数学分析导数与微分

合集下载

数学分析的重要知识点总结

数学分析的重要知识点总结

数学分析的重要知识点总结数学分析是研究数学连续性和变化的基础学科,它提供了许多有关函数、极限、导数、积分和级数等方面的重要概念和工具。

在本文中,我们将总结数学分析中的一些重要知识点,以帮助读者更好地理解和应用这些概念。

一、函数与极限函数是数学分析的基本概念之一。

函数描述了两个变量之间的关系,并将输入映射到输出。

函数可以是连续的、可微分的或可积分的,它在各种科学和工程领域中都有广泛的应用。

极限是函数连续性和变化的关键概念。

在数学中,极限描述了函数在某个点或无穷远处的趋势。

根据函数的定义域和值域,我们可以讨论函数在某个点的左极限、右极限和无穷极限。

二、导数与微分导数是函数变化率的量度。

对于一个函数,它在某一点的导数表示了函数在该点的变化速率。

导数的概念和性质对于研究函数的变化特性和优化问题至关重要。

微分是导数的应用。

通过微分,我们可以研究函数的最值、曲线的凹凸性和曲率等性质。

微分学在科学和工程领域中广泛应用,如物理学中的运动学和力学、经济学中的边际分析等。

三、积分与积分应用积分是导数的逆运算,它描述了函数在一定区间上的累积效应。

积分在计算图形面积、求解微分方程和描述物理量等方面具有重要应用。

不定积分是对函数的原函数进行定义,可以计算出函数的一个特定形式。

定积分是对函数在一定区间上的累积效应进行计算。

定积分在求解曲线下面积、计算变量期望和求解微分方程初始条件等问题中发挥着重要作用。

四、级数与收敛性级数是由一系列项组成的无穷和。

级数的和可以是有限的或无限的。

通过研究级数的收敛性,我们可以确定级数是否趋于一个有限的极限值。

收敛性是级数是否趋于一个固定值的性质。

根据级数的项的大小和符号,我们可以使用各种测试方法来判断级数的收敛性,如比值测试、根值测试和积分测试等。

通过学习数学分析的重要知识点,我们可以更好地理解和应用这些概念。

数学分析对于数学的发展和各个领域的应用都具有深远的影响,它为我们解决问题提供了强有力的工具和方法。

大一数学分析知识点归纳

大一数学分析知识点归纳

大一数学分析知识点归纳在大一的数学分析课程中,我们学习了许多重要的数学概念和工具,这些知识点对于我们理解数学的基本原理和解决实际问题非常重要。

在本文中,我将对大一数学分析课程中的主要知识点进行归纳和总结。

1. 极限与连续在数学分析中,极限是一个核心概念。

我们学习了极限的定义、性质和计算方法。

通过极限,我们可以研究函数的收敛性、连续性和导数等性质。

此外,我们还学习了连续函数的定义、中值定理等与极限和连续相关的重要概念和定理。

2. 导数与微分导数是数学中另一个关键概念。

我们通过极限的概念推导出导数的定义,并学习了一些基本的导数计算规则以及导数的几何和物理意义。

微分作为导数的微小变化量,也是数学分析中的重要内容。

我们研究了微分的定义和性质,以及微分中的高阶导数、隐函数求导、参数方程求导等内容。

3. 积分与定积分积分也是大一数学分析的重要内容。

我们学习了定积分的定义和性质,并研究了基本的积分计算方法,如换元积分法、分部积分法等。

通过定积分,我们可以计算函数的面积、长度、弧长等物理量,求解一些实际问题,同时也深入理解了积分与导数之间的关系。

4. 一元函数的应用在大一数学分析中,我们也学习了一元函数的一些应用。

这包括了函数的最值和最优化问题、曲线的切线与法线、弧长与曲率、微分方程的基本概念和解法等。

这些应用将我们所学的数学知识与实际问题相结合,帮助我们更好地理解数学的应用价值。

5. 数学证明与严谨性除了具体的知识点外,大一数学分析也注重培养我们的数学证明能力和严谨的数学思维。

我们学习了数学证明的基本方法和技巧,如直接证明、反证法、数学归纳法等。

通过数学证明的练习,我们可以提高逻辑思维和分析问题的能力,同时也培养了我们的严谨性和思考问题的深度。

总结起来,大一数学分析涵盖了极限与连续、导数与微分、积分与定积分、一元函数的应用以及数学证明与严谨性等重要知识点。

这些知识点相互关联、相互补充,为我们打下了数学分析的基础,同时也为我们今后更高层次的数学学习奠定了坚实的基础。

数学分析第十六章课件偏导数与全微分

数学分析第十六章课件偏导数与全微分

解: 已知

V 2 rh r r 2h
r 20, h 100, r 0.05, h 1
V 2 20100 0.05 202 (1) 200 (cm3)
即受压后圆柱体体积减少了
作业
• P192:1:(单数题) • P193:7;9 • P208:1:(双数题) • P208:3 • P209:9 • P217:1:(1;3);2:(2;4);6 • P223:2;3;8
定理16.1 3.全微分与偏导数的关系:
f (x, y) 设 (x0 , y0 ) 可微,在表达式中 分别令 f 0 x 0 和 x 0 y 0

定理16.2
从而:f 在 p0 的全微分可写成
dz |p0 fx (x0 , y0 )dx f y (x0 , y0 )dy
z f (x) 在某区域 G 内(x,y) 点的全微分为
f11,
f12,
f21,
f22
书上记号易混
链式法则的应用
偏微分方程的变换
目的
求解
2)复合函数的全微

u
f (x, y),若x, y为自变量,则
du f dx f dy x y
进一步,若x (s,t) y (s,t) 则有
du u ds u dt dx x ds x dt dy y ds y dt
r x 2
2x x2 y2 z2
x r
r z z r
4、计算
的近似值.
解: 设
,则
f x (x, y) y x y1 , f y (x, y) x y ln x

则 1.042.02 f (1.04, 2.02 )
1 2 0.04 0 0.02 1.08

数学分析5.5微分(含习题详解)

数学分析5.5微分(含习题详解)

第五章导数和微分5 微分一、微分的概念定义1:设函数y=f(x)定义在点x0的某邻域U(x0)内. 当给x0一个增量△x,x0+△x∈U(x0)时,相应地得到函数的增量为△y=f(x0+△x)-f(x0). 如果存在常数A,使得△y能表示为△y=A△x +o(△x),则称函数f在点x0可微,并称上式中的第一项A△x为f在点x0的微分,记作:dy=A△x,或df(x)=A△x.当A≠0时,微分dy称为增量△y的线性主部。

定理5.10:函数f在点x0可微的充要条件是函数f在点x0可导,而且定义中的A=f’(x0).证:先证必要性:若f在点x0可微,则△y=A△x +o(△x),即=A+o(1),两边取极限得:f’(x0)==(A+o(1))=A.再证充分性:若f在点x0可导,则f在点x0的有限增量公式为:△y=f’(x0)△x+o(△x),根据微分的定义,f在点x0可微且有dy=f’(x0)△x.微分的几何意义:(如图)当自变量由x0增加到x0+△x时,函数增量△y= f(x0+△x)-f(x0)=RQ,而微分则是在点P处的切线上与△x所对应的增量,即dy=f’(x0)△x=RQ’,且==f’(x0)=0,所以当f ’(x 0)≠0时,=0. 即当x →x 0时线段Q ’Q 远小于RQ ’。

若函数y=f(x)在区间I 上每一点都可微,则称f 为I 上的可微函数.函数y=f(x)在I 上任一点x 处的微分记作dy=f ’(x)△x ,x ∈I. 特别地,当y=x 时,dy=dx=△x ,则微分也可记为dy=f ’(x)dx ,即 f ’(x)=,可见函数的导数等于函数微分与自变量微分的商。

因此导数也常称为微商。

二、微分的运算法则1、d[u(x)±v(x)]=du(x)±dv(x);2、d[u(x)v(x)]=v(x)du(x)+u(x)dv(x);3、d=;4、d(f ◦g(x))=f ’(u)g ’(x)dx ,其中u=g(x),或dy=f ’(u)du.例1:求y=x 2lnx+cosx 2的微分。

数学分析知识点

数学分析知识点

数学分析知识点数学分析是数学的一个重要分支,涵盖了许多基础概念和重要定理。

在学习数学分析的过程中,我们需要掌握一些关键的知识点,这些知识点对于理解和运用数学分析有着重要的作用。

下面将介绍一些数学分析的基本知识点。

一、极限与连续性1. 极限:极限是数学中一个非常重要的概念,它描述了函数在某一点的趋近情况。

对于一个函数f(x),当x趋向于某一点a时,如果f(x)的值趋近于某个常数L,那么我们称L为函数f(x)在点a处的极限,记作lim(f(x))=L。

2. 连续性:函数在某一点处连续是指该点的函数值等于极限值。

在实数域上,函数f(x)在区间[a, b]上连续是指f(x)在[a, b]上每一个点都连续。

二、导数与微分1. 导数:导数描述了函数在某一点处的变化率。

如果函数f(x)在x=a处可导,那么它的导数f'(a)表示f(x)在点a处的变化率。

2. 微分:微分是导数的几何化,是函数在某一点处的线性变化。

函数在点a处的微分df(a)是指函数在点a处的切线方程的增量。

三、积分与微积分基本定理1. 不定积分:不定积分是积分的一种形式,用于求函数的原函数。

如果函数F(x)是函数f(x)的原函数,那么我们记作F(x)=∫f(x)dx。

2. 定积分:定积分是积分的一种形式,用于计算函数在一个区间上的总量。

如果函数f(x)在区间[a, b]上连续,那么它在该区间上的定积分∫[a, b] f(x)dx表示f(x)在[a, b]上的总量。

四、级数与收敛性1. 级数:级数是一种无穷求和的形式,通常用于描述无穷个数的总和。

级数∑a_n=a_0+a_1+a_2+...+a_n表示从0到无穷大的项的和。

2. 收敛性:级数的收敛性用于描述级数总和的趋向情况。

如果级数∑a_n在无穷大时收敛到一个常数L,那么我们称该级数收敛。

以上介绍了数学分析中的一些基本知识点,这些知识点在数学分析的学习过程中扮演着重要的角色。

通过深入理解和掌握这些知识点,我们可以更好地理解和应用数学分析的概念和定理,从而提高数学分析的学习效率和水平。

大学数学知识点

大学数学知识点

大学数学知识点一、微积分微积分是数学的一个重要分支,它主要研究变化的量和它们之间的关系。

在大学数学中,微积分是必修的一门课程。

1. 导数与微分导数是描述函数变化率的概念,它表示函数在某一点上的瞬时变化率。

导数的计算可以通过极限的方法得到,它在物理、经济学等领域中有广泛应用。

微分是导数的一种运算,它表示函数在某一点附近的近似线性变化。

2. 积分积分是导数的逆运算,它可以还原函数的反常量。

通过积分可以计算曲线下面的面积、弧长等物理量。

3. 微分方程微分方程是描述自然界中变化过程的数学模型。

常见的微分方程包括一阶和二阶方程,它们在物理学、工程学等领域中有广泛应用。

二、线性代数线性代数是现代数学的一个基础学科,主要研究向量空间及其上的线性变换。

1. 向量与矩阵向量是具有大小和方向的量,它在几何学和物理学中有重要地位。

矩阵则是将向量按行或按列排列形成的矩形阵列,它在线性代数和计算机科学中被广泛使用。

2. 线性方程组线性方程组是由一组线性方程组成的方程组,研究它的解集和特殊解是线性代数的重要内容。

3. 特征值与特征向量特征值与特征向量是线性变换中的重要概念,它们可以帮助我们理解线性变换的性质和特点。

三、概率与统计概率与统计是应用广泛的数学学科,它研究随机事件出现的概率以及根据观测数据进行推断和决策的方法。

1. 概率论概率论是研究随机事件及其规律性的数学分支,它主要研究事件的概率、条件概率、随机变量等。

2. 统计学统计学是研究收集、分析和解释数据的科学,它包括描述统计和推断统计两个大的方向。

描述统计主要研究数据的整理和展示,推断统计则通过对样本数据的分析来进行总体的统计推断。

3. 概率分布概率分布描述了随机变量可能取值的概率分布情况,常见的概率分布包括离散型分布和连续型分布。

四、数学分析数学分析是数学的一门基础学科,它研究函数的性质、极限、连续性等问题。

1. 极限与连续极限是描述函数趋于某个值的概念,它在数学、物理学等领域中都有广泛应用。

(完整版)数学分析知识点总结

(完整版)数学分析知识点总结

(完整版)数学分析知识点总结数学分析知识点总结导数与微分- 导数的定义:导数是一个函数在某一点的斜率,表示函数的增减速度。

- 常见函数的导数公式:- 幂函数:$(x^n)' = nx^{n-1}$- 指数函数:$(a^x)' = a^x\ln(a)$- 对数函数:$(\log_a(x))' = \frac{1}{x\ln(a)}$- 微分的定义:微分是切线在某一点处的线性近似,表示函数在该点的局部变化情况。

积分与不定积分- 不定积分的定义:不定积分是对函数的原函数的求解,表示函数从某一点到变量的积分结果。

- 常见函数的基本积分公式:- 幂函数:$\int x^n dx = \frac{1}{n+1}x^{n+1}+C$- 正弦函数:$\int \sin(x) dx = -\cos(x) + C$- 余弦函数:$\int \cos(x) dx = \sin(x) + C$一元函数极限- 极限的定义:函数在某一点处的极限是函数在这一点附近的取值逐渐趋于某个固定值的情况。

- 常见函数的极限计算方法:- 算术运算法则:常数的极限是常数本身;极限的和等于极限的和;极限的乘积等于极限的乘积。

- 复合函数法则:对于复合函数,可以先求内层函数的极限,再求外层函数的极限。

泰勒级数- 泰勒级数的定义:泰勒级数是一个函数在某一点附近的展开式,由函数在该点的导数决定。

- 常见函数的泰勒级数展开:- 幂函数:$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 +\frac{f'''(a)}{3!}(x-a)^3 + \dots$以上是数学分析的一些基本知识点总结,希望对您有所帮助。

高二数学《导数与微分》知识点概述

高二数学《导数与微分》知识点概述

高二数学《导数与微分》知识点概述导数与微分是高二数学学科中的重要内容,对于学生来说,掌握这些知识点不仅能够帮助他们理解数学的基本概念,还能够为后续学习奠定坚实的基础。

第一部分:导数的概念及性质导数作为微积分的重要概念之一,其本质是函数在某点处的变化率。

导数的定义是通过极限的方法得到的,即函数在一点处的导数等于函数在该点附近变化最快的直线的斜率。

导数的性质主要有如下几个方面:1. 导数的存在性和唯一性:对于任意一个函数,只要它在某一点上可导,那么它在该点上的导数就是唯一确定的。

2. 导数的几何意义:导数可以理解为函数曲线在某一点处的切线斜率,因此导数的大小与斜率的大小成正比。

3. 导数与函数的关系:如果一个函数在某点处可导,则该函数在该点的导数可以作为函数的局部性质的判断标准,如函数的增减性、极值点等。

第二部分:导数的计算方法为了更好地应用导数的概念解决实际问题,在计算导数时,我们可以根据导数的定义以及一些基本的导数性质来进行计算。

下面是一些常见的导数计算方法:1. 常数函数的导数:常数函数的导数为0,即导数与自变量无关。

2. 幂函数的导数:对于幂函数$x^n$,它的导数为$nx^{n-1}$。

3. 反比例函数的导数:反比例函数$y=\frac{1}{x}$的导数为$y'=-\frac{1}{x^2}$。

4. 指数函数的导数:自然对数函数$y=e^x$的导数为$y'=e^x$。

5. 对数函数的导数:自然对数函数的逆函数$y=\ln x$的导数为$y'=\frac{1}{x}$。

第三部分:微分的概念及应用微分是导数的一个重要应用,它包含了更多的几何和物理背景。

微分的概念是函数在某点局部的线性近似,同时也可以理解为函数值的微小变化量。

微分的性质和计算方法与导数类似。

微分的应用广泛,尤其在物理学和工程学中有着重要的地位。

比如在速度和加速度的分析中,微分可以帮助我们计算物体在某一瞬间的速度和加速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 导数与微分 (计划课时:1 2时)§1 导数的概念 ( 2 时)一. 导数的背景与定义:1. 背景:曲线的切线、直线运动的瞬时速度.2. 导数的定义:)(0x f '定义的各种形式. )0(f '的定义. 导数的记法.有限增量公式:.0 ),( )(0→∆∆+∆'=∆x x x x f y例1,)(2x x f = 求). 1 (f '例2设函数)(x f 在点可导, 求极限 .)3()(lim 000h h x f x f h --→3. 单侧导数:定义. 单侧可导与可导的关系. 曲线的尖点.例3. )(x x f = 考查)(x f 在点0=x 的可导情况.例4 设⎩⎨⎧<≥-=.0,,0,cos 1)(x x x x x f 讨论)(x f 在点0=x 处的左、右导数与导数.二. 导数的几何意义:可导的几何意义, 导数的几何意义, 单侧导数的几何意义.例5求曲线2)(x x f y ==在点) 1 , 1 (处的切线与法线方程.三. 可导与连续的关系:Th1若函数在点(左、右)可导,则在点(左、右)连续.例6 证明函数)()(2x D x x f =仅在点00=x 处可导,其中)(x D 为Dirichlet 函数.四 导函数: 函数在区间上的可导性, 导函数, 导函数的记法..)()(lim )(0x x f x x f x f x ∆-∆+='→∆(注意:x sin 等具体函数的导函数不能记为,n si x ' 应记为.)(sin 'x )例7 求下列函数的导数:⑴,)(n x x f =⑵x x f sin )(=, ⑶x x f a log )(=.五 导函数的介值性:1 极值的定义例8 证明: 若,0)(0>'+x f 则),(,000δδ+∈∀∍>∃x x x ,有)()(0x f x f <. 2 取极值的必要条件:Th2 (Fermat 定理)3 导函数的介值性:引理 (导函数的介值性)若函数在闭区间],[b a 上可导, 且,0)()(<''-+b f a f 则 .0)( ),,( ='∍∈∃ξξf b a ( 证 )Th3 (Darboux 定理)设函数)(x f 在区间],[b a 上可导且)()(b f a f '≠'. 若为介于)(a f '与)(b f '之间的任一实数, 则.)( ),,(k f b a ='∍∈∃ξξ(设),()(a f k b f '<<'对辅助函数kx x f x F -=)()(,应用系4的结果.) ( 证 )Ex [1]P 94—95 1—9§2 求 导 法 则( 4时)一 导数的四则运算法则:推导导数四则运算公式. (只证“”和“”)例1 .95)(23π+-+=x x x x f 求).(x f '例2.ln cos x x y = 求.|π='x y ( ). 1π-例3.122xx y +-= 求.dx dy 例4 证明: . ,) (1+---∈-='Z n nx x n n ( 用商的求导公式证明 ).例5证明: .c s c ) ( ,s e c ) (22x c t g x x t g x -='='例6证明: .sec sec xtgx x dxd =. 二 反函数的导数: 推导公式并指出几何意义.例8 证明反三角函数的求导公式. ( 只证反正弦 )Ex [1]P 102 1,2.三 复合函数的导数:推导复合函数的求导公式.例9 设,sin 2x y =求.例10 设为实数,求幂函数)0( ≥=x x y α的导数.解 ().1ln ln -=⋅=⋅='='αααααααx x x x e ey x x 例11,1)(2+=x x f 求 )0(f '和). 1 (f '例12),1ln(2++=x x y 求 例13,12xtg y = 求 四 取对数求导法:例14 设215312)4()2()4()5(++-+=x x x x y , 求例15().sin ln x x y = 求例16 设)()(x v x u y =, 其中0)(>x u ,且)(x u 和)(x v 均可导, 求五 基本求导法则与公式:1 基本求导法则.2基本初等函数导数公式. 公式表: [1]P 101.Ex [1]P 102 3,4.§3 参变量函数的导数1 设曲线的参变量方程为⎩⎨⎧≤≤==)().(),(βαψϕt t y t x ,设函数)( ),(t y t x ψϕ==可导且 ,0)(⇒≠'t ϕ.)()(t t dx dy ϕψ''= 证:(证法一) 用定义证明.(证法二) 由 ,0)(⇒≠'t ϕ恒有0)(>'t ϕ或.0)(<'t ϕ)( t ϕ⇒严格单调. ( 这些事实的证明将在下一章给出. ) 因此, )(t ϕ有反函数, 设反函数为x t (1-=ϕ), 有(),)()(1x t y -==ϕψψ 用复合函数求导法, 并注意利用反函数求导公式. 就有.)()(t t dtdx dt dydx dt dt dy dx dy ϕψ''==⋅= 例1 .sin ,cos t b y t a x == 求.dxdy 2 若曲线由极坐标)(θρρ=表示,则可转化为以极角为参数的参数方程:⎩⎨⎧====.sin )(sin ,cos )(cos θθρθρθθρθρy x 则.tan )()()(tan )(θθρθρθρθθρ-'+'=dx dy 例2 证明:对数螺线2θρe =上所有点的切线与向径的夹角为常量. Ex [1]P 105 1,2,3.§4 高 阶 导 数一 高阶导数:定义:.)()(lim )(0000xx f x x f x f x ∆'-∆+'=''→∆ ()().)()( ,)()()1()('=''=''-x f x f x f x f n n 注意区分符号)(0x f ''和().)(0''x f 高阶导数的记法.二 几个特殊函数的高阶导数:1. 多项式: 多项式的高阶导数.例1 求幂函数n x y =(为正整数)的各阶导数.例2. 正弦和余弦函数: 计算())(sin n x 、())(cos n x 、())(sin n kx 、())(cos n kx 的公式. 例3. 和的高阶导数:例4. x1的高阶导数: 例5 ))((1b x a x ++的高阶导数: 例6 分段函数在分段点的高阶导数:以函数⎪⎩⎪⎨⎧<-≥=.0 ,,0 ,)(22x x x x x f 求)(x f ''为例.三 高阶导数的运算性质:设函数)(x u 和)(x v 均阶可导. 则1.()).()()()(x ku x ku n n = 2. ()).()()()()()()(x v x u x v x u n n n ±=±3. 乘积高阶导数的Leibniz 公式:约定 ).()()0(x u x u =()∑=-=nk k k n k n n x v x u C x v x u 0)()()().()()()(( 介绍证法.)例7 ,cos x e y x = 求 .)5(y解 ⇒====== .10 ,5 ,1352545155505C C C C C C).cos (sin 4)sin cos 5sin 10cos 10sin 5(cos )5(x x e x x x x x x e y x x -=-++--=例8 ),(arctgx f y = 其中)(x f 二阶可导. 求 .22dxy d 例9 验证函数x y arcsin =满足微分方程) 3 ( .0)12()1()(2)1()2(2≥=-+--++n y n xy n y x n n n并依此求 ).0()(n y 解.11 ,1122='--='y x x y 两端求导,011 22=-'-''-⇒x y x y x 即.0)1(2='-''-y x y x 对此式两端求阶导数, 利用Leibniz 公式, 有=---+-+-+++)(1)1()(2)1(1)2(2)2()2()1(n n n n n n n n y C xy y C y x C y x.0)12()1()(2)1()2(2=-+--=++n n n y n xy n y x可见函数x y arcsin =满足所指方程. 在上式中令,0=x 得递推公式).(2)2( n n y n y =+注意到 0)0(=''y 和 1)0(='y , 就有k n 2=时, ;0)0()(=n y12+=k n 时, )0(13)32()12()0(2222)(f k k y n '⋅⋅--= [].!)!12(2-=k四. 参数方程所确定函数的高阶导数:=''⎪⎪⎭⎫ ⎝⎛''=⎪⎭⎫ ⎝⎛=)()()(22t t t dtdx dx dy dt d dx y d ϕϕψ().)()()()()(3t t t t t ϕϕψϕψ''''-''' 例6 .sin ,cos t b y t a x == 求 .22dxy d 解 .c t g t a b dx dy -=.s i n 3222ta b dx y d -== Ex [1]P 109 1—6.§5 微 分一 微分概念:1. 微分问题的提出: 从求正方形面积增量的近似值入手,引出微分问题.2. 微分的定义:Th1 ( 可微与可导的关系 ).3. 微分的几何意义:二 微分运算法则:一阶微分形式不变性. 利用微分求导数. 微商.例1已知,cos ln 22x x x y += 求和例2已知,)sin(b ax e y += 求和三 高阶微分:高阶微分的定义:()()=⋅'='==dx x f d dx x f d dy d y d )()()(2.)())(()(22dx x f dx x f dx dx x f ''=''=⋅''=阶微分定义为1-n 阶微分的微分, 即().)()(1n n n n dx x f y d d y d ===-(注意区分符号 )( ),0( ,)(2222x d x d dx dx ==的意义.)例3已知.)( ,sin )(2x x u u u f y ====ϕ 求 .2y d以例3为例, 说明高阶微分不具有形式不变性:在例7中, 倘若以u y sin =求二阶微分, 然后代入2x u =, 就有 ;sin 4)2(sin )(sin )()(sin 22222222dx x x xdx x du u du u y d -=-=-=''=倘若先把2x u =代入u y sin =, 再求二阶微分, 得到 .sin 4cos 2)sin 4cos 2(sin 222222222222dx x x dx x dx x x x x d y d -=-==可见上述两种结果并不相等. 这说明二阶微分已经不具有形式不变性. 一般地, 高阶微分不具有形式不变性.四 微分的应用:1. 建立近似公式:原理: ,dy y ≈∆ 即 ).)(()()(000x x x f x f x f -'+≈特别当00=x 时, 有近似公式 .)0()0()(x f f x f '+≈ 具体的近似公式如:x e x nx x x x n +≈+≈+≈1 ,111 ,sin 等. 2. 作近似计算:原理: .)()()(00.0x x f x f x x f ∆'+=∆+例4 求 97.0 和 3127的近似值.例5 求 29sin 的近似值. ( 参阅[1]P 138 E4 )3.估计误差:绝对误差估计: ,)(0x x f y ∆'≈∆相对误差估计: ),(ln ln ),0( )(⇒=>=x f y x f y.)(ln x f d ydy y y =≈∆ 例6( [1]P 138 E5 )设已测得一根圆轴的直径为cm 43,并知在测量中绝对误差不超过cm 2.0. 试求以此数据计算圆轴的横截面面积时所产生的误差.4. 求速度: 原理: .)( ,)( ),(dtdx x f dt dy dx x f dy x f y '='== 例7 球半径以sec 2.0cm 的速度匀速增大.求cm R 4=时,球体积增大的速度.[4]P 124 E53 ⅰ)Ex [1]P 116 1—5.。

相关文档
最新文档