实验一 时域离散信号与系统变换域分析(2015) (2)

合集下载

离散系统的时域及变换域分析讲解

离散系统的时域及变换域分析讲解

实验1 离散系统的时域及变换域分析一、实验目的:1.加深对离散系统的差分方程、单位抽样响应和卷积分析方法的理解。

2.加深对离散系统的频率响应分析和零、极点分布的概念理解。

二、实验原理: 1.时域 离散系统其输入、输出关系可用以下差分方程描述:∑∑==-=-Mm mNk nm n x bk n y a)()(输入信号分解为冲激信号,∑∞-∞=-=m m n m x n x )()()(δ系统单位抽样序列h (n ),则系统响应为如下的卷积计算式:∑∞-∞=-=*=m m n h m x n h n x n y )()()()()(当00≠a N k a k ,...2,1,0==时,h(n)是有限长度的(n :[0,M]),称系统为FIR系统;反之,称系统为IIR 系统。

在MATLAB 中,可以用函数y=filter(b,a,x)实现差分方程的仿真,也可以用函数 y=conv(x,h)计算卷积。

2.变换域离散系统的时域方程为∑∑==-=-Mm mNk nm n x bk n y a)()(其变换域分析方法如下:X(z)H(z)Y (z))()()()()(=⇔-=*=∑∞-∞=m m n h m x n h n x n y 系统函数为 N N MM z a z a a z b z b b z X z Y z H ----++++++==......)()()(110110分解因式∏∏∑∑=-=-=-=---==Nk kMm m Nk kk Mm mm z dz c Kza zb z H 1111)1()1()( ,其中 m c 和 k d 称为零、极点。

在MATLAB 中,可以用函数[z ,p ,K]=tf2zp (num ,den )求得有理分式形式的系统函数的零、极点,用函数zplane (z ,p )绘出零、极点分布图;也可以用函数zplane (num ,den )直接绘出有理分式形式的系统函数的零、极点分布图。

实验一 时域离散信号与系统(数字信号处理)

实验一 时域离散信号与系统(数字信号处理)

电子信息与自动化学院《数字信号处理》实验报告学号: 姓名: 实验名称: 实验一 时域离散信号与系统一、 实验目的(1) 了解常用的时域离散信号及其特点。

(2) 掌握MATLAB 产生常用时域离散信号的方法。

(3) 掌握时域离散信号简单的基本运算方法。

(4) 掌握求解离散时间系统脉冲响应和阶跃响应的方法。

(5) 进一步理解卷积定理,掌握应用线性卷积求解离散时间系统响应的基本方法。

(6) 掌握离散系统的响应特点。

二、 实验原理1. 典型离散信号的表示与产生方法1) 单位采样序列单位采样序列的表达式为1()00n n n δ=⎧=⎨≠⎩ 或 0()10n k δ⎧⎪-=⎨⎪⎩1n k n k k n N=≤≤≤ 下面的例子介绍了产生()n δ信号的方法。

读者可自行类比()n k δ-信号的产生方法。

2) 单位阶跃序列单位阶跃序列的表达式为1()0u n ⎧=⎨⎩0n n ≥下面的例子介绍了产生()u n 信号的方法。

3) 正(余)弦序列 正弦序列的表达式为0()sin()x n A n ωϕ=+连续时间信号与离散时间信号的联系可由下面的例子清楚地反映出来。

4) 实指数序列实指数序列的表达式为()n x n a =当||1a <时,()x n 的幅度随n 的增大而减小,序列逐渐收敛;当||1a >时,()x n 的幅度随n 的增大而增大,序列逐渐发散。

5) 随机序列在实际系统的研究和处理中,常常需要产生随机信号。

MATLAB 提供的rand 函数可以生成随机信号。

rand(1,N):产生[0,1]上均匀分布的随机序列。

randn(1,N):产生均值为0、方差为1的高斯随机序列,也就是白噪声序列。

2. 时域离散信号的基本运算1) 信号的移位在MATLAB 中给定离散信号()x n ,若信号()y n 定义为()()y n x n k =-,那么()y n 是信号()x n 在时间轴上的移位序列。

时域离散信号实验报告(3篇)

时域离散信号实验报告(3篇)

第1篇一、实验目的1. 理解时域离散信号的基本概念和特性。

2. 掌握时域离散信号的表示方法。

3. 熟悉常用时域离散信号的产生方法。

4. 掌握时域离散信号的基本运算方法。

5. 通过MATLAB软件进行时域离散信号的仿真分析。

二、实验原理时域离散信号是指在时间轴上取离散值的一类信号。

这类信号在时间上不连续,但在数值上可以取到任意值。

时域离散信号在数字信号处理领域有着广泛的应用,如通信、图像处理、语音处理等。

时域离散信号的基本表示方法有:1. 序列表示法:用数学符号表示离散信号,如 \( x[n] \) 表示离散时间信号。

2. 图形表示法:用图形表示离散信号,如用折线图表示序列。

3. 时域波形图表示法:用波形图表示离散信号,如用MATLAB软件生成的波形图。

常用时域离散信号的产生方法包括:1. 单位阶跃信号:表示信号在某个时刻发生突变。

2. 单位冲激信号:表示信号在某个时刻发生瞬时脉冲。

3. 正弦信号:表示信号在时间上呈现正弦波形。

4. 矩形脉冲信号:表示信号在时间上呈现矩形波形。

时域离散信号的基本运算方法包括:1. 加法:将两个离散信号相加。

2. 乘法:将两个离散信号相乘。

3. 卷积:将一个离散信号与另一个离散信号的移位序列进行乘法运算。

4. 反褶:将离散信号沿时间轴翻转。

三、实验内容1. 实验一:时域离散信号的表示方法(1)使用序列表示法表示以下信号:- 单位阶跃信号:\( u[n] \)- 单位冲激信号:\( \delta[n] \)- 正弦信号:\( \sin(2\pi f_0 n) \)- 矩形脉冲信号:\( \text{rect}(n) \)(2)使用图形表示法绘制以上信号。

2. 实验二:时域离散信号的产生方法(1)使用MATLAB软件生成以下信号:- 单位阶跃信号- 单位冲激信号- 正弦信号(频率为1Hz)- 矩形脉冲信号(宽度为2)(2)观察并分析信号的波形。

3. 实验三:时域离散信号的基本运算(1)使用MATLAB软件对以下信号进行加法运算:- \( u[n] \)- \( \sin(2\pi f_0 n) \)(2)使用MATLAB软件对以下信号进行乘法运算:- \( u[n] \)- \( \sin(2\pi f_0 n) \)(3)使用MATLAB软件对以下信号进行卷积运算:- \( u[n] \)- \( \sin(2\pi f_0 n) \)(4)使用MATLAB软件对以下信号进行反褶运算:- \( u[n] \)4. 实验四:时域离散信号的仿真分析(1)使用MATLAB软件对以下系统进行时域分析:- 系统函数:\( H(z) = \frac{1}{1 - 0.5z^{-1}} \)(2)观察并分析系统的单位冲激响应。

实验一离散时间信号与系统时域分析

实验一离散时间信号与系统时域分析

实验一离散时间信号与系统时域分析实验目的1学习MATLAB语言编程和调试技巧2学会简单的矩阵输入和图形表示法3掌握简单的绘图命令一实验目的1学习MATLAB语言编程和调试技巧2学会简单的矩阵输入和图形表示法3掌握简单的绘图命令二、实验原理本实验主要为了熟悉MATLAB环境,重点掌握简单的矩阵(信号)输入和绘图命令,特别是绘图命令tem()和plot()。

实验内容中涉及到信号的无失真采样、离散卷积运算和差分方程求解这三个主要的问题。

其基本原理分别如下:对一个模拟信号某(t)进行采样离散化某(n),为了不失真地从采样信号某(n)中恢复原始信号某(t),采样时必须满足采样定理,即采样频率必须大于等于模拟信号中最高频率分量的2倍。

一个离散时间系统,输入信号为某(n),输出信号为y(n),运算关系用T[﹒]表示,则输入与输出的关系可表示为y(n)=T[某(n)]。

(1)线性时不变(LTI)系统的输入输出关系可通过h(n)表示:y(n)=某(n)某h(n)=式中某表示卷积运算。

(2)LTI系统的实现可物理实现的线性时不变系统是稳定的、因果的。

这种系统的单位脉冲响应是因果的(单边)且绝对可和的,即:h(n)0,n0;nh(n)0在MATLAB语言中采用conv实现卷积运算,即:Y=conv(某,h),它默认从n=0开始。

常系数差分方程可以描述一个LTI系统,通过它可以获得系统的结构,也可以求信号的瞬态解。

利用MATLAB 自带的filter(),可以代替手工迭代运算求解系统的差分方程,求解的过程类似于对输入信号进行滤波处理。

三、实验内容1、试画出如下序列的波形(1)某(n)3(n3)(n2)2(n1)4(n1)2(n2)3(n3)(2)某(n)0.5R10(n)解:用MATLAB描述波形1(1)某=[3120-42-3];%矩阵输入某n=-3:1:3;%输入自变量n,以间隔为1从-3到3变化n实验目的1学习MATLAB语言编程和调试技巧2学会简单的矩阵输入和图形表示法3掌握简单的绘图命令tem(n,某);%tem()函数绘制火柴杆图,注意n,某元素个数必须相等某label('n');%横坐标显示nylabal('某(n)');%纵坐标显示某(n)grid;%绘制网格1(2)n=0:9;某=0.5.^n;tem(n,某);某label('n');ylabel('某(n)');gri实验目的1学习MATLAB语言编程和调试技巧2学会简单的矩阵输入和图形表示法3掌握简单的绘图命令2、用MATLAB计算序列{-201–13}和序列{120-1}的离散卷积,即计算某(n)2(n)(n2)(n3)3(n4)与h(n)(n)2(n1)(n3)解:用MATLAB描述波形。

离散时间信号与系统的时域分析实验报告

离散时间信号与系统的时域分析实验报告

离散时间信号与系统的时域分析实验报告报告⼆:⼀、设计题⽬1.绘制信号)()(1k k f δ=和)2()(2-=k k f δ的波形2.绘制直流信号)()(1k k f ε=和)2(2-=k f ε的波形3绘制信号)()(6k G k f =的波形⼆实验⽬的1.掌握⽤MATLAB 绘制离散时间信号(序列)波形图的基本原理。

2.掌握⽤MATLAB 绘制典型的离散时间信号(序列)。

3.通过对离散信号波形的绘制与观察,加深理解离散信号的基本特性。

三、设计原理离散时间信号(也称为离放序列)是指在时间上的取值是离散的,只在⼀些离放的瞬间才有定义的,⽽在其他时间没有定义,简称离放信号(也称为离散序列) 序列的离散时间间隔是等间隔(均匀)的,取时间间隔为T.以f(kT)表⽰该离散序列,k 为整数(k=0,±1.±2,...)。

为了简便,取T=1.则f(kT)简记为f(k), k 表⽰各函数值在序列中出现的序号。

序列f(k)的数学表达式可以写成闭合形式,也可逐⼀列出f(k)的值。

通常,把对应某序号K0的序列值称为序列的第K0个样点的“样点值”。

四、设计的过程及仿真1clear all; close all; clc;k1=-4;k2=4;k=k1:k2;n1=0;n2=2;f1=[(k-n1)==0];f2=[(k-n2)==0];subplot(1,2,1)stem(k,f1,'fill','-k','linewidth',2);xlabel('k');ylabel('f_1(k)');title('δ(k)')axis([k1,k2,-0.1,1.1]);subplot(1,2,2)stem(k,f2,'filled','-k','linewidth',2);ylabel('f_2(k)');title('δ(k-2)')axis([k1,k2,-0.1,1.1]);程序运⾏后,仿真绘制的结果如图所⽰:2c lear all; close all; clc;k1=-2;k2=8;k=k1:k2;n1=0;n2=2; %阶跃序列开始出现的位置f1=[(k-n1)>=0]; f2=[(k-n2)>=0];subplot(1,2,1)stem(k,f1,'fill','-k','linewidth',2);xlabel('k');ylabel('f_1(k)');title('ε(k)')axis([k1,k2+0.2,-0.1,1.1])subplot(1,2,2)stem(k,f2,'filled','-k','linewidth',2);xlabel('k');ylabel('f_2(k)');title('ε(k-2)')axis([k1,k2+0.2,-0.1,1.1]);程序运⾏后,仿真绘制的结果如图所⽰:3clear all; close all; clc;k1=-2;k2=7;k=k1:k2; %建⽴时间序列n1=0;n2=6; f1=[(k-n1)>=0];f2=[(k-n2)>=0];f=f1-f2;stem(k,f,'fill','-k','linewidth',2);xlabel('k');ylabel('f(k)');title('G_6(k)')axis([k1,k2,-0.1,1.1]);程序运⾏后,仿真绘制的结果如图所⽰:五、设计的结论及收获实现了⽤matlab绘制离散时间信号, 通过对离散信号波形的绘制与观察,加深理解离散信号的基本特性。

时域离散信号和系统的频域分析(2)

时域离散信号和系统的频域分析(2)

使Z变换存在的 z的取值域,称为X(z)的收敛域。收敛 域一般用环状域表示,即Rx-<|z|<Rx+, Rx-和Rx+分别称 为收敛域的最小收敛半径和最大收敛半径。上图所示的
阴影部分即为收敛半径。最小半径可以达到0,而最大 半径可以达到+∞。
2021/4/21
25
返回
回到本节
Z变换和傅里叶变换之间的关系
n
对于不满足上式的信号,可以引入奇异函数,使之能够
用傅里叶变换表示出来。
2021/4/21
5
返回
回到本节
离散信号FT和模拟信号FT的比较:
• 离散信号FT • 模拟信号FT
X (e j ) x(n)e jn n
F ( j) x(t)e jtdt
可以发现二者的实质是一样的,都是完成时间域 频域 的转换,不同处: 时间变量:n取整数,求和运算;
X (e j ) X (e j(2M ) )
② 频域卷积定理:
M为整数
假设 X (e j ) ,FT x(n) ,H (e j ) FT h(n) y(n) x(n)h(n)
则 Y (e j ) 1 X (e j ) H (e j ) 1 H (e j )X (e j( ) )d
2
2
0
对于时域离散系统中的复指数序列 e ,j0仍t 假设它的 傅里叶变换是在 处的0 一个冲激,强度为2π,考 虑到时域离散信号傅里叶变换的周期性,因此 e 的 j0t 傅里叶变换应写为:
X a (e j ) FT e j0t 2 0 2r
r
2021/4/21
11
返回
回到本节
15
返回
回到本节

离散时间信号和系统的变换域分析第二章

离散时间信号和系统的变换域分析第二章

z2 例1:X ( z ) , 1/4< z 4,求其z反变换 (4 z )( z 1/ 4) 2 1 z n 1 解:x (n ) z dz c ( Rx , Rx ) 2 j c (4 z )( z 1/ 4)
z z n 1 其中:F ( z ) z (4 z )( z 1/ 4) (4 z )( z 1/ 4)
n n n
1 z = z 1 1 z n 0
N 1 n
n N
j Im[ z ]
Roc : 0 | z |
0
Re[ z ]
例3:求x(n)=anu(n)的变换及其收敛域
解:X(z)= x(n ) z = a u(n ) z = a z
n n1 n n1 n 0
•上式中,第一项是有限长序列的Z变换,其收敛域为 有限Z平面,第二项是Z的负幂级数,对于第二项,如 果在|Z|=R上收敛,则所有|Z|>R上均收敛,设 Rx-是收敛边界,综合第一项和第二项的收敛域可知:
当n1 0时,Roc : Rx z 当n1 0时,Roc : Rx z
X1 ( z)
x ( n) z
n 0
n
单边Z变换在大多数情况下其特性与双边z变 换相同。可以看做因果序列的双边z变换。
二、ZT的收敛域
• 对于任意给定序列x(n),使其z变换X(z) 收敛的所有z值的集合称为X(z)的收敛域。 • 级数收敛的充要条件是满足绝对可和
n


x(n) z
x(n)
2 j
1
c
X ( z ) z dz c ( Rx , Rx )
n 1

离散时间信号与系统的变换域分析

离散时间信号与系统的变换域分析

Re[ X (e jω )]
x0 (n)
1
4)双边序列
双边序列对序列值为非零值的范围没有限制, n 可取任何整数值。这时 Z 变换可
看成一个右边序列与左边序列之和,相应的收敛域为左边序列与右边序列的重迭部
分,为一环域。
Rx− < z < Rx+ 如果 Rx− > Rx+ 级数没有公共收敛域,则 Z 变换不存在。
如果序列 Z 变换可表达成有理分式的形式
Z[x * (n)] = X * (z*) , Rx− < z < Rx+
Z[nx(n)] = −z dX ( z) dz

Rx− < z < Rx+
R− =max[ Rx− , Ry− ] , R+ =min[ Rx+ , Ry+ ]
3
初值定理 终值定理
x(0) = lim X (z) z→∞
lim x(n) = lim(z − 1) X(z)
R− < z < R+
时域移位 乘指数序列 序列反褶 共轭序列 微分性质
Z[x(n − n0 )] = z −n0 X ( z ) , Rx− < z < Rx+
Z[a n x(n)] = X (a −1z ) , a Rx− < z < a Rx+
Z[x(−n)] = X (z −1 ) , 1/ Rx+ < z <1/ Rx−
∫ x(n) = F −1 [ X (e jω ) ]= 1 π X (e jω )e jnω dω
2π −π
3)序列傅立叶变换与 Z 变换的关系——序列的频谱
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一 时域离散信号与系统变换域分析一、实验目的1.了解时域离散信号的产生及基本运算实现。

2.掌握离散时间傅里叶变换实现及系统分析方法。

3. 熟悉离散时间傅里叶变换性质。

4. 掌握系统Z 域分析方法。

5. 培养学生运用软件分析、处理数字信号的能力。

二、实验设备1、计算机2、Matlab7.0以上版本三、实验内容1、对于给定的时域离散信号会进行频谱分析,即序列的傅里叶变换及其性质分析。

2、对于离散系统会进行频域分析及Z 域分析。

包括频谱特性、零极点画图、稳定性分析。

3、对于差分方程会用程序求解,包括求单位冲击序列响应,零输入响应、零状态响应、全响应,求其系统函数,及其分析。

4、信号时域采样及其频谱分析,序列恢复。

5、扩展部分主要是关于语音信号的读取及其播放。

四、实验原理1、序列的产生及运算。

在Matlab 中自带了cos 、sin 、exp (指数)等函数,利用这些函数可以产生实验所需序列。

序列的运算包括序列的加法、乘法,序列)(n x 的移位)(0n n x -,翻褶)(n x -等。

序列的加法或乘法指同序号的序列值逐项对应相加或相乘,但Matlab 中“+”“.*”运算是对序列的值直接进行加或乘,不考虑两序列的序号是否相同,因此编程时考虑其序号的对应。

2、序列的傅里叶变换及其性质。

序列的傅里叶变换定义:)(|)(|)()(ωϕωωωj j n n j j e e X e n x e X ==∑∞-∞=-,其幅度特性为|)(|ωj e X ,在Matlab 中采用abs 函数;相位特性为)(ωϕ,在Matlab 中采用angle 函数。

序列傅里叶变换的性质:(1)FT 的周期性)()()2(ωπωj M j e X e X =+,实序列傅里叶变换的对称性)()(ωωj j e X e X -*=。

对实序列和复序列分别进行傅里叶变换,通过图形结果观察周期性即对称性。

(2)FT 的频移特性)()]([)(00ωωω-=j n j e X n x e FT ,对序列在时域乘以n j e0ω,然后进傅里叶变换,比较其结果和直接对序列进行傅里叶变换的不同。

(3)时域卷积定理:若)(*)()(n h n x n y =,对序列)(n x 和)(n h 进行线性卷积得到)(n y ,分别对它们进行傅里叶变换,应满足)()()(ωωωj j j e H e X e Y ⋅=。

3、离散时间系统的Z 域分析。

已知离散时间系统的差分方程为∑∑==-=-M k k N k k k n x b k n y a 00)()(,对等号两边进行Z 变换,得到其系统函数)(z H 及系统零极点,对系统函数进行反变换得到单位取样响应)(n h ,根据单位取样响应或系统函数的系数可以得到频率响应)(ωj e H ,根据极点位置判断系统稳定性。

4、信号时域采样及恢复。

给定连续信号)(t x a ,对其用不同的采样频率进行采样,根据时域采样定理,采样信号的频谱是原模拟信号频谱沿频率轴以s Ω为周期延拓而成的,并且要不失真地还原出模拟信号时,要满足c s Ω>Ω2,因此当采样频率满足和不满足采样定理时,所得到的频谱是不同的。

根据采样信号进行信号恢复时,采用内插公式∑∞-∞=--=n a a TnT t T nT t nT x t x /)()/)(sin()()(ππ实现。

五、实验步骤1、序列的基本运算1.1、产生余弦信号)04.0cos()(n n x π=及带噪信号)(2.0)04.0cos()(n w n n y +=π 0<=n<=50(噪声采用randn 函数)1.2、已知12)(1-=n n x 51≤≤n ,22)(2-=n n x 62≤≤n ,求两个序列的和、乘积、序列x1的移位序列(右移2位),序列x2的翻褶序列,画出原序列及运算结果图。

2、序列的傅里叶变换2.1、已知序列)()5.0()(n u n x n =。

试求它的傅里叶变换,并且画出其幅度、相角、实部和虚部的波形,并分析其含有的频率分量主要位于高频区还是低频区。

2.2、令||1000)(t a e t x -=,求其傅立叶变换)(Ωj X a 。

分别用kHz f s 1=和kHz f s 5=对其进行采样,求出离散时间傅立叶变换)(ωj e X ,画出相应频谱,分析结果的不同及原因。

3、序列的傅里叶变换性质分析3.1、已知序列n j e n x )9.0()(3/π=,100≤≤n ,求其傅里叶变换,并讨论其傅里叶变换的周期性和对称性。

3.2、已知序列n n x )9.0()(-=,55≤≤-n ,求其傅里叶变换,并讨论其傅里叶变换的周期性和对称性。

为了方便,考虑在两个周期,例如[ππ2,2-]中2M+1个均匀频率点上计算FT ,并且观察其周期性和对称性。

为此给出function 文件如下,求解FT 变换:function[X,w]=ft1(x,n,k)w=(pi/abs(max(k)/2))*kX=x*(exp(-j*pi/abs(max(k)/2))).^(n'*k)3.3、编写程序验证序列傅里叶变换频移性质,时域卷积定理(时域卷积后的频域特性)。

(所需信号自行选择)4、时域差分方程的求解4.1求解差分方程y(n)+a1y(n-1)+a2y(n-2)=b0x(n)+b1x(n-1)的零状态响应和全响应。

已知X(n)为单位取样序列,y(-1)=1,y(-2)=2,a1=0.5,a2=0.06,b0=2,b1=3。

5、离散系统的Z 域分析5.1、利用系统函数)(z H 分析系统的稳定性。

假设系统函数如下式:5147.13418.217.198.33)3)(9()(234-++--+=z z z z z z z H ,试判断系统是否稳定。

5.2、已知线性时不变系统的系统函数21112.08.013.01.0)(-----+=zz z z H ,编写程序求其单位取样响应,频率响应及系统零极点,并画出相应图形。

6、创新训练拓展内容6.1、利用Matlab 自带的录音功能,或利用Goldwave 等音频编辑软件,对语音或其他音频信号进行采集并保存为*.wav 文件。

要求:(1)采用不同的采样频率(2000Hz ,4000Hz ,8000Hz ,16000Hz 等)。

(2)对采集得到的信号进行播放,并画图。

(3)分析在不同采样频率下得到的信号有何不同。

6.2、设定一个连续时间信号,进行抽样和恢复,要求分析不同采样频率对恢复结果的影响,给出实验程序及各关键步骤图形结果。

6.3、设计内容:设计一个离散系统,给定系统函数或差分方程,设定激励及初始条件。

要求:(1)绘制系统函数零极点图,判断稳定性;(2)求单位脉冲响应h (n );(3)求系统零输入响应及零状态响应,要求零状态响应采样三种方法求解(卷积的方法、迭代解法、变换域求解方法),激励自定;(4)分析系统频响特性,画出频响函数幅频曲线和相频曲线。

六、实验要求第一部分:验证实验内容根据给定的实验内容,部分实验给出了参考程序段,见下面各段程序。

请基于Matlab 环境进行验证实验。

第二部分:编程实验内容对于给定的实验内容中,没有参考程序段的部分,进行编程,给出实验结果,并进行相应的分析。

第三部分:创新训练拓展内容此部分内容,要求给出程序设计流程图(画法见附录3),给出程序内容的解释,并对结果进行分析。

七、思考题下面四个二阶网络的系统函数具有一样的极点分布:1)21119425.06.113.01)(---+--=z z z z H 2)21129425.06.118.01)(---+-+=zz z z H 3)21139425.06.118.01)(---+--=z z z z H 4)212149425.06.118.06.11)(----+-+-=z z z z z H 请分析研究零点分布对于单位脉冲响应的影响。

要求:(1) 分别画出各系统的零、 极点分布图;(2) 分别求出各系统的单位脉冲响应,并画出其波形;(3) 分析零点分布对于单位脉冲响应的影响。

八、实验参考资料1、高西全,丁玉美.数字信号处理[M].西安:西安电子科技大学出版社,20082、张德丰.详解MATLAB 数字信号处理[M].北京:电子工业出版社,20103、王月明,张宝华.MATLAB基础与应用教程[M].北京:北京大学出版社,2012附录1:实验报告要求:实验名称:-------班级:组号:姓名1(学号)、姓名2(学号)、姓名3(学号)一、实验目的二、实验主要内容(要根据自己组所做内容写,做了的写,没做的不要写)例如:1.对序列的产生和运算方法进行实现2.序列的傅里叶变换实现、性质及分析等等三、实验主要仪器、设备及软件四、实验步骤、结果与分析例如:1.序列的运算序列为……,进行加法、乘法、……运算运算结果为……2.序列的傅里叶变换实现及分析(1)已知序列)nx nu。

试求它的傅里叶变换,并且画出其幅度、相角、实部和虚((n)5.0()部的波形,并分析其含有的频率分量主要位于高频区还是低频区。

程序结果分析(2)序列的傅里叶变换性质分析……注1:(包括程序框图及代码、图形、数据等),其中程序框图、代码、图形可以直接打印,结果分析手写。

注2:对已给出(程序、结果及分析)的验证性实验,自己运行即可,可以不用写在报告中。

对已给出(程序)的验证性实验,程序可以不用写在实验报告中,只写出结果和分析。

五、实验结论与总结(手写)六、思考题(分析手写)七、实验参考资料附录2:实验所需部分函数及验证性程序:1、序列的基本运算%1.单位取样序列 x(n)=delta(n-n0) 要求n1<=n0<=n2function[x,n]=impseq(n0,n1,n2)n=[n1:n2]; x=[(n-n0)==0]; == 是逻辑判断%2.单位阶跃序列 x(n)=u(n-n0) 要求n1<=n0<=n2function[x,n]=stepseq(n0,n1,n2)n=[n1:n2]; x=[(n-n0)>=0];%3.信号加 y(n)=x1(n)+x2(n)%find函数:找出非零元素的索引号%x1:第一个序列的值,n1:序列x1的索引号%x2:第二个序列的值,n2:序列x2的索引号function[y,n]=sigadd(x1,n1,x2,n2)n=min(min(n1),min(n2)):max(max(n1),max(n2));y1=zeros(1,length(n)); y2=y1;y1(find((n>=min(n1))&(n<=max(n1))==1))=x1;y2(find((n>=min(n2))&(n<=max(n2))==1))=x2;y=y1+y2;%4.信号乘 y(n)=x1(n)*x2(n)function[y,n]=sigmult(x1,n1,x2,n2)n=min(min(n1),min(n2)):max(max(n1),max(n2));y1=zeros(1,length(n)); y2=y1;y1(find((n>=min(n1))&(n<=max(n1))==1))=x1;y2(find((n>=min(n2))&(n<=max(n2))==1))=x2;y=y1.*y2;%5.移位 y(n)=x(n-n0)function[y,n]=sigshift(x,m,n0)n=m+n0; y=x;%6.翻褶 y(n)=x(-n)function[y,n]=sigfold(x,n)y=fliplr(x); n=-fliplr(n);2、序列的傅里叶变换%7. 求序列)nux n的傅里叶变换((n)5.0()w=[0:1:500]*pi/500X=exp(j*w)./(exp(j*w)-0.5*ones(1,501)) magX=abs(X)angX=angle(X)realX=real(X)imagX=imag(X)subplot(2,2,1)plot(w/pi,magX)gridxlabel('frequency in pi units')title('Magnitude Part')ylabel('Magnitude')subplot(2,2,3)plot(w/pi,angX)gridxlabel('frequency in pi units')title('Angle Part')ylabel('Radians')subplot(2,2,2)plot(w/pi,realX)gridxlabel('frequency in pi units')title('Real Part')ylabel('Real')subplot(2,2,4)plot(w/pi,imagX)gridxlabel('frequency in pi units')title('Imaginary Part')ylabel('Imaginary')程序执行结果:frequency in pi unitsMagnitude PartM a g n i t u d efrequency in pi units Angle Part R a d i a ns frequency in pi units Real PartR e a lfrequency in pi units Imaginary Part I m a g i n a r y%8 令||1000)(t a e t x -=,绘制其傅立叶变换)(Ωj X a 。

相关文档
最新文档