边界层厚度计算方法详述

合集下载

1.4 边界层和阻力公式

1.4 边界层和阻力公式
du dy 0, 0,
x 0
dp / dy 0, 认为是实际流体流动 , 产生流动阻力
u x u0,du dy 0, * 边界层外, y , 看作是理想流体流动 , 无流动阻力
层流边界层 u∞ u∞ δ A x0 u∞
y 0、ux 0 * 壁面处,
湍流边界层
层流边界层 湍流边界层Biblioteka u 0.99uu∞
u∞
u∞
A
δ 层流内层 平板上的流动边界层
例:
x0
20C的空气以10m/s流过平板时,在距离平板前
缘100mm处,边界层厚度约为1.8mm
1、平板上流体的流动边界层 边界层意义:
流动阻力及速度梯度,主要集中在边界层内 边界层内, y ,u u
p:任意两点间的压力差
2、总阻力 直管阻力(粘滞力引起) 局部阻力(形体阻力) 总阻力=直管阻力+局部阻力
Pi2
FIC
Pi1
一、圆形直管内的阻力损失 1、范宁公式 公式推导: 稳态流动流体 作受力分析
F F F
P
G
Ff 0
压力差:FP ( p1 p2 ) A
重力:FG gpV cos gA( z1 z2 )
其中,n f ( Re )
Re: 1.1105 3.2 106时,n 1 7 u 0.82 (常用公式) umax
书P39 图1.4.12:给出算图,查取平均流速 坐标:
Re u Re,max umax
问题:求平均流速的方法
1、速度分布未知
2、速度分布已知
qV u S u 0.5umax (层流)
提出问题?
3、强化传递过程的流动条件及其代价。 湍流时传热、传质,传递阻力↓↓,强化过程。 代价: 流动阻力↑↑,动力消耗↑。

边界层理论知识讲解

边界层理论知识讲解

例11-1 本例说明例上1表1-111-1的用法。
(1) 欲求边界层内点(x,y)的速度Vx(x,y)
可将x及y的值代入
1 2
y
U x
中得出η值,由
此值从上表中找出相应的
1 2
(
)
=vx/U

vx(x,
y)U1()
2
设 U=25 km/h,ν=0.15cm2/s, x=3m,y=5mm,
求:Vx=?
10. 绕流物体的阻力 11.减少粘性阻力的方法
形状阻力
2
§11-1 边界层的概念
N-S方程理论上完备但求解困难。解决(求解) 工程实际问题大多局限于小雷诺数流动问题。
高Re时(量级在106~109的范围),粘性力与惯 性力相比是很小的。
1904年,L.Prandtl指出,对于粘性很小的流 体(如空气、水),粘性对流动的影响仅限于贴 近固体表面的一个薄层内,这一薄层以外,粘性 完全可以忽略。
可得
2 .5 2 x 50 .1 5 1 0 4 3 00 ..01 12 28 8mm 1 .2 8 c m
U
6 .9 5
27
(3)求板面上的切应力0 解: 由牛顿内摩擦定律
0 v y x y 0 y 2 2 y 01 4UU x(0)
按照表11-1,φ″(0)可近似表达为:
(0) (0.1) (0) 1.328
二、动量损失厚度
33
这一动量损失为:
K IK II0 U 2dy(U 20 U 2dy) 0 U 2dy[U 20 (1U vx)dy0 vx2dy]0 vx(Uvx)dy
可用理想流体的速度U流过某层厚度为θ的截面
U20 vx(Uvx)dy

流体主要计算公式

流体主要计算公式

流体主要计算公式-CAL-FENGHAI.-(YICAI)-Company One1主要的流体力学事件有:1738年瑞士数学家:伯努利在名着《流体动力学》中提出了伯努利方程。

1755年欧拉在名着《流体运动的一般原理》中提出理想流体概念,并建立了理想流体基本方程和连续方程,从而提出了流体运动的解析方法,同时提出了速度势的概念。

1781年拉格朗日首先引进了流函数的概念。

1826年法国工程师纳维,1845年英国数学家、物理学家斯托克思提出了着名的N-S方程。

1876年雷诺发现了流体流动的两种流态:层流和紊流。

1858年亥姆霍兹指出了理想流体中旋涡的许多基本性质及旋涡运动理论,并于1887年提出了脱体绕流理论。

19世纪末,相似理论提出,实验和理论分析相结合。

1904年普朗特提出了边界层理论。

20世纪60年代以后,计算流体力学得到了迅速的发展。

流体力学内涵不断地得到了充实与提高。

理想势流伯努利方程(3-14)或(3-15)物理意义:在同一恒定不可压缩流体重力势流中,理想流体各点的总比能相等即在整个势流场中,伯努利常数C 均相等。

(应用条件:“”所示)符号说明物理意义几何意义单位重流体的位能(比位能)位置水头单位重流体的压能(比压能)压强水头单位重流体的动能(比动能)流速水头单位重流体总势能(比势能)测压管水头总比能总水头二、沿流线的积分1.只有重力作用的不可压缩恒定流,有2.恒定流中流线与迹线重合:沿流线(或元流)的能量方程:(3-16)注意:积分常数C,在非粘性、不可压缩恒定流流动中,沿同一流线保持不变。

一般不同流线各不相同(有旋流)。

(应用条件:“”所示,可以是有旋流)流速势函数(势函数)观看录像>>存在条件:不可压缩无旋流,即或必要条件存在全微分d直角坐标(3-19)式中:——无旋运动的流速势函数,简称势函数。

势函数的拉普拉斯方程形式对于不可压缩的平面流体流动中,将(3-19)式代入连续性微分方程(3-18),有:或?(3-20)适用条件:不可压缩流体的有势流动。

边界层理论基础

边界层理论基础

13.7 边界层的分离现象及绕流阻力
一、边界层的分离现象
(1)正对圆心的流线 流线 : 正对圆心的流线(0流线 正对圆心的流线 流线):
p u2 z+ + = const ρg 2 g
u
u愈接圆柱体 愈小 愈接圆柱体u愈小 愈接圆柱体 N点:uN=0, pN=pmax 点 (2)N点→A(B)点 点 点 流线变密, 流线变密,
C点的位置与物体形状、表面粗 点的位置与物体形状、 点的位置与物体形状 糙度及液流状态均有密切关系, 糙度及液流状态均有密切关系, 至今尚无一般方法可以确定。 至今尚无一般方法可以确定。当 固体表面有凸出的锐角时, 固体表面有凸出的锐角时,其分 离点往往就在锐角的尖端 边界层分离后, 边界层分离后,旋涡在产生与 衰减的过程中损失的能量转化为 热能, 热能,这种能量损失称为旋涡损 失。与此相应的阻力称为旋涡阻 力。 分离点愈接近于物体的尾部, 分离点愈接近于物体的尾部, 旋涡区就愈小, 旋涡区就愈小,旋涡阻力也就愈 否则形成较大的阻力。 小,否则形成较大的阻力。
根据边界层的特征,在边界层内惯性项和粘性项具有 同样的数量级,由方程组(8-37)可知,必须使 1 Rel 和 δ ′2 同数量级,所以 δ l ~ 1 Rel ,即 δ 反比于 雷诺数越大,边界层相对厚度越小。
Rl e
。这表明,
这样,将式(8-37)中的某些项略去,再变换成有量纲 量,便得到了层流边界层的微分方程(称为普朗特边界层方 程): ∂vx ∂vx 1 ∂p ∂2vx
一、边界层的分离现象
(3)A(B)点以后 点以后 u
∂p ∂U 0 = 负值 = 正值 流线扩散 ∂x ∂x
C点:u=0 点
(∂u / ∂y ) y =0 = 0

边界层

边界层

dp = 0则整个流场压力处处相等。 dx 边界层微分方程虽然是在平壁的情况下导出的,但对曲率不太大的
dU e = ,, 0 dx
曲线壁面仍然适用。此时,x轴沿壁面方向,y轴沿壁面法线方向。
§8—3 边界层动量积分方程
一、边界层动量积分方程
由卡门在1921年提出。
推导前提:二元定常,忽略质量力,且u>>υ(由边界 层微分方程的数量级比较可看出),所以只考虑x方向 的动量变化,不引入y方向的流速υ。
+ = 0 ,u~1, 并且边界层内,由u≥υ,故认为或由连续方程 ∂x ∂y υ~△ ∵x~1并且我们认为u~1,而y~△,必然是υ~△,这样才能满足连续方 1 ∆ 程,∂ u ∂ υ + =1 + =0 ,1 ∆ 。 ∂x ∂y dy ∆y = lim 注意:导数又称为微商,例如 dx ∆x→0 ∆x ,类似地在进行数量级比较 时,我们可以写成 ∂ u ~ 1 ,即 ∂y 是1的数量级。
1 ∂p ∂υ ∂υ ∂ 2υ ∂ 2υ u +υ =− + v( 2 + 2 ) ∂x ∂y ∂x ∂y ρ ∂y ∆ ∆ ∆ ∆ 1 ∆ ∆2 2 1 ∆ 1 ∆
∂u ∂u ∂ 2u 1 ∂p +v =− +ν u ∂x ∂y ∂y 2 ρ ∂x
∂p =0 ∂y
∂u ∂ υ + =0 ∂x ∂ y
方程第二项积分的物理意义为:

δ
0
ρu (U e − u )dy 表示了因粘性影响而产生的流体动量的减少量。
ρδ 2 ⋅1⋅U e 2 = ρ ∫ u (U e − u )dy
0

δ
δ2 =
1 Ue

第二章流体静力学-第三节边界层的概念

第二章流体静力学-第三节边界层的概念
1、边界层厚度(名义厚度)
v 定义:边界层内速度达到外部来流速度 的99%的那些点
的连线。
因此,边界层的边线不是流线,而是人为定出的一条线。
1 x
l Re v
vx 0.99v
4
2、边界层排挤厚度(位移厚度)
由于壁面摩擦的影响,与理想流体相比,边界层内实际
流过的体积流量会有所减少。为了使基于理想流体理论计算 得到的流量与粘性流的实际情况一致,需要把原来的固壁向 外推一个距离,该距离被称为边界层的位移厚度。
有一个0约.5o 的扩散角,以补偿边界层增厚的影响。
y
0
1
vx v
dy
0
1
vx v
dy
(8-28)
式(8-28)的积分上限为无穷,在实 际计算中,通常取为边界层名义厚
v
度 。在定常流中,边界层内的 vx
总是小于 v 且两者方向保持一致,则
可直接推出定常层流边界层的位移厚
度 总小于边界层厚度 。
边界层方程仍然是非线性的。边界层内的解与外部势 流区的解在边界层的边缘上衔接,在给定边界层方程外部边 界条件后,对边界层方程的求解时,则需要对边界层厚度的 定义加以说明。
22
注意:
边界层方程只适用于脱体点之前,在脱体点的下游,
由于边界层厚度大幅度增加,vx , vy 的量阶关系发生了根
本变化,因此推导边界层方程的基本假定不再适用。
y
v
dv dx
2vx
y2
20
vx vy 0
x y
vx
vx
x
vy
vx
y
v
dv dx
2vx
y2
(8-30)

第七章 边界层及其基本计算

第七章 边界层及其基本计算
3 补充方程(2)——切应力关系式
4 边界层厚度方程
动量积分方程
海南大学机电学院
工程流体力学
7.4 平板层流边界层的计算
5 板面上切应力计算式
6 摩擦力及摩擦阻力系数
海南大学机电学院
工程流体力学
第六章 粘性流体管内流动
1 边界层概念 2 层流边界层微分方程 3 边界层动量积分方程 4 平板层流边界层的计算 5 圆管内流动的边界层 6 边界层分离与卡门涡街
工程流体力学
7.6 边界层的分离与卡门涡街
边界层分离过程:
umax pmin
A→B加速减压
umin=0,pmax; 新停滞点,分离点
B→C减速加压
旋涡 BC
分离面
空白区,涡流区
A
x
umin=0,pmax; 停滞点,驻点
海南大学机电学院
工程流体力学
7.6 边界层的分离与卡门涡街
二、卡门涡街
1911年,匈牙利科学家卡门在德国专门研究了圆柱背后旋涡的 运动规律。
7.1 边界层概念
二、边界层的基本特征
与物体的特征长度相比,边界层的厚度很小, x
边界层内沿厚度方向,存在很大的速度梯度。 边界层厚度沿流体流动方向是增加的。 由于边界层很薄,可以近似认为边界层中各截面上的压强等于
同一截面上边界层外边界上的压强值。
在边界层内,黏性力与惯性力同一数量级。 边界层内的流态,也有层流和紊流两种流态。
但由此得到的边界层微分方程中,非线性项仍存在,因此求解 困难。
人们常采用近似解法,其中应用的较为广泛的是边界层动量积 分方程解法。
海南大学机电学院
工程流体力学
7.3 边界层的动量积分方程
二、边界层动量积分方程的推导

边界层高度常用的计算方法

边界层高度常用的计算方法

边界层高度常用的计算方法
边界层高度是大气科学中一个重要的参数,它描述了大气边界层的厚度,对于气象预报、空气污染扩散、风能利用等领域都有重要的应用价值。

下面将介绍几种常用的边界层高度计算方法。

风廓线雷达法:风廓线雷达是一种能够连续测量大气中风速垂直剖面的遥感设备。

通过分析风廓线雷达观测到的风速数据,可以确定边界层高度。

这种方法具有高精度和连续观测的优点,但需要专业的雷达设备和数据处理技术。

气象探空法:气象探空是通过气球携带探测仪器升空测量大气温度、湿度、风速等参数的方法。

利用气象探空观测数据,可以分析出大气温度垂直剖面的变化,从而估算出边界层高度。

这种方法具有直接测量大气参数的优点,但受到观测时间和地点的限制。

数值模式法:数值模式是一种基于大气动力学和热力学方程组的计算机模型,可以模拟大气中的各种物理过程。

通过输入地面观测数据和初始条件,数值模式可以计算出大气温度、湿度、风速等参数的垂直分布,从而估算出边界层高度。

这种方法具有灵活性和可重复性的优点,但需要高质量的输入数据和合适的模型参数。

经验公式法:根据历史观测数据和统计分析,可以得到一些经验公式,用于估算边界层高度。

例如,不稳定条件下常用的Driedonks and Tennekes公式,稳定条件下常用的Zilitinkevich公式等。

这些方法具有简单易用的优点,但受到地域和气象条件的限制。

综上所述,不同的边界层高度计算方法各有优缺点,应根据具体应用场景和需求选择合适的方法。

在实际应用中,可以综合考虑多种方法的观测结果,以提高边界层高度估算的准确性和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

边界层厚度的计算方法详述
与边界层厚度相关的概念,包含边界层厚度,边界层位移厚度和边界层动量厚度三个概念。

边界层厚度δ:严格而言,边界层区与主流区之间无明显界线,通常以速度达到主流区速度的0.99U 作为边界层的外缘。

由边界层外缘到物面的垂直距离称为边界层名义厚度。

边界层位移厚度δ*:设想边界层内的流体为无粘性时,以均流速度U流过平板的速度分布如图 1所示。

实际流体具有粘性,以相同速度流过平板时,由于壁面无滑移条件,速度从U跌落至0。

如此形成的边界层对流动的影响之一是使设想中的无粘性流体流过该区域的质量流量亏损了(图 1中阴影区,平板宽度设为1)。

将亏损量折算成无粘性的流量,厚度为δ*(图 1中阴影区)。

图 1 边界层位移厚度示意图 其公式推导:
*0()U U u dy δ
ρδρ=-⎰ 对不可压缩流体
*0(1)u dy U
δδ=-⎰ 其中存在的问题是,很显然,边界层内的质量流量减少了,因为边界层内的沿着壁面切向的速度最大为自由来流的速度,最小为0,而无粘的时候,整个流动的速度都是U 。

损失的质量去哪里了呢?质量是不会丢失的,损失的质量流动到了边界层之外了,如图 2所示。

图 2 排挤厚度
在图 2中,可以明显看出,由于边界层的存在,整个流动向边界层外“排挤”了,把一部分流
体质量排挤到了边界层之外。

所以,边界层位移厚度,又称作排挤厚度,这个叫法比较形象地说明了边界层位移厚度的物理意义。

对于边界层的动量厚度θ:边界层对流动的影响之二是使设想中的无粘流体流过该区域的动量流量亏损了,按平板单位宽度计算动量流量亏损量,并将其折算成厚度为θ无粘性流体的动量流量
0()U U u U u dy δρθρ*
=-⎰ 对不可压缩流动
0(1)u u dy U U
δθ*=-⎰
称θ为动量亏损厚度,简称动量厚度。

现在很多教材中对边界层的动量厚度的说明比较模糊,没有强调出为什么使用上述公式计算。

以至于很多人对边界层的动量厚度有了错误的理解。

计算边界层的动量厚度,必须考虑边界层的排挤厚度,即位移厚度!因为在计算动量厚度的时候,要考虑质量守恒的问题。

在边界层内,理想流体通过时的动量为:
10E UUdy UU δ
ρρδ==⎰ 在边界层内,考虑壁面无滑移条件,对于实际粘性流体来说,流体的动量为:
20()()E u y u y dy δ
ρ=⎰ 要注意,我们并不能拿以上两项相减来作为边界层动量的损失,因为有一部分质量被“排挤”到了边界层之外,如果是理想流动,这一部分质量在边界层厚度之内呢。

所以,计算动量厚度的时候,一定要把排挤厚度之内的那些动量也减掉,这样才遵守了基本的质量守恒的原则,所以边界层动量厚度的计算方法为:
*12E E UU ρδ--
如此,在推导之,方可得到以上的结果。

当然,要注意利用一下
()*0()U u y dy δ
δδ-=⎰。

相关文档
最新文档