
l 定义
f1 (n) ∗ f2 (n)=∑i=-∞ f1 (i) ∗ f2 (k-i)=∑i=-∞ f2 (i) ∗ f1 (k-i)
∞ ∞
l 上下限范围
– 当f1(n), f2(n)均为因果序列
yh (n) =
l
l
∑
K
N i =1
A iα
n i
i −1 n yh (n) = ∑i =+1 An α1 + ∑i=k +1 Aiαin i N
l l l
将所求得的强迫解和自由解相加,即可得到全响应 将给定的全响应的初始值代入到方程中,已确定待定系数 将所求得的待定系数带入到全响应方程中
例:求下列差分方程所 描述的系统的单位响应 h(k)
1 故h(k) =δ (k −1) +[ ( 2 +1)k−1 − 2( 2 +1) 1 k−1 ( 2 −1) ]U(k −1) 2( 2 −1) 1 k−2 1 k−2 =δ (k −1) +[ ( 2 +1) − ( 2 −1) ]U(k −2) −δ (k −1) 2 2 1 k−2 k−2 = [( 2 +1) −( 2 −1) ]U(k −2) 2
离散时间系统的时域分析

称为混叠。 常称作折叠频率。 2
信号频率
fa nfs fm
fa fs / 2
假频
Fδ(jω)
抽样频率
ω Ω-ωm ωm Ω
例如:当抽样率为5kHz对3kHz的余弦信号 抽样,然后用截止频率为2.5kHz的低通滤波 器进行滤波,输出的频谱只包含2kHz的频率, 这是原信号中所没有的。
对一个低通滤波器的冲激响应进行抽样,抽 样后低频通带将在整个频率轴上周期的重复出现, 这种现象称为“伪门”。在设计数字滤波器时要 适当选择抽样率,使得伪门在干扰频率之外。
H(jω)
ω 0 数字滤波器的伪门
例1:对于频率为150Hz的正弦时间序列,分别以4ms 和8ms采样结果会如何?
100HZ 25HZ
在实际工作中应用抽样定理时,还应考虑下 面两个实际问题:
1、在理论上讲,按照奈奎斯特抽样率抽样, 通过理想低通滤波器以后,就可以恢复原信 号。但理想低通滤波器在物理上是不可实现 的,实际滤波器都存在一个过渡带,为了保 证在滤波器过渡带的频率范围内信号的频谱 为零,必须选择高于2fm的抽样率。
u (n) 0, n 0
...
n -1 0 1 2 3
(n) u(n) u(n) u(n 1)
u(n) (n m) (n) (n 1) (n 2) m0
3.矩形序列 R N (n )
1, R N (n) 0,
0 n N 1 其他n
RN (n) u(n) u(n N )
第五章 离散时间系统 的时域分析
§5.1 离散信号与抽样定理
一、离散信号及其表示
1、离散时间信号是指只在一系列离散的时刻 tk (k = 0,1,2,…)时,信号才有确定值,在其它时 刻,未定义; 2、离散时间信号是离散时间变量 tk 的函数; 3、抽样间隔可以是均匀的,也可以非均匀。
时域离散信号的产生与基本运算

实验一 时域离散信号的产生与基本运算一、实验目的1、了解常用的时域离散信号及其特点。
2、掌握MATLAB 产生常用时域离散信号的方法。
3、掌握时域离散信号简单的基本运算方法。
二、实验内容1、自己设定参数,分别表示并绘制单位抽样序列、单位阶跃序列、正弦序列、 实指数序列、随机序列。
2、自己设定参数,分别表示并绘制信号移位、信号相加、信号相乘、信号翻转、 信号和、信号积、信号能量。
3、已知信号(1) 描绘)(n x 序列的波形。
(2) 用延迟的单位脉冲序列及其加权和表示)(n x 序列。
(3) 描绘以下序列的波形:)2()(),2(2)(),2(2)(321n x n x n x n x n x n x -=+=-=三、实现步骤1、自己设定参数,分别表示并绘制单位抽样序列、单位阶跃序列、正弦序列、 实指数序列、随机序列。
(1)单位抽样序列程序:x=zeros(1,10);x(2)=1;stem(x,'filled')axis([0,10,-0.2,1]);title('µ¥Î»³éÑùÐòÁÐ');-0.200.20.40.60.8图1 (2)单位阶跃序列程序:N=10;u=ones(1,N);stem(u,'filled')axis([-10,10,0,1]);title('µ¥Î»½×Ô¾ÐòÁÐ');00.10.20.30.40.50.60.70.80.91单位阶跃序列图2 (3)正弦序列程序:x=-20:1:20;y=sin(0.2*pi.*x+0.5*pi);stem(x,y,'filled');axis([-20,20,-2,2]);title('ÕýÏÒÐòÁÐ');正弦序列-20-15-10-505101520图3 (4)实指数序列a=1/2程序:n=0:10;a1=1/2;y1=a1.^n;stem(n,y1,'filled');axis([0,10,0,1]);title('ʵָÊýÐòÁУ¬a=1/2');实指数序列,a=1/2图4 5实指数序列a=2程序:n=0:10;a2=2;y2=a2.^n;stem(n,y2,'filled');title('ʵָÊýÐòÁÐ,a=2');实指数序列,a=2图5 6 随机序列程序:y=rand(1,20);stem(y,'filled');title('Ëæ»úÐòÁÐ');0246810121416182000.10.20.30.40.50.60.70.80.91随机序列图62、自己设定参数,分别表示并绘制信号移位、信号相加、信号相乘、信号翻转、 信号和、信号积、信号能量。
时域离散信号实验报告(3篇)

第1篇一、实验目的1. 理解时域离散信号的基本概念和特性。
2. 掌握时域离散信号的表示方法。
3. 熟悉常用时域离散信号的产生方法。
4. 掌握时域离散信号的基本运算方法。
5. 通过MATLAB软件进行时域离散信号的仿真分析。
二、实验原理时域离散信号是指在时间轴上取离散值的一类信号。
这类信号在时间上不连续,但在数值上可以取到任意值。
时域离散信号在数字信号处理领域有着广泛的应用,如通信、图像处理、语音处理等。
时域离散信号的基本表示方法有:1. 序列表示法:用数学符号表示离散信号,如 \( x[n] \) 表示离散时间信号。
2. 图形表示法:用图形表示离散信号,如用折线图表示序列。
3. 时域波形图表示法:用波形图表示离散信号,如用MATLAB软件生成的波形图。
常用时域离散信号的产生方法包括:1. 单位阶跃信号:表示信号在某个时刻发生突变。
2. 单位冲激信号:表示信号在某个时刻发生瞬时脉冲。
3. 正弦信号:表示信号在时间上呈现正弦波形。
4. 矩形脉冲信号:表示信号在时间上呈现矩形波形。
时域离散信号的基本运算方法包括:1. 加法:将两个离散信号相加。
2. 乘法:将两个离散信号相乘。
3. 卷积:将一个离散信号与另一个离散信号的移位序列进行乘法运算。
4. 反褶:将离散信号沿时间轴翻转。
三、实验内容1. 实验一:时域离散信号的表示方法(1)使用序列表示法表示以下信号:- 单位阶跃信号:\( u[n] \)- 单位冲激信号:\( \delta[n] \)- 正弦信号:\( \sin(2\pi f_0 n) \)- 矩形脉冲信号:\( \text{rect}(n) \)(2)使用图形表示法绘制以上信号。
2. 实验二:时域离散信号的产生方法(1)使用MATLAB软件生成以下信号:- 单位阶跃信号- 单位冲激信号- 正弦信号(频率为1Hz)- 矩形脉冲信号(宽度为2)(2)观察并分析信号的波形。
3. 实验三:时域离散信号的基本运算(1)使用MATLAB软件对以下信号进行加法运算:- \( u[n] \)- \( \sin(2\pi f_0 n) \)(2)使用MATLAB软件对以下信号进行乘法运算:- \( u[n] \)- \( \sin(2\pi f_0 n) \)(3)使用MATLAB软件对以下信号进行卷积运算:- \( u[n] \)- \( \sin(2\pi f_0 n) \)(4)使用MATLAB软件对以下信号进行反褶运算:- \( u[n] \)4. 实验四:时域离散信号的仿真分析(1)使用MATLAB软件对以下系统进行时域分析:- 系统函数:\( H(z) = \frac{1}{1 - 0.5z^{-1}} \)(2)观察并分析系统的单位冲激响应。
离散时间信号的时域描述及基本运算
[例] 画出信号f (t) 的奇、偶分量 画出信号f
解:
f(t) 2 1
-1
0
f(t) 2 1
1
t
-1
0
1
t
3.信号分解为实部分量与虚部分量 信号分解为实部分量 实部分量与
连续时间信号
f (t ) = f r (t ) + j f i (t )
实部分量 虚部分量
f * (t ) = f r (t ) j f i (t )
在序列2点之间插入 个点 在序列 点之间插入M1个点 点之间插入
4. 序列相加
指将若干离散序列序号相同的数值相加
y[k ] = f1[k ] + f 2 [k ] + … + f n [k ]
f1 [ k ]
1 k 0 1
f1[k ] + f 2 [k ]
2
f 2 [k ]
k
1 k
0
0
5. 序列相乘
1 f o (t ) = [ f (t ) f (t )] 2 f o (t ) = f o (t )
离散时间信号
f [k ] = f e [k ] + f o [k ] 1 f o [k ] = { f [k ] f [ k ]} 2
1 f e [k ] = { f [k ] + f [k ]} 2
1. 翻转
f [k] → f [k]
以纵轴为中心作180度翻转 将 f [k] 以纵轴为中心作 度翻转
f [k] 2 1 1 0 1 2 3 k
2 1 0 1
3 2
f [k] 2
3 2 1 2 k
2. 位移 f [k] → f [k±n]
数字信号处理第1章时域离散信号和
x(n) sin( (n 8)
4
课件
18
第1章 时域离散信号和时域离散系统
上式表明 sin( n) 是周期为8的周期序列,也称正
4
弦序列,如图1.2.5所示。下面讨论一般正弦序列的周 期性。
那么
x(n)=Asin(ω0n+φ)
x(n+N) =Asin(ω0(n+N)+φ)=Asin(ω0n+ω0N+φ)
δ (n)
1
n -1 0 1 2 3
(a)
δ (t)
t 0 (b)
图1.2.1 (a)单位采样序列;
(b)单位冲激信号
课件
8
第1章 时域离散信号和时域离散系统
2. 单位阶跃序列u(n)
1,n≥0 0,n<0 单位阶跃序列如图1.2.2所示。 模拟信号中单位阶跃函数u(t) 1,t >0 0,t <0 ½,t=0 δ(n)与u(n)之间的关系如下式所示:
y(n)=T[x1(n)+x2(n)]=ax1(n)+ax2(n)+b
y(n)≠y1(n)+y2(n)
因此,该系统不是线性系统。用同样方法可以证
明 y(n)
x(n) sin(0n
4
) 所代表的系统是线性系统。
课件
34
第1章 时域离散信号和时域离散系统
1.3.2 如果系统对输入信号的运算关系T[·]在整个运
y1(n)=T[x1(n)],y2(n)=T[x2(n)]
那么线性系统一定满足下面两个公式:
T[ x1(n)+x2(n)]= y1(n)+y2(n) T[a x1(n)]=ay y1(n)
信号与系统公式总结
信号与系统公式总结在信号与系统的学习过程中,公式总结是非常重要的,它可以帮助我们更好地理解和掌握知识。
下面将对信号与系统中常见的公式进行总结,希望能够对大家的学习有所帮助。
一、基本概念公式总结。
1. 信号的分类:连续时间信号,x(t)。
离散时间信号,x[n]2. 基本信号:单位冲激函数,δ(t)或δ[n]阶跃函数,u(t)或u[n]3. 基本性质:奇偶性,x(t) = x(-t),x[n] = x[-n]周期性,x(t) = x(t+T),x[n] = x[n+N]二、时域分析公式总结。
1. 基本运算:时移性质,x(t-t0)或x[n-n0]反褶性质,x(-t)或x[-n]放大缩小,Ax(t)或Ax[n]2. 基本运算公式:加法,x1(t) + x2(t)或x1[n] + x2[n]乘法,x1(t)x2(t)或x1[n]x2[n]三、频域分析公式总结。
1. 傅里叶变换:连续时间信号,X(ω) = ∫x(t)e^(-jωt)dt。
离散时间信号,X(e^jω) = Σx[n]e^(-jωn)。
2. 傅里叶变换性质:线性性质,aX1(ω) + bX2(ω)。
时移性质,x(t-t0)对应X(ω)e^(-jωt0)。
频移性质,x(t)e^(jω0t)对应X(ω-ω0)。
四、系统分析公式总结。
1. 系统性质:线性性,y(t) = ax1(t) + bx2(t)。
时不变性,y(t) = x(t-t0)对应h(t-t0)。
2. 系统时域分析:离散卷积,y[n] = Σx[k]h[n-k]连续卷积,y(t) = ∫x(τ)h(t-τ)dτ。
3. 系统频域分析:系统函数,H(ω) = Y(ω)/X(ω)。
五、采样定理公式总结。
1. 采样定理:连续信号采样,x(t)对应x[n],x[n] = x(nT)。
重建滤波器,h(t) = Tsinc(πt/T)。
六、傅里叶级数公式总结。
1. 傅里叶级数:周期信号的傅里叶级数展开。
信号与系统实验报告
信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。
由于b=2,故平移量为2时,实际是右移1,符合平移性质。
两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。
平移,伸缩变化都会导致输出结果相对应的平移伸缩。
2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。
两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。
二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。
两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。
3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。
两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。
三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。
2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。
两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时域离散信号的产生与基本运算Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】实验一 时域离散信号的产生与基本运算 一、实验目的1、了解常用的时域离散信号及其特点。
2、掌握MATLAB 产生常用时域离散信号的方法。
3、掌握时域离散信号简单的基本运算方法。
二、实验内容1、自己设定参数,分别表示并绘制单位抽样序列、单位阶跃序列、正弦序列、 实指数序列、随机序列。
2、自己设定参数,分别表示并绘制信号移位、信号相加、信号相乘、信号翻转、信号和、信号积、信号能量。
3、已知信号(1) 描绘)(n x 序列的波形。
(2) 用延迟的单位脉冲序列及其加权和表示)(n x 序列。
(3) 描绘以下序列的波形:)2()(),2(2)(),2(2)(321n x n x n x n x n x n x -=+=-= 三、实现步骤1、自己设定参数,分别表示并绘制单位抽样序列、单位阶跃序列、正弦序列、 实指数序列、随机序列。
(1)单位抽样序列程序:x=zeros(1,10);x(2)=1;stem(x,'filled')axis([0,10,,1]);title('μ¥3éùDòáD');图1(2)单位阶跃序列程序:N=10;u=ones(1,N);stem(u,'filled')axis([-10,10,0,1]);title('μ¥×DòáD');图2(3)正弦序列程序:x=-20:1:20;y=sin*pi.*x+*pi);stem(x,y,'filled');axis([-20,20,-2,2]);title('yòDòáD');正弦序列图3(4)实指数序列a=1/2程序:n=0:10;a1=1/2;y1=a1.^n;stem(n,y1,'filled');axis([0,10,0,1]);title('êμêyDòáD£a=1/2');图4 5实指数序列a=2程序:n=0:10;a2=2;y2=a2.^n;stem(n,y2,'filled');title('êμêyDòáD,a=2');实指数序列,a=2图5 6 随机序列程序:y=rand(1,20);stem(y,'filled');title('úDòáD');0246810121416182000.10.20.30.40.50.60.70.80.91随机序列图62、自己设定参数,分别表示并绘制信号移位、信号相加、信号相乘、信号翻转、信号和、信号积、信号能量。
信号的移位:(1)信号移位程序:n=-3:10;k0=3;k1=-3;%êμDoμòx=cos(2*pi*n/10);x1=cos(2*pi*(n-k0)/10);x2=cos(2*pi*(n-k1)/10);subplot(3,1,1),stem(n,x,'filled');ylabel('x(n)');subplot(3,1,2),stem(n,x1,'filled');ylabel('x(n-2)');subplot(3,1,3),stem(n,x2,'filled'); ylabel('x(n+2)');2信号相加、信号相乘程序:n=-3:20;x1=cos(2*pi*n/10);subplot(2,2,1);stem(n,x1,'filled');title('x(1)'); axis([-4,20,-2,2]);x2=cos(2*pi*n/10);subplot(2,2,2);stem(n,x2,'filled');title('x(2)'); axis([-4,20,-2,2]);y=x1+x2;subplot(2,2,3);stem(n,y,'filled');title('Doàó'); axis([-4,20,-2,2]);y=x1.*x2;subplot(2,2,4);stem(n,y,'filled');title('Doà3'); axis([-4,20,-2,2]);n=-5:5;x=exp*n);x1=fliplr(x);n1=-fliplr(n);subplot(2,1,1),stem(n,x,'filled');title('x(n)'); subplot(2,1,2),stem(n1,x1,'filled');title('x(-n)');信号和、信号积、信号能量:程序:x=[1,2,3,4,5,6,7,8,9];y1=sum(x)y2=prod(x)E1=sum(x.*conj(x))得到:y1 =45y2 =362880E1 =2853、已知信号(1)描绘)x序列的波形;(n(2)用延迟的单位脉冲序列及其加权和表示)x序列;(n(3)描绘一下序列的波形function f=u(t)f=(t>=0);subplot(2,1,1)y1=(2*n+5).*(u(n+4)-u(n))+6.*(u(n)-u(n-5));stem(n,y1,'filled')axis([-10,10,-3,6]);title('序列波形');t=-10:10;subplot(2,1,2)y=(-3)*(u(t+4)-u(t+3))+(-1)*(u(t+3)-u(t+2))+(u(t+2)-u(t+1))+3*(u(t+1)-u(t))+6*(u(t)-u(t-1))+ 6*(u(t-1)-u(t-2))+6*(u(t-2)-u(t-3))+6*(u(t-3)-u(t-4))+6*(u(t-4)-u(t-5));stem(t,y,'filled')axis([-10,10,-3,6]);title('用单位脉冲序列及其加权和表示序列波形');subplot(2,2,1)t=-10:10;y=(-3)*(u(t+4)-u(t+3))+(-1)*(u(t+3)-u(t+2))+(u(t+2)-u(t+1))+3*(u(t+1)-u(t))+6*(u(t)-u(t-1))+ 6*(u(t-1)-u(t-2))+6*(u(t-2)-u(t-3))+6*(u(t-3)-u(t-4))+6*(u(t-4)-u(t-5));stem(t,y,'filled')axis([-10,10,-6,12]);title('x(n)');subplot(2,2,2)y=(-3)*(u(t+4)-u(t+3))+(-1)*(u(t+3)-u(t+2))+(u(t+2)-u(t+1))+3*(u(t+1)-u(t))+6*(u(t)-u(t-1))+ 6*(u(t-1)-u(t-2))+6*(u(t-2)-u(t-3))+6*(u(t-3)-u(t-4))+6*(u(t-4)-u(t-5));stem(t+2,2*y,'filled')axis([-10,10,-6,12]);title('2x(n-2)');subplot(2,2,3)t=-10:10;y=(-3)*(u(t+4)-u(t+3))+(-1)*(u(t+3)-u(t+2))+(u(t+2)-u(t+1))+3*(u(t+1)-u(t))+6*(u(t)-u(t-1))+ 6*(u(t-1)-u(t-2))+6*(u(t-2)-u(t-3))+6*(u(t-3)-u(t-4))+6*(u(t-4)-u(t-5));stem(t-2,2*y,'filled')axis([-10,10,-6,12]);title('2x(n+2)');subplot(2,2,4)t=-10:10;y=(-3)*(u(t+4)-u(t+3))+(-1)*(u(t+3)-u(t+2))+(u(t+2)-u(t+1))+3*(u(t+1)-u(t))+6*(u(t)-u(t-1))+ 6*(u(t-1)-u(t-2))+6*(u(t-2)-u(t-3))+6*(u(t-3)-u(t-4))+6*(u(t-4)-u(t-5));stem(2-t,y,'filled')axis([-10,10,-6,12]);title('x(2-n)');4、思考题当进行离散序列的相乘运算时,例1-6程序中有yp=xa1.*xa2,请问此处进行的相乘运算是矩阵乘还是数组乘,为何这样使用答:此处进行的是数组乘,因为只有用数乘组,才能将序列中对应的数乘起来,实现序列相乘。