八年级数学下册18.2.3 第1课时 正方形的性质教案
人教版八年级初中下册数学 《18.2.3正方形 》优课教案(配套A)

4.类比推理,得到新知。
教师展示课件,学生根据课件提示,分析得出正方形的性质和判定方法,并通过课件动画展示清晰地了解由矩形以及菱形变化得到正方形的过程。
通过动画演示,直观地让学生清楚由矩形和菱形变化得到正方形的过程,进而得出正方形的性质和判定方法。
回顾本节课所学正方形的知识,与前面的平行四边形和矩形、菱形对比,形成知识的迁移。
5.归纳总结,巩固新知。
教师布置任务,学生分组讨论,系统总结出正方形的性质和判定方法。
学生通过小组合作,得出正方形系统的性质和判定方法,巩固知识。
6.随堂练习,学以致用。
教师展示随堂练习,学生做题以检验知识的掌握情况。
巩固知识,检验知识掌握情况。
7.课堂小结,升华知识。
师生一起回顾本节课所学的知识点。
2.让学生体会到数学与现实生活的紧密联系,增强应用意识。
教学重点
正方形的定义及正方形与平行四边形、矩形、菱形的联系。
教学难点
正方形与矩形、菱形的关系及正方形性质与判定的灵活运用。
教学过程
教学设计
师生行为
设计意图
1.复习旧知,导入新课。
教师提出问题,学生尝试回忆并说出平行四边形、矩形、菱形的性质。
通过回忆复习前面学习的平行四边形、矩形、菱形的性质,引出本节课正方形的性质。
2.欣赏图片,思考问题。
教师总结学习过的一般和特殊的平行四边形,并提问学生生活中还有哪些常见的平行四边形,接着展示课件图片,学生得出答案。
通过学生思考并展示图片,让学生明白正方形在生活Байду номын сангаас是十分常见并被广泛应用的,知道数学与生活的密切联系。
人教版初中数学八年级下册18.2.3《正方形的性质与判定》教案设计

18.2.3 正方形性质与判定(1)一、教材分析《正方形性质》这节课是九年义务教育人教版数学教材八年级下册第十八章第二节的内容。
纵观整个初中教材,《正方形》是在学生掌握了平行四边形、矩形、菱形等有关知识及简单图形的平移和轴对称等平面几何知识并且具备有初步的观察、操作等活动经验的基础上出现的。
既是前面所学知识的延续,又是对平行四边形、菱形、矩形进行综合的不可缺少的重要环节。
本节课的重点是正方形的概念和性质难点是理解正方形与平行四边形、矩形、菱形之间的内在联系及性质的灵活运用。
根据大纲要求,本节课制定了知识、能力、情感三方面的目标。
二、教学目的1、知识与技能:(1)掌握正方形的概念、性质并会用它们进行有关的论证和计算(2)理解正方形与平行四边形、矩形、菱形的联系和区别.2、过程与方法:经历探索归纳正方形有关性质的过程,培养学生在观察中寻求新知,在探索归纳总结过程中发展推理能力,逐步掌握说理的基本方法。
3、情感态度与价值观:通过正方形与平行四边形、矩形、菱形的联系的教学对学生进行辩证唯物主义教育,提高学生的逻辑思维能力三、重点、难点1.教学重点:正方形的定义及正方形的性质,正方形、平行四边形、矩形、菱形的关系2.教学难点:厘清正方形、平行四边形、矩形、菱形的内在联系及正方形性质的灵活运用.四、教学准备多媒体课件五、教学流程引入——演示观察——探究、对比、归纳、总结——运用——-反思——巩固提高六、教学过程(一) 创设情境,新课引入师:假设我用同样长度的一条绳子围城一个四边形,那么围成什么样的四边形面积最大?多媒体播放生活中的正方形,师:正方形在生活中随处可见,应用广泛,在小学我们学过一些关于正方形的初步知识,今天,我们将进一步系统学习正方形的相关知识。
写出课题正方形(二)新知探索学生活动一、叙述平行四边形、矩形、菱形的定义,教师活动:通过前面的学习,我们知道了两组对边分别_____的四边形叫做平行四边形,那么什么叫矩形,什么叫菱形呢?学生说定义,教师多媒体演示平行四边形如何演变为矩形、菱形(加深定义的理解与巩固)演示完矩形、菱形定义后,(过度语:事实上,正方形比矩形、菱形更加特殊,请看演示:)(1)矩形怎样变化后就成了正方形呢?(2).菱形怎样变化后就成了正方形呢?教师引导学生观察,设问:什么样的平行四边形是正方形?类比矩形、菱形定义得出正方形定义1、正方形定义:有一组邻边相等......并且有一个角是直角.......的平行四边形.....叫做正方形.指出:正方形是在平行四边形这个大前提下定义的,其定义包括了两层意:(1)有一组邻边相等的平行四边形(菱形)(2)有一个角是直角的平行四边形(矩形)由正方形的定义可以得知,正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形.学生活动:请学生用矩形纸折叠一个正方形(可请一个学生上台折叠)结论:有一组邻边相等的矩形是正方形,有一个角是直角的菱形是正方形。
人教版初中数学八年级下册18.2.3《正方形的性质与判定》教案设计

正方形教学目标;1.理解并运用正方形的定义计算和证明.2.理解并运用正方形的性质、判定进行计算和证明.3.体会正方形与平行四边形、矩形、菱形的区别与联系,理解一般与特殊的关系.经历正方形的定义及其性质和判定定理的探究过程,丰富认识图形的经验,进一步发展学生的逻辑推理能力和表达能力.让学生在发现、归纳、概括中逐步提高思维能力,培养用数学的思想和方法来思考和分析问题的习惯.【重点】正方形性质和判定定理的应用.【难点】正方形与平行四边形、矩形、菱形的区别与联系.【教师准备】教学中出示的教学插图、问题和例题.【学生准备】复习平行四边形、矩形、菱形的定义、性质和判定.导入一:[过渡语]前面我们研究了平行四边形、矩形、菱形的定义、性质和判定,现在请同学们回忆学过的内容,回答下面的问题.学生观察教具变化情况,结合所学菱形、矩形知识,回答上面的问题.[设计意图]正方形是学生熟悉的几何图形,小学已经学过,这里让学生从动态的角度出发认识正方形,体会正方形与平行四边形、矩形、菱形的联系与区别,感受特殊与一般的关系.导入二:八年级(2)班的简兰同学想买一条方纱巾.有一天她在商店里看到一块漂亮的纱巾,非常想买,但她拿起来看时感觉纱巾不太方,商店老板看她犹豫不决的样子,马上过来拉起一组对角,让她看另一组对角是否对齐,她还有些疑惑,老板又拉起另一组对角让她检验,她终于买下这块纱巾,你认为她买的这块纱巾是正方形的吗?当时采用什么方法可以检验出来?学了这节后,你就会做出准确的判断了.[设计意图]将数学问题融入生活情境,拉近了学生与数学之间的距离,激发学生研究正方形的积极性.新知构建:1.正方形的认识思路一[过渡语]结合上面的演示,请同学们回答下面的问题:(1)什么样的图形是平行四边形?(2)什么样的图形是矩形?(3)什么样的图形是菱形?(4)什么样的图形是正方形?学生讨论,回答.在学生回答的基础上,教师引导学生归纳:正方形是有一组邻边相等,有一个角是直角的平行四边形.追问:正方形与矩形、菱形之间有什么关系呢?学生思考,回答:正方形既是矩形,又是菱形.[设计意图]结合图形的演示,让学生回忆学过的平行四边形、矩形、菱形的定义、性质及判定.在此基础上尝试归纳正方形的定义,理解正方形的定义,体会它们之间的联系与区别,感受特殊与一般的关系.思路二[过渡语]前面我们学习了平行四边形、矩形、菱形的性质和判定,小学认识过了正方形,请同学们回答下面的问题.(1)正方形与矩形有怎样的关系?(2)正方形与菱形有怎样的关系?(3)正方形、平行四边形、矩形、菱形有怎样的关系?生1:正方形是特殊的矩形,即有一组邻边相等的矩形是正方形.生2:正方形是特殊的菱形,即有一个角是直角的菱形是正方形.教师画图说明,正方形、平行四边形、矩形、菱形的关系如图.总结:正方形、矩形、菱形都是特殊的平行四边形.你能根据正方形、平行四边形、矩形、菱形的关系,解释下面的问题吗?(1)把一张长方形纸片按如图所示的方式折一下,就可以裁出正方形纸片.为什么?(2)如何从一块长方形纸片中裁出一块最大的正方形纸片呢?学生动手折叠、思考、交流.(1)由折叠得所得的四边形有三个直角,且一组邻边相等.有三个角是直角的四边形是矩形,有一组邻边相等的矩形是正方形,所以裁出的纸片是正方形.(2)要使裁出的四边形是最大的正方形,只要让四边形(正方形)的边长等于长方形的宽即可.教师总结:正方形既是特殊的矩形,又是特殊的菱形.[设计意图]结合图形的折叠,让学生归纳得出有一组邻边相等的矩形是正方形;有一个角是直角的菱形是正方形.从矩形、菱形的角度出发体会它们之间的关系,感受特殊与一般的关系.2.正方形的性质[过渡语]上面认识了正方形,下面我们继续研究正方形的性质.思路一正方形是特殊的平行四边形,它也是特殊的矩形、特殊的菱形,因此它具有平行四边形、矩形、菱形的所有性质.请回忆学过的内容,回答下面的问题(从边、角、对角线、轴对称性四方面考虑):(1)平行四边形有哪些性质?(2)矩形有哪些性质?(4)正方形有哪些性质?分小组进行讨论,整理所学的性质:[设计意图] 让学生回忆学过的平行四边形、矩形、菱形的定义和性质.在此基础上理解正方形的性质,体会它们之间的联系与区别,感受特殊与一般的关系. 思路二正方形是特殊的平行四边形,它也是特殊的矩形、特殊的菱形,因此它具有平行四边形、矩形、菱形的所有性质.请把它们写出来,并与同桌交流. 学生梳理总结得: 正方形[设计意图] 让学生回忆学过的平行四边形、矩形、菱形的定义和性质,体会它们之间的联系与区别.在此基础上梳理得出正方形的性质,有助于这些知识的正确运用. 3.正方形的判定 思路一提问:怎样判定一个四边形是正方形呢?把你所想的判定方法写出来. 学生自由发言.教师引导学生总结、归纳得正方形的判定方法:(1)定义法:有一个角是直角,有一组邻边相等的平行四边形是正方形. (2)矩形法:有一组邻边相等的矩形是正方形. 图形 对边 对角 对角线 对称性平行四边形平行、相等相等 互相平分不是轴对称图形 矩形 平行、相等 四个角都是直角互相平分且相等 轴对称图形,有两条对称轴菱形平行、四条边都相等相等 互相垂直且平分,每条对角线平分一组对角轴对称图形,有两条对称轴正方形平行、四条边都相等四个角都是直角互相垂直、平分且相等,每条对角线平分一组对角轴对称图形,有四条对称轴思路二既然正方形是特殊的图形,那么我们就可以通过一般图形来判定正方形.请大家考虑:满足什么条件的矩形是正方形?你有哪些方法?类似地,如何通过菱形和平行四边形来判定正方形?教师深入学生中,督促学生积极探索交流,了解学生的思维深度和广度并及时加以校正和激励.派学生代表走向讲台进行总结发言,并鼓励其他学生大胆提问.师进一步归纳正方形的判定方法.[知识拓展](1)平行四边形、矩形、菱形和正方形的定义和判定方法如下表: 图形定义判定平行四边形两组对边分别平行的四边形1.两组对边分别相等的四边形2.两组对角分别相等的四边形3.对角线互相平分的四边形4.一组对边平行且相等的四边形矩形有一个角是直角的平行四边形1.对角线相等的平行四边形2.有三个角是直角的四边形菱形有一组邻边相等的平行四边形1.对角线互相垂直的平行四边形2.四条边相等的四边形正方形有一个角是直角,有一组邻边相等的平行四边形1.有一个角是直角的菱形2.有一组邻边相等的矩形3.有一个角是直角,有一组邻边相等的平行四边形4.例题讲解[过渡语]上面我们研究了正方形的定义、性质和判定,下面我们举例说明它们的应用. (教材例5)求证:正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形. 学生分析题设和结论,画图,写出已知和求证.已知:如图,四边形ABCD是正方形,对角线AC,BD相交于点O.求证:△ABO,△BCO,△CDO,△DAO是全等的等腰直角三角形.师生分析:利用正方形的性质“对角线互相垂直平分且相等,每条对角线平分一组对角”可以得到四个三角形是全等的等腰直角三角形.学生独立完成解题过程.一生板书:证明:∵四边形ABCD是正方形,∴AC=BD,AC⊥BD,AO=BO=CO=DO.∴△ABO,△BCO,△CDO,△DAO都是等腰直角三角形,并且△ABO≌△BCO≌△CDO≌△DAO.教师点评,纠正写法上的不足.(补充)如图,在平行四边形ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证△AOD≌△EOC;(2)连接AC,DE,当∠B=∠AEB= °时,四边形ACED是正方形.请说明理由.师生共同分析:(1)根据题意可得∠ADC=∠OCE,∠DAO=∠OEC,OC=OD,所以△AOD≌△EOC.(2)当∠B=∠AEB=45°时,根据△AOD≌△EOC,先证明四边形ACED是平行四边形,再根据∠COE=∠BAE=90°,得到平行四边形ACED是菱形,AB=AE,AB=CD,故AE=CD,从而可知菱形ACED是正方形.学生独立写出过程后,教师重点指导第(2)问的解答过程.证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC.∴∠ADC=∠OCE,∠DAO=∠OEC.又∵O是CD的中点,∴OC=OD.∴△AOD≌△EOC.解:(2)如图,当∠B=∠AEB=45°时,四边形ACED是正方形.理由如下:∵△AOD≌△EOC,又∵OC=OD,∴四边形ACED是平行四边形.∵∠B=∠AEB=45°,∴AB=AE,∠BAE=90°.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠COE=∠BAE=90°.∴平行四边形ACED是菱形.∵AB=AE,AB=CD,∴AE=CD.从而可知菱形ACED是正方形.[解题策略]探索条件类问题,先看题中的已知条件,根据正方形的判定方法,缺什么就补什么条件,一般从“矩形+一组邻边相等”或“菱形+有一个角是直角”去考虑.[设计意图]运用正方形的性质、判定解决有关的问题,培养运用所学知识解题的意识,提高解题能力.课堂小结:师生共同归纳小结.本节课,我们学习了正方形的性质和判定,弄清了正方形、平行四边形、矩形、菱形的关系:课堂检测1.下列命题是真命题的是()A.矩形的对角线互相垂直C.正方形的对角线相等且互相垂直D.四边形的对角线互相平分解析:根据矩形的对角线相等,可判断选项A错;根据菱形的对角线互相垂直,可判断选项B 错;根据正方形的对角线互相垂直、平分且相等,可判断选项C正确;四边形的对角线无特性,可判断选项D错.故选C.2.在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的是()A.AC=BD,AB∥CD,AB=CDB.AD∥BC,∠A=∠CC.AO=BO=CO=DO,AC⊥BDD.AO=CO,BO=DO,AB=BC解析:根据“对角线相等的平行四边形是矩形”可判定选项A是矩形;根据“两直线平行,同旁内角互补”“等量代换”“同旁内角互补,两直线平行”可判定选项B是平行四边形;根据“对角线互相垂直、平分且相等的四边形是正方形”可判定选项C是正方形;根据“一组邻边相等的平行四边形是菱形”可判定选项D是菱形.故选C.3.如图所示,E是正方形ABCD的边AD上任意一点,EF⊥BD于点F,EG⊥AC于点G,若AB=10 cm,则四边形EFOG的周长是.解析:先由题意证明四边形EFOG是矩形,进而可知矩形EFOG的周长为OD的长的2倍,然后根据勾股定理得OD的长为5 cm.故填10 cm.板书设计:18.2.3正方形1.正方形的认识2.正方形的性质3.正方形的判定4.例题讲解例1例2一、教材作业【必做题】教材第59页练习第1,2,3题;教材第61页习题18.2第7,8题.【选做题】教材第61页习题18.2第12题.二、课后作业【基础巩固】1.矩形、正方形、菱形的共同性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分D.每一条对角线平分一组对角2.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A.①②B.②③C.①③D.②④3.如图,正方形ABCD中,CE⊥MN,∠MCE=35°,那么∠ANM是()A.45°B.55°C.65°D.75°4.如图所示,在四边形ABCD中,AB=BC=CD=DA,对角线AC与BD相交于点O.若不增加任何字母与辅助线,要使得四边形ABCD是正方形,则还需增加的一个条件是.5.如图,正方形ABCD中,AC是对角线,E是BC延长线上一点,CE=AC,则∠E= 度.【能力提升】6.如图,正方形ABCD的对角线AC,BD交于点O,∠OCF=∠OBE.试猜想OE与OF的大小关系,并说明理由.7.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证∠ADB=∠CDB;(2)若∠ADC=90°,求证四边形MPND是正方形.【拓展探究】8.如图,在正方形ABCD中,AC是对角线,AE平分∠BAC,试猜想AB,AC,BE之间的关系,并证明你的猜想.课堂反思通过本节课的教学活动,学生进一步认识了正方形,基本掌握了正方形的判定和性质,并能运用所学的知识解决一些问题.由于课堂时间有限,加上学生个体的差异,学生不能灵活运用所学来解决。
部审人教版八年级数学下册教学设计18.2.3 第1课时《正方形的性质》

部审人教版八年级数学下册教学设计18.2.3 第1课时《正方形的性质》一. 教材分析人教版八年级数学下册第18.2.3节《正方形的性质》是初中数学的重要内容,主要让学生掌握正方形的性质。
本节课的内容在学生的认知发展过程中起着承上启下的作用,为后续学习正多边形的性质和几何证明打下基础。
教材通过引入正方形,让学生在已有的矩形、菱形知识的基础上,进一步探究正方形的性质,培养学生的观察、思考、推理能力。
二. 学情分析八年级的学生已经掌握了矩形、菱形的性质,具备一定的观察、思考、推理能力。
但在证明方面,部分学生可能还存在一定的困难。
因此,在教学过程中,要注意引导学生运用已学的知识解决新问题,提高学生的证明能力。
三. 教学目标1.知识与技能:让学生掌握正方形的性质,能运用正方形的性质解决实际问题。
2.过程与方法:通过观察、思考、推理,培养学生探究几何问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.重点:正方形的性质。
2.难点:正方形性质的证明。
五. 教学方法采用问题驱动法、合作学习法、引导发现法等,引导学生观察、思考、推理,培养学生自主学习的能力。
六. 教学准备1.课件:正方形的性质的相关图片、几何画板等。
2.学具:正方形纸片、直尺、圆规等。
3.教学素材:正方形性质的证明题、练习题等。
七. 教学过程导入(5分钟)教师通过展示正方形的图片,引导学生观察正方形的特点,激发学生的学习兴趣。
提问:你们已经掌握了矩形、菱形的性质,那么正方形和它们有什么相同和不同之处呢?呈现(10分钟)教师呈现正方形的性质,引导学生思考并证明。
1.正方形的四条边相等。
2.正方形的四个角都是直角。
3.对角线互相垂直平分,且相等。
教师引导学生分组讨论,每组选取一个性质进行证明。
在讨论过程中,教师巡回指导,帮助学生解决证明过程中遇到的问题。
操练(10分钟)教师出示一些关于正方形性质的练习题,让学生独立完成。
人教版八年级下册数学第1课时 正方形的性质教案

18.2.3正方形第1课时正方形的性质教学设计课题正方形的性质授课人素养目标1.理解正方形的概念,体会特殊平行四边形之间的关系.2.通过观察、比较、动手操作探究正方形边、角、对角线、对称的性质,培养学生的归纳探究能力和数学表达能力.3.利用正方形的性质定理进行计算或证明,培养学生分析问题和解决问题的能力.教学重点正方形性质的理解及其应用.教学难点正方形与平行四边形、矩形、菱形的区别与联系.教学活动教学步骤师生活动活动一:创设情境,导入新课设计意图通过图片展示,引导学生思考正方形的概念及性质.【情境导入】仔细观察下列实际生活中的图片,你会发现这些都是正方形的形象.正方形是我们熟悉的图形,你还能列举出正方形在生活中应用的其他例子吗?结合已有经验,类比菱形与矩形,正方形的概念是怎样的呢?教师总结:正方形可以定义为有一组邻边相等并且有一个角是直角的平行四边形.下面我们一起来探讨一下正方形的性质吧!【教学建议】让学生根据生活经验及图片思考正方形的概念,学生从矩形和菱形的角度回答正方形的概念也可以,正确即可.活动二:动手操作,探究新知设计意图通过回忆体会正方形与平行四边形、矩形、菱形的区别与联系.探究点正方形的性质1.边、角、对角线的性质探究(1)我们回忆一下小学学过的正方形,它有什么性质?答:正方形的四条边都相等,四个角都是直角.(2)上面正方形的概念中提到有一组邻边相等的平行四边形是什么图形?答:菱形.(3)上面正方形的概念中提到有一个角是直角的平行四边形是什么图形?答:矩形.事实上,如果把矩形、菱形各添加一个条件,平行四边形添加两个条件均可得到正方形,可以用下面结构图直观呈现这种关系:归纳总结:正方形既是矩形,又是菱形,它既有矩形的性质,又有菱形的性质.我们根据前边的学习,除了边和角,还可以研究一下正方形的对角线,那么它的对角线就是互相平分、相等且垂直.【教学建议】让学生回忆并类比平行四边形、矩形、菱形的性质来研究正方形的性质,引导学生从正方形是特殊的平行四边形、矩形、菱形入手,分别从边、角、对角线、对称性等几个方面进行归纳总结.设计意图引导学生发现直角三角形斜边上的中线的性质.正方形的对角线除了上述基本性质外,还有无其他性质呢?事实上,它可以将正方形分成四个全等的等腰直角三角形.我们可以试着证明:(教材P58例5)求证:正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.已知:如图,四边形ABCD 是正方形,对角线AC ,BD 相交于点O.求证:△ABO ,△BCO ,△CDO ,△DAO 是全等的等腰直角三角形.证明:∵四边形ABCD 是正方形,∴AC =BD ,AC ⊥BD ,AO =BO =CO =DO.∴△ABO ,△BCO ,△CDO ,△DAO 都是等腰直角三角形,并且△ABO ≌△BCO ≌△CDO ≌△DAO.2.正方形的对称性我们再想一想:正方形是轴对称图形吗?它的对称轴是什么?答:如图,取一张正方形纸片,将它沿过对边中点的直线和对角线折叠,折叠后的两部分均能重合.归纳总结:正方形是轴对称图形,它的对称轴有四条,分别是对边中点的连线以及两条对角线所在的直线.【对应训练】1.正方形的一条边长是3,那么它的对角线长是322.如图,在正方形ABCD 中,点E 在BD 上,且BE =CD ,则∠BEC 的度数为67.5°.3.如图,在正方形ABCD 中,点E ,F 分别在AB ,BC 边上,AE =BF ,连接AF ,DE.求证:△ADE ≌△BAF.证明:∵四边形ABCD 为正方形,∴AD =BA ,∠DAE =∠ABF =90°.在△ADE 和△BAF 中,AD =BA ,∠DAE =∠ABF ,AE =BF ,∴△ADE ≌△BAF(SAS).活动三:综合运用,巩固提升设计意图强化学生对正方形性质的掌握.例如图,在正方形ABCD 中,点E 在边BC 上,点F 在CD 的延长线上,且BE =DF.(1)求证:AE =AF ,AE ⊥AF ;(2)若BD 与EF 相交于点M ,连接AM ,试判断AM 与EF 的数量关系和位置关系,并说明理由.(1)证明:∵四边形ABCD 为正方形,∴∠ABE =∠BAD =∠ADC =∠ADF =90°,AB =AD.又BE =DF ,∴△ABE ≌△ADF(SAS),∴AE =AF ,∠BAE =∠DAF.∴∠DAF +∠EAD =∠BAE +∠EAD ,即∠EAF =∠BAD =90°,∴AE ⊥AF.【教学建议】提醒学生:(1)与正方形性质相关的证明题往往是利用正方形边、角、对角线的性质,将其转化为证明三角形全等的条件;(2)正方形两条对角线将正方形分割为四个全等的等(2)解:AM =12EF ,AM ⊥EF.理由如下:如图,过点E 作EN ∥CD ,交BD 于点N ,∴∠MNE =∠MDF ,∠MEN =∠MFD ,∠NEB=∠C =90°.∵四边形ABCD 为正方形,∴∠NBE =45°,∴∠BNE =90°-∠NBE =45°,∴∠NBE =∠BNE ,∴BE =NE.又BE =DF ,∴NE =DF ,∴△MNE ≌△MDF(ASA),∴EM =FM.∵AE =AF ,∠EAF =90°,∴AM =12EF ,AM ⊥EF.【对应训练】1.如图,AC 是正方形ABCD 的对角线,若以AD 为边向正方形内部作等边三角形ADE ,边DE 交AC 于点F ,则∠EFC =75°.2.如图,E ,F 是正方形ABCD 的对角线AC 上的两点,AC =8,AE =CF =2,则四边形BEDF 的周长是85.3.教材P59练习第2题.腰直角三角形,可得到45°角.活动四:随堂训练,课堂总结【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:正方形的概念是什么?正方形有哪些性质?正方形与平行四边形、矩形、菱形有怎样的区别和联系?【知识结构】【作业布置】1.教材P 61习题18.2第7,12,15,17题.2.相应课时训练.板书设计18.2.3正方形第1课时正方形的性质一、正方形的概念二、正方形的性质1.边.2.角.3.对角线.4.对称性.教学反思正方形性质的探究内容依旧集中在边、角、对角线三个方面,教学中注意引导学生思索平行四边形、矩形、菱形和正方形的区别与联系,使其形成完整的四边形知识网络.的应用,可以培养学生的应用意识从本节课的授课过程来看,灵活运用了多种教学方法,既有与现实生活的联系,又有动手操作,调动了学生学习的积极性,充分发挥了学生的主体作用.解题方法:如何区分平行四边形、菱形、矩形、正方形的性质?①从边的角度来看:平行四边形、矩形、菱形、正方形都具有对边平行且相等的性质,而菱形和正方形还具有四条边都相等的性质.②从角的角度来看:平行四边形、矩形、菱形、正方形都具有对角相等且邻角互补的性质,而矩形和正方形还具有四个角都是直角的性质.③从对角线的角度来看:平行四边形、矩形、菱形、正方形都具有对角线互相平分的性质,而矩形和正方形还具有对角线相等的性质,菱形和正方形还具有对角线互相垂直的性质.例1如图为某城市部分街道示意图,四边形ABCD 为正方形,点G 在对角线BD 上,GE ⊥CD ,GF ⊥BC ,AD =1500m ,小敏行走的路线为B→A→G→E ,小聪行走的路线为B→A→D→E→F.若小敏行走的路程为3100m ,则小聪行走的路程为4600m .解析:如图,连接GC.∵四边形ABCD 为正方形,∴∠BCD =90°,AD =CD ,∠ADB =∠CDB =45°.又GE ⊥CD ,∴△DEG 是等腰直角三角形.∴DE =GE.在△AGD 和△CGD AD =CD ,∠ADG =∠CDG ,DG =DG ,∴△AGD ≌△CGD(SAS ),∴AG =CG.∵GE ⊥CD ,GF ⊥BC ,∴∠GEC =∠ECF =∠GFC =90°,∴四边形GECF 是矩形.∴EF =CG ,∴EF =AG.∴BA +AD +DE +EF -BA -AG -GE =AD =1500m .∵小敏共走了3100m ,即BA +AG +GE =3100m ,∴小聪行走的路程为BA +AD +DE +EF =3100+1500=4600(m ).例2如图,在边长为6的正方形ABCD 中,M 为对角线BD 上一点,连接AM 并延长,交CD 于点P.若PM =PC ,求AM 的长.解:∵四边形ABCD 是边长为6的正方形,∴AD =CD =6,∠ADC =90°,∠ADM =∠CDM =45°.在△ADM 和△CDM DM =DM ,∠ADM =∠CDM ,AD =CD ,∴△ADM ≌△CDM(SAS ),∴∠DAM =∠DCM.∵PM =PC ,∴∠CMP =∠DCM ,∴∠APD =∠CMP +∠DCM =2∠DCM =2∠DAM.∵∠APD +∠DAM =180°-∠ADC =90°,∴∠DAM =30°.设PD =x ,则AP =2PD =2x ,PM =PC =CD -PD =6-x ,∴AD =AP 2-PD 2=3x =6,解得x =2 3.∴PM =6-x =6-23,AP =2x =43,∴AM =AP -PM =43-(6-23)=63-6.例1如图,正方形ABCD 的边长为4,E ,F 分别是BC ,CD 上一动点,且BE =CF ,连接AE ,BF 交于点P ,连接CP ,则CP 的最小值是(A )A .25-2B .32-2C .22D .2+2解析:在正方形ABCD 中,AB =BC ,∠ABC =∠BCD =90°.在△ABE 和△BCF =BC ,ABE =∠BCF ,=CF ,∴△ABE ≌△BCF(SAS ),∴∠BAE =∠CBF.∵∠CBF +∠ABF =90°,∴∠BAE +∠ABF =90°,∴∠APB =90°.如图,设AB 的中点为G ,连接GP ,GC ,则GP =GB =12AB =12×4=2.∵GP +CP≤GC ,∴当点C ,P ,G 在同一条直线上时,CP 有最小值GC -GP.∵BC =4,BG =2,∴GC =BC 2+BG 2=42+22=2 5.∴CP 的最小值是25-2.故选A .例2如图,正方形OABC 的边OA ,OC 在坐标轴上,点B 的坐标为(-4,4).点P从点A 出发,以每秒1个单位长度的速度沿x 轴向点O 运动;同时,点Q 从点O 出发,以相同的速度沿x 轴的正方向运动,规定点P 到达点O 时,点Q 也停止运动.连接BP ,过点P 作BP 的垂线,与经过点Q 且平行于y 轴的直线l 相交于点D.BD 与y 轴交于点E ,连接PE.设点P 运动的时间为t s .(1)∠PBD 的度数为45°,点D 的坐标为(t ,t)(用含t 的代数式表示).(2)当t 为何值时,△PBE 为等腰三角形?(3)探索△POE 的周长是否随时间t 的变化而变化?若变化,说明理由;若不变,试求这个定值.解:(1)解析:由题意可得AP =OQ =1×t =t ,∴易得AO =PQ.∵四边形OABC 是正方形,∴AO =AB =BC =OC ,∠BAO =∠AOC =∠OCB =∠ABC =90°.∵DQ ∥OC ,∴∠PQD =∠AOC =90°.∵DP ⊥BP ,∴∠BPD =90°.∴∠BPA =90°-∠DPQ =∠PDQ.∵AO =PQ ,AO =AB ,∴AB =QP.在△BAP 和△PQD BAP =∠PQD ,BPA =∠PDQ ,=QP ,∴△BAP ≌△PQD(AAS ).∴AP =QD ,BP=PD.∵∠BPD =90°,BP =PD ,∴∠PBD =∠PDB =45°.∵AP =t ,∴QD =t.∴点D 的坐标为(t ,t).(2)①若PB =PE ,由△BAP ≌△PQD 得PB =PD ,显然PB≠PE ,∴这种情况不存在,应舍去.②若EB =EP ,则∠BPE =∠PBE =45°.∴∠BEP =90°.∴∠PEO =90°-∠BEC =∠EBC.在△POE 和△ECB PEO =∠EBC ,POE =∠ECB ,=BE ,∴△POE ≌△ECB(AAS ).∴OE =CB =OC.∴点E 与点C 重合.∴点P 与点O 重合.∴AP =AO =t.∵B(-4,4),∴AO =CO =4.此时t =4.③若BP =BE ,在Rt △BAP 和Rt △BCE =BE ,=BC ,∴Rt △BAP ≌Rt △BCE(HL ).∴AP=CE.∵AP=t,∴CE=t.∴PO=EO=4-t.∵∠POE=90°,∴EP=PO2+EO2=2(4-t).如图,延长OA到点F,使得AF=CE,连接BF.在△FAB和△ECB=CB,BAF=∠BCE=90°,=CE,∴△FAB≌△ECB(SAS).∴FB=EB,∠FBA=∠EBC.∵∠EBP=45°,∠ABC=90°,∴∠ABP+∠EBC=45°.∴∠FBP=∠ABP+∠FBA=∠ABP+∠EBC=45°.∴∠FBP=∠EBP.在△FBP和△EBP =BE,FBP=∠EBP,=BP,∴△FBP≌△EBP(SAS).∴FP=EP.∴EP=FP=FA+AP=CE+AP.∴EP=t+t=2t.∴2(4-t)=2t.解得t=42-4.综上所述,当t为4或42-4时,△PBE为等腰三角形.(3)△POE的周长不随时间t的变化而变化.由(2)可得EP=CE+AP,∴OP+PE+OE=OP+AP+CE+OE=AO+CO=4+4=8.∴△POE的周长是定值,这个定值为8.。
八年级数学下册18.2.3正方形第1课时正方形的性质导学案

第十八章平行四边形教课备注学生在课前达成自主学习部分正方形第 1 课时正方形的性质学习目标: 1. 理解正方形的观点;2.研究并证明正方形的性质,并认识平行四边形、矩形、菱形之间的联系和差别;3.会应用正方形的性质解决有关证明及计算问题.重点:研究并证明正方形的性质,并认识平行四边形、矩形、菱形之间的联系和差别.难点:会应用正方形的性质解决有关证明及计算问题.自主学习一、知识回首配套 PPT 讲 1.你还记得长方形有哪些性质吗?授1.情形引入2.菱形的性质又有哪些?(见幻灯片3)讲堂研究一、重点研究2.研究点 1 新研究点1:正方形的性质知讲解想想 1. 矩形如何变化后就成了正方形呢?你有什么发现?(见幻灯片邻边 _____4-19)2.菱形如何变化后就成了正方形呢?你有什么发现?一个角是 _____重点概括:正方形定义:有一组邻边 _____而且有一个角是_____的 __________ 叫正方形 .想想正方形是特别的矩形, 也是特别的菱形. 因此矩形、菱形有的性质 , 正方形都有 .那你能说出正方形的性质吗?1.正方形的四个角都是 _________, 四条边 _________.2.正方形的对角线 ________且相互 ______________.证一证已知:如图 , 四边形 ABCD是正方形 .求证:正方形ABCD四边相等 , 四个角都是直角.证明:∵四边形ABCD是正方形 .∴∠ A=____° , AB_____AC.又∵正方形是平行四边形.∴正方形是 ______, 亦是 ______.∴∠ A___∠ B___∠C___∠ D =____ ° ,AB___BC___CD___AD.已知:如图 , 四边形 ABCD是正方形 . 对角线 AC、 BD订交于点O.1求证: AO=BO=CO=DO,AC⊥BD.教课备注证明:∵正方形ABCD是矩形 ,∴AO___BO___CO___DO.∵正方形ABCD是菱形 .∴AC___BD.想想请同学们取出准备好的正方形纸片 , 折一折 , 察看并思虑 . 正方形是否是轴对称图形 ?假如是 , 那么对称轴有几条 ?重点概括:平行四边形、矩形、菱形、正方形之间关系:2.研究点 1 新知讲解正方形的性质: 1. 正方形的四个角都是直角, 四条边相等 .(见幻灯片2.正方形的对角线相等且相互垂直均分.4-19)典例精析例 1 如图,在正方形ABCD中,BEC是等边三角形 .求证:∠ EAD=∠ EDA= 15° .A DECB变式题 1 四边形 ABCD是正方形 , 以正方形ABCD的一边作等边△ADE,求∠ BEC的大小.易错提示:由于等边△ ADE与正方形ABCD有一条公共边,因此边相等.此题分两种状况:等边△ ADE在正方形的外面或在正方形的内部.变式题 2 如图,在正方形ABCD内有一点P 知足 AP=AB, PB=PC,连结 AC、 PD.2( 1)求证:△ APB≌△ DPC;教课备注( 2)求证:∠ BAP=2∠ PAC.2.研究点 1 新知讲解(见幻灯片4-19)例 3 如图,在正方形 ABCD中, P 为 BD上一点, PE⊥ BC于 E, PF ⊥ DC于 F. 试说明: AP=EF.方法总结:在正方形的条件下证明两条线段相等:往常连结对角线结构垂直均分的模型,利用垂直均分线性质,角均分线性质,等腰三角形等来说明.针对训练1. 正方形拥有而矩形不必定拥有的性质是()A. 四个角相等B. 对角线相互垂直均分C. 对角互补D. 对角线相等2. 正方形拥有而菱形不必定拥有的性质()A. 四条边相等B. 对角线相互垂直均分C. 对角线均分一组对角D. 对角线相等3. 如图 , 四边形 ABCD是正方形 , 对角线 AC与 BD订交于点O,AO= 2, 求正方形的周长与面积.3教课备注配套 PPT 讲解二、讲堂小结内容定义:有一组邻相等,而且有一个角是直角的平行四边形叫做正方形 .性质:正方形的性质四个角都是直角1.3.讲堂小结(见 2.四条边都相等幻灯片 25) 3.对角线相等且相互垂直均分当堂检测1. 平行四边形、矩形、菱形、正方形都拥有的是()A.对角线相互均分B.对角线相互垂直C.对角线相等D.对角线相互垂直且相等4.当堂检测(见 2. 一个正方形的对角线长为2cm,则它的面积是()幻灯片 20-24) A.2cm2 B.4cm2 C.6cm2 D.8cm23.在正方形ABC中 , ∠ ADB=________,∠ DAC=_________, ∠ BOC=__________.第3题图第4题图4.在正方形 ABCD中,E 是对角线 AC上一点,且 AE=AB,则∠ EBC的度数是 ___________.5.如图,正方形 ABCD的边长为 1cm,AC为对角线, AE 均分∠ BAC,EF⊥ AC,求 BE的长.4教课备注6.如图在正方形ABCD中 ,E 为 CD上一点, F 为 BC边延伸线上一点, 且 CE=CF. BE与 DF 之间有如何的关系?请说明原因.4.当堂检测(见幻灯片 20-24)5。
人教版数学八年级下册《18.2.3 正方形》教学设计

人教版数学八年级下册《18.2.3 正方形》教学设计一. 教材分析人教版数学八年级下册《18.2.3 正方形》是初中数学的重要内容,主要让学生掌握正方形的性质、判定以及正方形与其他图形的区别。
本节课的内容在学生的认知发展过程中具有承上启下的作用,为后续学习几何知识奠定基础。
教材从正方形的定义、性质、判定三个方面展开,通过丰富的实例和图示,引导学生探索正方形的特征,从而培养学生的空间想象能力和逻辑思维能力。
二. 学情分析学生在八年级上册已经学习了矩形、菱形等平行四边形的性质,对平行四边形的判定有一定的了解。
但是,正方形作为一种特殊的平行四边形,其性质和判定方法与其他平行四边形有所不同,需要学生进一步探究和理解。
此外,正方形在实际生活中的应用广泛,如建筑设计、电路板设计等,学生需要将所学知识与实际应用相结合,提高学习的兴趣和积极性。
三. 教学目标1.知识与技能:理解正方形的定义,掌握正方形的性质、判定方法,能够运用正方形的性质解决实际问题。
2.过程与方法:通过观察、操作、猜想、验证等方法,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生在探究过程中体验到成功的喜悦。
四. 教学重难点1.重点:正方形的性质、判定方法及其应用。
2.难点:正方形性质的证明,正方形与其他平行四边形的区别。
五. 教学方法1.情境教学法:通过生活中的实例,引导学生关注正方形在实际中的应用,提高学生的学习兴趣。
2.探究式教学法:学生进行小组讨论、动手操作,培养学生的自主学习能力。
3.讲解法:对正方形的性质、判定方法进行详细讲解,引导学生理解并掌握。
六. 教学准备1.教学课件:制作正方形的相关课件,包括图片、动画、实例等,以便于生动展示正方形的性质和应用。
2.学具:准备一些正方形的模型或图片,供学生观察和操作。
3.练习题:挑选一些有关正方形的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活中的实例,如建筑设计、电路板设计等,引出正方形的概念,激发学生的学习兴趣。
人教版数学八年级下册18.2.3正方形正方形的性质教学设计

(一)教学重难点
1.正方形性质的深入理解:正方形的性质是本章节的核心内容,学生需要深刻理解正方形的四边相等、四角相等、对边平行、对角线垂直平分且相等等性质,并能灵活运用这些性质解决相关问题。
-难点解析:对角线性质的理解,特别是对角线互相垂直平分且相等的性质,需要通过直观演示和实际操作来加强学生的认知。
(三)学生小组讨论
1.教学活动:将学生分成小组,让他们根据讲授的新知,讨论正方形的性质和判定方法。
2.交流分享:各小组汇报讨论成果,分享正方形性质和判定的心得体会。
3.教师点评:针对学生的讨论,进行点评和指导,纠正错误观念,巩固正确知识。
(四)课堂练习
1.设计练习题:针对正方形的性质和判定,设计不同难度的练习题,让学生巩固所学知识。
2.正方形的判定方法:正方形的判定是学生容易混淆的部分,需要掌握多种判定方法,并能根据不同情况灵活运用。
-难点解析:判定定理的选择和应用,如何从给定的条件中找到关键信息,快速准确地判断一个图形是否为正方形。
3.实际问题的解决:将正方形的性质应用于解决实际问题,是考察学生知识运用能力的重点。
-难点解析:如何引导学生将抽象的几何性质与具体的实际问题联系起来,设计合理的解题方案。
4.家长应关注孩子的学习情况,适时给予指导和鼓励,共同促进孩子的几何学习。
1.喜爱几何:激发学生对几何图形的兴趣,培养学生对数学美的感受。
2.积极主动:鼓励学生主动参与课堂活动,勇于探索、质疑、解决问题,培养学生积极向上的学习态度。
3.严谨细致:通过正方形性质的探究,培养学生严谨细致的思考习惯,提高学生几何逻辑思维。
4.团队合作:培养学生团队合作精神,学会倾听他人意见,互相学习,共同提高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18.2.3正方形
第1课时正方形的性质
1.掌握正方形的概念、性质,并会用它们进行有关的论证和计算;(重点)
2.理解正方形与平行四边形、矩形、菱形的联系和区别.(难点)
一、情境导入
做一做:用一张长方形的纸片(如图所示)折出一个正方形.学生在动手中对正方形产生感性认识,并感知正方形与矩形的关系.
问题:什么样的四边形是正方形?
二、合作探究
探究点一:正方形的性质
【类型一】特殊平行四边形的性质的综合
菱形,矩形,正方形都具有的性质是()
A.对角线相等且互相平分
B.对角线相等且互相垂直平分
C.对角线互相平分
D.四条边相等,四个角相等
解析:选项A不正确,菱形的对角线不相等;选项B不正确,菱形的对角线不相等,矩形的对角线不互相垂直;选项C正确,三者均具有此性质;选项D不正确,矩形的四条边不相等,菱形的四个角不相等.故选C.
方法总结:正方形具有四边形、平行四边形、矩形、菱形的所有性质.
【类型二】利用正方形的性质解决线段的计算或证明问题
如图所示,正方形ABCD的边长为1,AC是对角线,AE平分∠BAC,EF⊥AC 于点F.
(1)求证:BE=CF;
(2)求BE的长.
解析:(1)由角平分线的性质可得到BE =EF,再证明△CEF为等腰直角三角形,即可证BE=CF;(2)设BE=x,在△CEF中可表示出CE.由BC=1,可列出方程,即可求得BE.
(1)证明:∵四边形ABCD为正方形,∴∠B=90°.∵EF⊥AC,∴∠EF A=90°.∵AE平分∠BAC,∴BE=EF.又∵AC是正方形ABCD的对角线,∴AC平分∠BCD,∴∠ACB=45°,∴∠FEC=∠FCE=45°,∴EF=FC,∴BE=CF;
(2)解:设BE=x,则EF=CF=x,CE =1-x.在Rt△CEF中,由勾股定理可得CE =2x.∴2x=1-x,解得x=2-1,即BE的长为2-1.
方法总结:正方形被每条对角线分成两个直角三角形,被两条对角线分成四个等腰直角三角形,因此正方形的计算问题可以转化到直角三角形和等腰直角三角形中去解决.
【类型三】利用正方形的性质解决角的计算或证明问题
在正方形ABCD 中,点F 是边AB
上一点,连接DF ,点E 为DF 的中点.连接BE 、CE 、AE .
(1)求证:△AEB ≌△DEC ;
(2)当EB =BC 时,求∠AFD 的度数. 解析:(1)根据“正方形的四条边都相等”可得AB =CD ,根据“正方形每一个角都是直角”可得∠BAD =∠ADC =90°,再根据“直角三角形斜边上的中线等于斜边的一半”可得AE =EF =DE =1
2DF ,根据
“等边对等角”可得∠EAD =∠EDA ,再得出∠BAE =∠CDE ,然后利用“SAS ”证明即可;(2)根据“全等三角形对应边相等”可得EB =EC ,再得出△BCE 是等边三角形.根据等边三角形的性质可得∠EBC =60°,然后求出∠ABE =30°.再根据“等腰三角形两底角相等”求出∠BAE ,然后根据“等边对等角”可得∠AFD =∠BAE .
(1)证明:在正方形ABCD 中,AB =CD ,∠BAD =∠ADC =90°.∵点E 为DF 中点,∴AE =EF =DE =
1
2
DF ,∴∠EAD =∠EDA .∵∠BAE =∠BAD -∠EAD ,∠CDE =∠ADC -∠EDA ,∴∠BAE =∠CDE .在△AEB 和△DEC 中,⎩⎪⎨⎪
⎧AB =CD ,∠BAE =∠CDE ,AE =DE ,
∴△AEB ≌△DEC (SAS);
(2)解:∵△AEB ≌△DEC ,∴EB =EC .∵EB =BC ,∴EB =BC =EC ,∴△BCE 是等边三角形,∴∠EBC =60°,∴∠ABE =90°-60°=30°.∵EB =BC =AB ,∴∠BAE =1
2×(180°-30°)=75°.又∵AE =EF ,∴∠AFD =∠BAE =75°.
方法总结:正方形是最特殊的平行四边形,在正方形中进行计算时,要注意计算出相关的角的度数,要注意分析图形中有哪些相等的线段等.
探究点二:正方形性质的综合应用 【类型一】 利用正方形的性质解决线段的倍、分、和、差关系
如图,AE 是正方形ABCD 中
∠BAC 的平分线,AE 分别交BD 、BC 于F 、E ,AC 、BD 相交于O .求证:
(1)BE =BF ; (2)OF =1
2
CE .
解析:(1)根据正方形的性质可求得∠ABE =∠AOF =90°.由于AE 是正方形ABCD 中∠BAC 的平分线,根据“等角的余角相等”即可求得∠AFO =∠AEB .根据“对顶角相等”即可求得∠BFE =∠AEB ,BE =BF ;(2)连接O 和AE 的中点G .根据三角形的中位线的性质即可证得OG ∥BC ,OG =1
2CE .根据平行线的性质即可求得
∠OGF =∠FEB ,从而证得∠OGF =∠AFO ,OG =OF ,进而证得OF =1
2CE .
证明:(1)∵四边形ABCD 是正方形,∴AC ⊥BD ,∴∠ABE =∠AOF =90°,∴∠BAE +∠AEB =∠CAE +∠AFO =90°.∵AE 是∠BAC 的平分线,∴∠CAE =∠BAE ,∴∠AFO =∠AEB .又∵∠AFO =∠BFE ,∴∠BFE =∠AEB ,∴BE =BF ;
(2)连接O 和AE 的中点G .∵AO =CO ,AG =EG ,∴OG ∥BC ,OG =1
2CE ,∴∠OGF
=∠FEB .∵∠AFO =∠AEB ,∴∠OGF =∠AFO ,∴OG =OF ,∴OF =1
2CE .
方法总结:在正方形的条件下证明线段的关系,通常的方法是连接对角线构造垂直平分线,利用垂直平分线的性质、中位线定理、角平分线、等腰三角形等知识来证明,有时也利用全等三角形来解决.
【类型二】 有关正方形性质的综合应用题
如图,正方形AFCE 中,D 是边
CE 上一点,B 是CF 延长线上一点,且AB =AD ,若四边形ABCD 的面积是24cm 2.则AC 长是________cm.
解析:∵四边形AFCE 是正方形,∴AF =AE ,∠E =∠AFC =∠AFB =90°.在
Rt △AED 和Rt △AFB 中,⎩⎪⎨
⎪⎧AD =AB ,AE =AF ,
∴Rt △AED ≌Rt △AFB (HL),∴S △AED =
S △AFB .∵S 四边形ABCD =24cm 2,∴S 正方形AFCE =24cm 2,∴AE =EC =26cm.根据勾股定理得AC =(26)2+(26)2=43(cm).故答案为4 3.
方法总结:在解决与面积相关的问题时,可通过证三角形全等实现转化,使不规则图形的面积转变成我们熟悉的图形面积,从而解决问题.
三、板书设计
1.正方形的定义和性质 四条边都相等,四个角都是直角的四边形是正方形.
对边平行,四条边都相等;四个角都是直角;对角线互相垂直、平分且相等,并且每一条对角线平分一组对角.
2.正方形性质的综合应用
通过学生动手操作得出的结论归纳矩形和菱形的性质,继而得到正方形的性质,激起了学生的学习热情和兴趣.创设有意义的数学活动,使枯燥乏味的数学变得生动活泼.让学生觉得学习数学是快乐的,使学生保持一颗健康、好学、进取的心及一份浓厚的学习兴趣.。