第七章 边界层及其基本计算.

合集下载

大气行星边界层第七章

大气行星边界层第七章
边界层占整个大气的1/10
第二节 边界层的一般特点
1、近地面层中,气象要素的日变化大: 地表(热容量小),由于太阳辐射作
用其日变化大。 ——近地面层贴近地面,因而日变化大。 2、近地面层中,气象要素的垂直梯度大
(与近地面层外部比;与水平方向比)
3、湍流运动引起物理量的输送; 由于垂直梯度大,所以垂直向输送>> 水平向输送。
处理“脉动量的二次乘积项的平 均值”有两种方法
高阶矩闭合 半经验理论 : 主流
1)高阶矩闭合 用瞬时方程-平均方程
(u ) (u )
t
t
u t
uiuj

—(1)
同理:w t
uiuj

—(2)
w (1) u (2)
uw t
uiu
juk
"eq."
uw t
uiujuk
如此:得到某次乘积项,又
3、上部摩擦层(Ekman层): 高度为1-1.5km
湍流粘性力、科氏力、压力梯度力
同等 重要。
F压+F科+F粘 0
4、自由大气: 湍流粘性力可略 ——准地转。
F压 F科 0
一般把大气分为三层: 近地面层、上部摩擦层、自由大气
大气边界层上近部地摩面擦层层 — —湍流粘性力重要 自由大气 — — — — — —湍流粘性力可略
低压系统:边界层中穿越等压线指向低压
——辐合上升——1)边界层气旋加强补偿 湍流粘性耗散。2)自由大气产生辐散使得 气旋减弱。
思考:
已知低层具有如下的风压场配置,请 画出可能相对应的高层风压场配置。
第三节 大气的湍流运动与平均运动方程
一、湍流的概念
湍流:无规则涡旋运动 ——随机运动

边界层的基本概念 文档

边界层的基本概念 文档
相同的数量级,从而不能忽略。 。
飞机飞行中: 机翼(特征长度)L:1m, 2
=ν 则:Re——711060
绕流现象的主要表现
总之,在气象、海洋、以及造船、航空、动力机械等领 域内存在大量的大雷诺数问题,即粘性较小的流体(水,空 气,蒸汽等)以较高的流速绕流物体。在这种情况下,流体 运动主要受惯性力支配,而粘性力的影响主要限于边界层范 围以内,这就是绕流现象重的基本力学性质。 如河流经水坝,飞行器在空中飞行。在热力发电厂中,绕流 现象也普遍存在,炉膛内高温烟气流过各种受热面,在汽轮 机,泵和风机内流体绕叶栅等。
5-4 边界层的基本概念
目标
1.绕流现象的主要表现有哪些? 2.什么是附面层(边界层)、边界层分哪几
部分?边界层的特征有哪些? 3边界层流态如何判别,影响因素有哪些?
1904年德国 普朗特 提出边界层的概念。这对解决实 际流体绕行问题做出了前所未有的贡献。因为在此 之前,运用理想流体理论根本无法解决绕流物体的
阻力问题。
在自然界和工程实际中,有大量流体绕流 物体的流动问题。 实际流体都有粘性,在 大雷诺数的绕流中,由于流体惯性力远大 于作用于流体的黏性力,黏性力相对于惯 性力可忽略不计,将流体视为理想流体。 由理想流体的流动理论求解流场中的速度 分布。但在靠近物体的一薄层内,由于存 在强烈的剪切流动,黏性力与惯性力处于
存在一个层流底层
判别层流边界层和紊流边界层的标准仍然是雷诺数。
当时Rex≤Recr边界层内时层流状态, Rex>Recr ,边 界层内时紊流状态。
影响它们们的因素还主要是雷诺数的影响, 而影响雷诺数的因素有很多,来流紊流度。 物体表面的粗糙度等都会影响临界雷诺数 的数值。事实表明,增加来流紊流度和物 体表面粗糙度都会降低临界雷诺数,是紊 流边界层提前出现。

第七章 边界层及其基本计算

第七章 边界层及其基本计算

流动边界层:存在着较大速度梯度的流体层区域,即流速降为主体流 速的99%以内的区域。
边界层厚度:边界层外缘与壁面间的垂直距离。
边界层区(边界层内):沿板面法向的速度梯度很大,需考虑粘度的 影响,剪应力不可忽略。
主流区(边界层外):速度梯度很小,剪应力可以忽略,可视为理想
流体 。
海南大学机电学院
工程流体力学
7 绕流阻力与阻力系数
海南大学机电学院
工程流体力学
7.5 圆管内流动的边界层
充分发展的边界层厚度为圆管的半径;
进口段内有边界层内外之分 ;
也分为层流边界层与湍流边界层;
进口段长度:
层流:

x0 d
0.05 Re
湍流: x0
d
40
~ 50
海南大学机电学院
工程流体力学
第六章 粘性流体管内流动
1 边界层概念 2 层流边界层微分方程 3 边界层动量积分方程 4 平板层流边界层的计算 5 圆管内流动的边界层 6 边界层分离与卡门涡街
0
vx2dy
x
0
vx2dy dx
BC:
K AC
ve
x
0
vx dy dx
3 受力分析(忽略质量力)
AB: p
BC:
p 1 p dx d
2 x
CD:
p p dx d
x
AD: wdx
海南大学机电学院
工程流体力学
7.3 边界层的动量积分方程
二、边界层动量积分方程的推导 3 动量方程——卡门动量方程
层流边界层比湍流边界层压差阻力大; 减小压差阻力应尽量减小分离区,使分 离点后移: (1) 改善物体外形,采用流线型; (2) 改变边界层性质。

边界层的基本概念课件

边界层的基本概念课件

边界层的特征
边界层具有很薄的厚度,其厚 度通常远小于流体中的其他尺 度,如流动的长度和速度。
在边界层内,流体的流动状态 从自由流转变为受壁面限制的 流动,流体的速度和方向发生 急剧变化。
边界层内的流体会产生摩擦阻 力,对流体流动产生重要影响 。
边界层的形成
当流体与固体壁面接触时,由于壁面 的限制作用,流体的速度和方向发生 变化,导致流体的切向应力与法向应 力发生突变,形成边界层。
湍流边界层
在流体流动中,靠近固体表面的 薄层,流速较高,流动方向复杂 ,各层速度梯度较大,流动呈现 湍流状态。
热边界层和流动边界层
热边界层
在传热过程中,靠近固体表面的薄层 ,温度梯度较大,热量传递速率较高 。
流动边界层
在流体流动中,靠近固体表面的薄层 ,流速较高或较低,流动方向或湍或 层,与流体主体存在明显的速度梯度 。
边界层的基本概念课件
目 录
• 边界层定义 • 边界层的重要性 • 边界层的分类 • 边界层方程 • 边界层模拟方法 • 边界层的应用
01
边界层定义
边界层的定义
01
边界层是指流体在运动过程中, 流体的切向应力与法向应力发生 突变的位置,通常出现在流体与 固体壁面接触的地方。
02
在边界层内,流体的流动受到壁 面的限制,流体的速度和方向发 生急剧变化,导致流体的物理性 质发生显著变化。
物理边界层和化学边界层
物理边界层
主要涉及流体的物理特性变化,如温度、压力、速度等。
化学边界层
主要涉及流体的化学特性变化,如浓度、组分、化学反应等 。
04
边界层方程
连续性方程
连续性方程是描述流体运动过程中质 量守恒的方程。

边界层流动

边界层流动
• 班级气氛的营造对班级管理至关重要,这就要求 班级管理能够营造健康向上、丰富活跃的班级文 化环境,包括营造班级文化的物质环境;营造班 级社会化环境;营造良好的人际关系,把学生作 为交往的主体,设计内容充实、频率高的交往结 构,建立充满信任的同学关系;营造正确的舆论 和班风;营造健康的心理环境。
2022/8/29
• 则边界层内由于黏性影响使质量流量减少的总量为 • 该量若用ρ∞ V∞ δ * 表示,则等于图7−5(b)中宽为V∞ 、高为δ *的
矩形面积乘以ρ∞ 。也就是说,边界层黏性影响所减少的质量流量, 相当于理想流体以速度V∞ 流过物面时物体表面向外移动了距离δ *所 减少的流量,如图 7−5(b)所示。故δ *就是位移厚度或排挤厚度。 •由
• 无黏(理想流体)流动应占通道该加宽的部分。位移厚度δ *的意义: 若将绕流物体表面各处向外移动δ *距离,对这样修正所得的等效外形, 采用理想流体理论计算,所得压强分布较好地计及了黏性影响。
• 一般情况下δ *是δ 的几分之一。
上一页 下一页 返回
7.2 边界层的厚度
• 7.2.3 边界层动量损失厚度 δ **
• 边界层内流动状态为层流时,称为层流边界层;当边界层内流动为湍 流时,称为湍流边界层;从层流变为湍流的过渡段,称为转捩区(或 过渡区),如图7-3 所示。
上一页
返回
7.2 边界层的厚度
• 7.2.1 边界层厚度 δ
• 设直匀流 V∞ 以零迎角平行流过一块长度为l 的平板,如图7−4 所示。 由于流体有黏性,在任一位置x 处,平板表面上的速度为零,其他各 点的流速则随y 的增大而逐渐增大。从理论上讲,只有当y→∞时,速 度才等于V∞ 。不过,速度的增大主要集中在x 轴附近的边界层内。

边界层

边界层

u
u
u x=0.99u∞
边界层区
PDF 文件使用 "pdfFactory Pro" 试用版本创建
边界层内流动的两个主要特征:
1.边界层厚度δ比特征长度(如板长)小得多, 2.边界层内粘性力与惯性力同数量级。 作量化分析以略去小量: 取量级标准------平板长度L、外流速度u∞
三、边界层分离
PDF 文件使用 "pdfFactory Pro" 试用版本创建 虰
三、边界层分离Biblioteka PDF 文件使用 "pdfFactory Pro" 试用版本创建
三、边界层分离
边界层分离的必要条件是:逆压、流体具有粘性 这两个因素缺一不可。
压力逐渐减小 压力逐渐增大
A
C
分 离点
S
D
PDF 文件使用 "pdfFactory Pro" 试用版本创建
三、边界层分离
A→C:流道截面缩小,流速增大 ,压力递减。 C点: 流速最大 ,压力最小。 C→S:流道截面增大,流体处于减速加压的情况,所减小的动能 一部分转变为压强能,另一部分消耗于克服摩擦阻力。 S点:动能消耗殆尽,流速为零,压强最大,后继而来的液体在高 压作用下被迫离开壁面,沿新的流动方向前进。S点称为分离点。 S点后:边界层自S点后脱 离壁面,在S点的下游形成 了流体的空白区,后面的流 体在反向压力作用下倒回, 产生漩涡,成为涡流区。图 中S点后的虚线为分离面。 这种边界层脱离壁面的现 象,称为边界层的分离。
压力逐渐减小
压力逐渐增大
A
C
分离点
S
D
PDF 文件使用 "pdfFactory Pro" 试用版本创建

边界层

边界层

dp = 0则整个流场压力处处相等。 dx 边界层微分方程虽然是在平壁的情况下导出的,但对曲率不太大的
dU e = ,, 0 dx
曲线壁面仍然适用。此时,x轴沿壁面方向,y轴沿壁面法线方向。
§8—3 边界层动量积分方程
一、边界层动量积分方程
由卡门在1921年提出。
推导前提:二元定常,忽略质量力,且u>>υ(由边界 层微分方程的数量级比较可看出),所以只考虑x方向 的动量变化,不引入y方向的流速υ。
+ = 0 ,u~1, 并且边界层内,由u≥υ,故认为或由连续方程 ∂x ∂y υ~△ ∵x~1并且我们认为u~1,而y~△,必然是υ~△,这样才能满足连续方 1 ∆ 程,∂ u ∂ υ + =1 + =0 ,1 ∆ 。 ∂x ∂y dy ∆y = lim 注意:导数又称为微商,例如 dx ∆x→0 ∆x ,类似地在进行数量级比较 时,我们可以写成 ∂ u ~ 1 ,即 ∂y 是1的数量级。
1 ∂p ∂υ ∂υ ∂ 2υ ∂ 2υ u +υ =− + v( 2 + 2 ) ∂x ∂y ∂x ∂y ρ ∂y ∆ ∆ ∆ ∆ 1 ∆ ∆2 2 1 ∆ 1 ∆
∂u ∂u ∂ 2u 1 ∂p +v =− +ν u ∂x ∂y ∂y 2 ρ ∂x
∂p =0 ∂y
∂u ∂ υ + =0 ∂x ∂ y
方程第二项积分的物理意义为:

δ
0
ρu (U e − u )dy 表示了因粘性影响而产生的流体动量的减少量。
ρδ 2 ⋅1⋅U e 2 = ρ ∫ u (U e − u )dy
0

δ
δ2 =
1 Ue

流体力学-边界层基础及绕流运动

流体力学-边界层基础及绕流运动

一、三种计算
ReL
UxL
层流边界层: ReL Rec
Rec
Uxc
混合边界层: ReL Rec
紊流边界层: ReL Rec
yU
层流边界层 过渡区 湍流边界层
O x L
L
x
二、平板边界层的计算公式
❖ 恒定均匀来流的平板边界层,其外边界满足
外边界上的流速处处相等,且等于来流速度;
u0 U,
du0 0 dx
表明:由于流体的粘性作用,存在着流动被阻滞了的边界层,为了满足连
续性方程,流道就得扩张,才能让一定量的流体通过,因此流线向外偏斜,
被排移了δ1 的距离;也就是说,由于边界层的存在排移了厚度为δ1的非粘性
流体的流量。
y=Y+δ1
流线
δ1
Y
U∞
如图,兰线为一条流线,由于边界层的存在使它向上偏移了排量 厚度δ1的距离
边界层内:沿板面法向的速度梯度很大,剪应力不可忽略。
——粘性流体的流动 边界层外:不存在速度梯度或速度梯度很小,剪应力可以忽略。
——理想流体运动
u
u
主 体 区 或 外 流 区
u
u
ux=0.99u
u边界层区 u
三、边界层的主要特征
(1) 与物体的特征长度相比,边界层的厚度很小<< L。 (2) 边界层内沿厚度方向,速度梯度很大,为有旋运动。
❖ 补充方程
边界层内的流速分布ux =f(y) ——同圆管层流
u
um
(1
r2 r02
)
ux U0[1(2y)2]
ux
2U0
y2 (y )
2
切应力0随边界层厚度的关系式0 =g()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、边界层定义
流动边界层:存在着较大速度梯度的流体层区域,即流速降为主体流
速的99%以内的区域。
边界层厚度:边界层外缘与壁面间的垂直距离。 边界层区(边界层内):沿板面法向的速度梯度很大,需考虑粘度的
影响,剪应力不可忽略。
主流区(边界层外):速度梯度很小,剪应力可以忽略,可视为理想 流体 。
海南大学机电学院 工程流体力学
人们常采用近似解法,其中应用的较为广泛的是边界层动量积 分方程解法。
海南大学机电学院
工程流体力学
7.3 边界层的动量积分方程
二、边界层动量积分方程的推导
粘性不可压流体绕物体定常二维流动;
取微元ABCDA,对其x方向的动量变化及 受力情况分析。 ve
1 质量分析
AB: CD:
m AB

v
二、方程量级分析
x~1, vx~1; y~ε, vy~ ε;
1
1
ε 1/ε
1ε2 ( 1来自1/ε2)1ε海南大学机电学院
ε 1
1/ ε ε2 (ε2
1)
工程流体力学
7.2 层流边界层的微分方程
三、N-S方程和连续性方程的简化
对于流体沿平板的定常平面流动
边界条件:
边界层外边界上的速度
海南大学机电学院 工程流体力学

3 受力分析(忽略质量力)
AB:
p
BC:
CD:
p p dx d x
AD:
w dx
工程流体力学
海南大学机电学院
7.3 边界层的动量积分方程
二、边界层动量积分方程的推导
3 动量方程——卡门动量方程
δ和p均为x的函数
4 方程分析
可求量: 未知量: 补充方程:
海南大学
第七章 粘性流体绕物体的流动
主编:孙文策 教师:马庆芬
第六章 粘性流体管内流动
1 边界层概念 2 层流边界层微分方程 3 边界层动量积分方程 4 平板层流边界层的计算 5 圆管内流动的边界层 6 边界层分离与卡门涡街 7 绕流阻力与阻力系数
海南大学机电学院 工程流体力学
7.1 边界层概念
第六章 粘性流体管内流动
1 边界层概念 2 层流边界层微分方程 3 边界层动量积分方程 4 平板层流边界层的计算 5 圆管内流动的边界层 6 边界层分离与卡门涡街 7 绕流阻力与阻力系数
海南大学机电学院 工程流体力学
7.3 边界层的动量积分方程
一、边界层动量积分方程的作用
边界层内的流体是黏性流体的运动,理论上可以用N-S方程来 研究其运动规律。 但由此得到的边界层微分方程中,非线性项仍存在,因此求解 困难。
0
x
dy
mCD
v x dy x 0

v x dy dx 0
BC:
mBC mCD mAB
v d y dx x x 0
海南大学机电学院
工程流体力学
7.3 边界层的动量积分方程
二、边界层动量积分方程的推导 2 动量分析
7.4 平板层流边界层的计算
应用边界层动量积分方程,用近似方法求出边界层内的速度 分布vx、边界层厚度δ沿x方向的变化规律和板面的摩擦阻力τw。
1 动量积分方程的简化
2 补充方程(1)——速度分布关系式
边界条件:
海南大学机电学院
工程流体力学
7.4 平板层流边界层的计算
3 补充方程(2)——切应力关系式
海南大学机电学院
ve vx , w ,
vx f y w f
工程流体力学
第六章 粘性流体管内流动
1 边界层概念 2 层流边界层微分方程 3 边界层动量积分方程 4 平板层流边界层的计算 5 圆管内流动的边界层 6 边界层分离与卡门涡街 7 绕流阻力与阻力系数
海南大学机电学院 工程流体力学
4 边界层厚度方程
动量积分方程
海南大学机电学院
工程流体力学
7.4 平板层流边界层的计算
5 板面上切应力计算式
6 摩擦力及摩擦阻力系数
海南大学机电学院
工程流体力学
第六章 粘性流体管内流动
1 边界层概念 2 层流边界层微分方程 3 边界层动量积分方程 4 平板层流边界层的计算 5 圆管内流动的边界层 6 边界层分离与卡门涡街 7 绕流阻力与阻力系数
边界层内的流态,也有层流和紊流两种流态。
海南大学机电学院
工程流体力学
7.1 边界层概念
三、边界层内的流态
边界层流型:层流边界层和湍流边界层。
层流边界层:在平板的前段,边界层内的流型为层流。
海南大学机电学院
工程流体力学
7.1 边界层概念
三、边界层内的流态
湍流边界层: 离平板前沿一段距离后,边界层内流型可能转为湍流。
海南大学机电学院 工程流体力学
7.2 层流边界层的微分方程
一、N-S方程和连续性方程
对于流体沿平板的定常平面流动
二、方程量级分析
设x方向的速度和距离的量级为1;
δ 与L相比很小,故y的量级与x相比为小量,量级为ε<<1
y方向的速度为小量,量级ε<<1
海南大学机电学院 工程流体力学
7.2 层流边界层的微分方程
7.1 边界层概念
二、边界层的基本特征
与物体的特征长度相比,边界层的厚度很小, 边界层内沿厚度方向,存在很大的速度梯度。 边界层厚度沿流体流动方向是增加的。 由于边界层很薄,可以近似认为边界层中各截面上的压强等于 同一截面上边界层外边界上的压强值。
x
在边界层内,黏性力与惯性力同一数量级。
AB: CD: BC:
K AB
2 v x dy 0
ve
K CD K AC
v dy x 0
2 x
2 v x d x d y 0 v x d y d x ve x 0
1 p dx d p 2 x
Rex V x

平板流动当地雷诺数
Re x cr V x cr
临界雷诺数:转捩点处的雷诺数 从层流转变为湍流的起点

Recr由实验测定,与物面的粗糙度和来流的湍流度等因素有关
5 6 Recr 5 10 ~ 3 10 x
海南大学机电学院
工程流体力学
第六章 粘性流体管内流动
1 边界层概念 2 层流边界层微分方程 3 边界层动量积分方程 4 平板层流边界层的计算 5 圆管内流动的边界层 6 边界层分离与卡门涡街 7 绕流阻力与阻力系数
相关文档
最新文档