超几何分布与二项分布的联系与区别

合集下载

超几何分布于二项分布的区别与联系

超几何分布于二项分布的区别与联系

§超几何分布与二项分布的区别与联系1、二项分布:一般地,在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为()(1),0,1,2,...,.k k n k n P X k C p p k n -==-=此时称随机变量X 服从二项分布,记作X ~(,)n p ,并称p 为成功概率。

2.超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则(),0,1,2,...,.k N K M N M n NC C P X k k m C --⋅=== 此时称随机变量X 服从超几何分布。

注意:超几何分布中必须同时满足两个条件:一是抽取的产品不再放回去; 二是产品数是有限个为N (总数较少).当这两个条件中任意一个发生改变,则不再是超几何分布.一、 当抽取的方式从无放回变为有放回,超几何分布变为二项分布【例1】从含有3件次品的10产品中有放回地逐次取,每次取一个,取3次,用X 表示次品数。

(1) 求X 的分布列;(2) 求()E X 和()D X二、 当产品总数N 很大时,超几何分布变为二项分布【例2】 从批量较大的产品中,随机取出10件产品进行质量检测,若这批产品的不合格率为0.05,随机变量ξ表示这10件产品中的不合格品数,求随机变量ξ的数学期望()E ξ【例3】根据我国相关法规则定,食品的含汞量不得超过1.00ppm,沿海某市对一种贝类海鲜产品进行抽样检查,抽出样本20个,测得含汞量(单位:ppm)数据如下表所示:(1)若从这20个产品中随机任取3个,求恰有一个含汞量超标的概率;(2)以此20个产品的样本数据来估计这批贝类海鲜产品的总体,若从这批数量很大的贝类海鲜产品中任选3个,记ξ表示抽到的产品含汞量超标的个数,求ξ的分布列及数学期望Eξ.()【例5】一条生产线上生产的产品按质量情况分为三类:A类、B类、C类。

超几何分布和二项分布

超几何分布和二项分布

超几何分布和二项分布超几何分布和二项分布是概率论中两种重要的离散型概率分布。

它们都在描述了离散型随机变量的分布规律,但在具体的描述和应用上有一定的区别。

本文将分别介绍超几何分布和二项分布的定义、特点、性质和应用,并对两者之间的关系和区别进行详细的比较分析。

一、超几何分布的定义、特点和性质超几何分布是描述了一种从有限个物件中抽出样本不放回地抽取成功次数的概率分布。

具体来说,超几何分布描述了在总体中有M个成功物件和N-M个失败物件时,从总体中抽取n个物件,其中成功物件的个数X的分布概率。

其概率质量函数为:P(X=k) = (M choose k) * (N-M choose n-k) / (N choose n),其中(M choose k)表示从M个物件中抽取k个物件的组合数。

超几何分布的特点有以下几点:1.超几何分布是离散型概率分布,其取值只能是非负整数。

2.超几何分布的期望值和方差分别为E(X) = n * M/N, Var(X) =n * M/N * (N-M)/N * (N-n)/(N-1)。

3.超几何分布的分布形状随着总体大小和成功物件的比例而改变,当总体很大时,超几何分布近似于二项分布。

超几何分布在实际应用中有着广泛的应用。

例如在质量抽样、抽样调查、生物统计学等领域,常常需要进行不放回地从总体中抽取物件的情况,而超几何分布恰好可以描述这类情况下随机变量的分布规律。

二、二项分布的定义、特点和性质二项分布是描述了n次独立重复的伯努利试验中成功次数的概率分布。

具体来说,二项分布描述了n次重复试验中成功的次数X的概率分布。

其概率质量函数为:P(X=k) = (n choose k) * p^k * (1-p)^(n-k),其中(n choose k)表示从n次试验中成功k次的组合数。

二项分布的特点有以下几点:1.二项分布是离散型概率分布,其取值只能是非负整数。

2.二项分布的期望值和方差分别为E(X) = np, Var(X) = np(1-p)。

超几何分布与二项分布的区别是什么

超几何分布与二项分布的区别是什么

超几何分布与二项分布的区别是什么超几何分布需要知道总体的容量,而二项分布不需要;超几何分布是不放回抽取,而二项分布是放回抽取(独立重复),当总体的容量非常大时,超几何分布近似于二项分布。

超几何分布和二项分布超几何分布需要知道总体的容量,而二项分布不需要;超几何分布是不放回抽取,而二项分布是放回抽取(独立重复)当总体的容量非常大时,超几何分布近似于二项分布。

二项分布即重复n次独立的伯努利试验。

在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互独立,与其它各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变,则这一系列试验总称为n 重伯努利实验,当试验次数为1时,二项分布就是伯努利分布超几何分布是统计学上一种离散概率分布。

它描述了由有限个物件中抽出n 个物件,成功抽出指定种类的物件的次数(不归还)。

在产品质量的不放回抽检中,若N件产品中有M件次品,抽检n件时所得次品数X=k,则P(X=k)=C(M,k)·C(N-M,n-k)/C(N,n),C(a b)为古典概型的组合形式,a为下限,b为上限,此时我们称随机变量X服从超几何分布(1)超几何分布的模型是不放回抽样(2)超几何分布中的参数是M,N,n上述超几何分布记作X~H(N,n,M)。

超几何分布超几何分布是统计学上一种离散概率分布。

它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。

称为超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关。

超几何分布中的参数是M,N,n,上述超几何分布记作X~H(n,M,N) 。

二项分布在n次独立重复的伯努利试验中,设每次试验中事件A发生的概率为p。

用X表示n重伯努利试验中事件A发生的次数,则X的可能取值为0,1,…,n,且对每一个k(0≤k≤n),事件{X=k}即为“n次试验中事件A恰好发生k次”,随机变量X的离散概率分布即为二项分布。

超几何分布与二项分布的区别联系

超几何分布与二项分布的区别联系
情时每台报警器报警的概率均为 0.9 。求险情发生时下列事
件的概率: ⑴3 台都没有报警; (2)恰好有一台报警; (3)恰好有两台报警;
分析: 1.一个警报器对另一个警报器有干扰吗?
2.每一个警报器报警的概率一样吗?
3.属于几次独立重复实验?
返回
1.一个警报器对另一个警报器有干扰吗? 2.每一个警报器报警的概率一样吗? 3.属于几次独立重复实验?
(2)如以该次检查的结果作为该批次每件产品大肠菌群超标的概率,如 从该批次产品中任取2件,设随机变量η为大肠菌群超标的产品数量,求P(η =1)的值及随机变量η的数学期望.
规律总结:当提问中涉及'‘用样本数据来估计总体数
据”字样或有此意思表示的时候,就是二项分布,否则就不是。
返回
跟踪训练 1
1.(广东高考 17) 某食品厂为了检查一条自动包装流水线的生产情 况,随机抽取该流水线上的 40 件产品作为样本称出它们的重量(单 位:克),重量的分组区间为(490,495],(495,500],……,(510,515], 由此得到样本的频率分布直方图,如图 4 所示。 (1)根据频率分布直方图,求重量超过 505 克的产品数量。 (2)在上述抽取的 40 件产品中任取 2 件,设 Y 为重量超过 505 克 的产品数量, 求 Y 的分布列。 (3)从流水线上任取 5 件产品, 求恰有 2 件产品合格的重量超过 505 克的概率。
(1).C30 0.90 (0.1)3 0.001 (2).C31(0.9)1(0.1)2 0.027 (3).C32 (0.9)2 (0.1)1 0.243
返回
返回
探究一 某地工商局从某肉制品公司的一批数量较大的火腿肠产品中
抽取10件产品,检验发现其中有3件产品的大肠菌群超标. (1)如果在上述抽取的10件产品中任取2件,设随机变量ξ为

关于二项分布与超几何分布问题区别举例

关于二项分布与超几何分布问题区别举例

关于“二项分布”与“超几何分布”问题举例概率问题是历年高考必考内容,也是高考试题研究的热点话题;因此,对于这部分内容,我们在备考复习中也投入了大量的精力,作了充分的准备;然而,在平时的练习和模考中,经常会发现学生的错误频频,准确地讲:对“二项分布”和“超几何分布”的概念模糊,判断不准,互相误用,导致错误;为此,本文对“二项分布”和“超几何分布”的概念和应用作出具体的剖析. 一.基本概念 1.超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件⎨X=k ⎬发生的概率为:P(X=k)= nNkn MN k M C C C --⋅,k= 0,1,2,3,⋯⋯,m ;其中,m = min ⎨M,n ⎬,且n ≤ N , M ≤ N . n,M,N ∈ N *为超几何分布;如果一个变量X 的分布列为超几何分布列,则称随几变量X 服从超几何分布.其中,EX= n ⋅ M N2.二项分布在n 次独立重复试验中,设事件A 发生的次数为X,在每次试验中,事件A 发生的概率为P ,那么在n 次独立重复试中,事件A 恰好发生k 次的概率为: P(X=k)= C n k p k (1-p)n-k (k=0,1,2,3,⋯,n),此时称随机变量X 服从二项分布. 记作:X ~ B(n,p),EX= np3.“二项分布”与“超几何分布”的联系与区别 (1)“二项分布”所满足的条件每次试验中,事件发生的概率是相同的;是一种放回抽样. 各次试验中的事件是相互独立的;●每次试验只有两种结果,事件要么发生,要么不发生;❍随机变量是这n次独立重复试验中事件发生的次数.(2)“超几何分布”的本质:在每次试验中某一事件发生的概率不相同,是不放回抽样,“当样本容量很大时,超几何分布近似于二项分布;(3)“二项分布”和“超几何分布”是两种不同的分布,但其期望是相等的.几何分布”和“二项分布”的这种“巧合”,使得“超几何分布”期望的计算大简化.共同点:每次试验只有两种可能的结果:成功或失败。

关于二项分布与超几何分布问题区别举例

关于二项分布与超几何分布问题区别举例

关于二项分布与超几何分布问题区别举例Company number:【0089WT-8898YT-W8CCB-BUUT-202108】关于“二项分布”与“超几何分布”问题举例一.基本概念 1.超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件X=k 发生的概率为:P(X=k)=n Nk n MN k M C C C --⋅,k= 0,1,2,3,,m ;其中,m = minM,n,且n N , M N . n,M,N N 为超几何分布;如果一个变量X 的分布列为超几何分布列,则称随几变量X 服从超几何分布.其中,EX= n MN2.二项分布在n次独立重复试验中,设事件A 发生的次数为X,在每次试验中,事件A 发生的概率为P,那么在n次独立重复试中,事件A恰好发生k次的概率为:P(X=k)= C n k p k(1-p)n-k(k=0,1,2,3,,n),此时称随机变量X服从二项分布.记作:X B(n,p),EX= np3.“二项分布”与“超几何分布”的联系与区别(1)“二项分布”所满足的条件每次试验中,事件发生的概率是相同的;是一种放回抽样.各次试验中的事件是相互独立的;每次试验只有两种结果,事件要么发生,要么不发生;随机变量是这n次独立重复试验中事件发生的次数.(2)“超几何分布”的本质:在每次试验中某一事件发生的概率不相同,是不放回抽样,“当样本容量很大时,超几何分布近似于二项分布;合”,使得“超几何分布”期望的计算大简化.共同点:每次试验只有两种可能的结果:成功或失败。

不同点:1、超几何分布是不放回抽取,二项分布是放回抽取;2、超几何分布需要知道总体的容量,二项分布不需要知道总体容量,但需要知道“成功率”;联系:当产品的总数很大时,超几何分布近似于二项分布。

因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样.所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的. 二.典型例题例1:袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求:(1)有放回抽样时,取到黑球的个数X的分布列;(2)不放回抽样时,取到黑球的个数Y的分布列.解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到黑球的概率均为15,3次取球可以看成3次独立重复试验,则1~35X B ⎛⎫⎪⎝⎭,. 03031464(0)55125P X C ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭∴;12131448(1)55125P X C ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭; 21231412(2)55125P X C ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭; 333141(3)55125P X C ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭.因此,X 的分布列为(2).不放回抽样时,取到的黑球数Y可能的取值为0,1,2,且有:03283107(0)15C C P Y C ===;12283107(1)15C C P Y C ===;21283101(2)15C C P YC ===.因此,Y 的分布列为例2.在10件产品中,有3件一等品,4件二等品,3件三等品,从这10件产品中任取3件,求:(1) 取出的3件产品中一等品件数多于二等品件数的概率.(2) 记:X表示“取出的3件产品中一等品件数多于二等品件数的数量”,求X 的分布列并求EX;分析:由题可知:从10件产品中分别任取两次得到“一等品”或“二等品”的概率是不相等的,因此是一种不放回抽样;随机变量 X服从超几何分布.解:(1) 记A1:取出3件一等品;A2:取出2件一等品;A3:取出1件一等品,二件三等品.A1、A2、A3互斥,P(A 1)= C 33C 103 = 1120 , P(A 2)= C 32C 71C 103 =740,P(A 3)= C 31C 72C 103 = 340 ; 所以,P =P(A 1)+ P(A 2)+ P(A 3)= 31120 .(2)X=0,1,2,3; X 服从超几何分布,所以P(X=0)= P(一件一等品,一件二等品,一件三等品)=310131413C C C C =310;P(X=1)=P (二件一等品,一件二等品) =3101423C C C =110; P(X=2)=P(三件一等品,一件二等品)=3101433C C C =130 ; P(X=3)= P (三件一等品,零件二等品)= 3100433C C C = 1120;EX = nM N = 3310=说明:谨防错误地认为随机变量X 服从二项分布,即:XB(3, 31120).例3.从某高中学校随机抽取16名学生,经校医检查得到每位学生的视力,其中“好视力”4人,以这16人的样本数据来估计整个学校的整体数据,若从该校(人数很多)任选3人,记X表示抽到“好视力”学生的人数,求X的分布列及数学期望.分析:本题就是从“该校(人数很多)任选3人”,由此得到“好视力”人数X,若每次从该校任取一名学生为“好视力”这一事件的概率显然是相等的,因为该校“人数很多”相当于“有放回抽样”,因此,随机变量X服从“二项分布”而不是“超几何分布”.解:由题可知:X= 0,1,2,3;由样本估计总体,每次任取一人为“好视力”的概率为: P = 416 = 14,则XB(3,14 );P(X=0)= C 30( 14 )0(1- 14)3-0 = 2764; P(X=1)= C 31( 14 )1(1- 14)3-1 = 2764 ;P(X=2)= C 32( 14 )2(1- 14 )3-2 = 964 ;P(X=3)= C 33( 14 )3(1- 14 )3-3 = 164;EX = 3×14 = 34. 说明:假设问题变为:“从16名学生中任取3名,记X 表示抽到“好视力”学生的人数,求X 的分布列及数学期望”.那么X 服从“超几何分布”,即:P(X=k)= 3163124C C C k k ,(X=0,1,2,3),其中,数学期望值不变,即为:EX= 3×416 = 34.。

超几何分布与二项分布的联系与区别

超几何分布与二项分布的联系与区别

在苏教版《数学选修2-3》的课本中,第二章《概率》的2。

2节和2.4节分别介绍了两种离散型随机变量的概率分布,超几何分布(hyper—geometric distribution)与二项分布(binomial distribution)。

通过实例,让学生认识模型所刻画的随机变量的共同特点,从而建立新的模型, 并能运用两模型解决一些实际问题。

然而在教学过程中,却发现学生不能准确地辨别所要解决的问题是属于超几何分布还是二项分布,学生对这两模型的定义不能很好的理解,一遇到含“取"或“摸"的题型,就认为是超几何分布,不加分析,随便滥用公式。

事实上, 超几何分布和二项分布确实有着密切的联系,但也有明显的区别.课本对于超几何分布的定义是这样的:一般的,若一个随机变量X的分布列为,其中,则称X服从超几何分布,记为.其概率分布表为:对于二项分布的定义是这样的:若随机变量X的分布列为,其中则称X服从参数为n,p的二项分布,记为。

其概率分布表为:超几何分布与二项分布都是取非负整数值的离散分布,表面上看,两种分布的概率求取有截然不同的表达式,但看它们的概率分布表,会发现构造上的相似点,如:随机变量X的取值都从0连续变化到l,对应概率和N,n,l三个值密切相关……可见两种分布之间有着密切的联系。

课本中对超几何分布的模型建立是这样的:若有N件产品,其中M件是废品,无返回地任意抽取n件,则其中恰有的废品件数X是服从超几何分布的.而对二项分布则使用比较容易理解的射击问题来建立模型。

若将但超几何分布的概率模型改成:若有N件产品,其中M件是废品,有返回的任意抽取n件,则其中恰有的废品件数X是服从二项分布的。

在这里,两种分布的差别就在于“有”与“无”的差别,只要将概率模型中的“无”改为“有”,或将“有"改为“无”,就可以实现两种分布之间的转化。

“返回”和“不返回"就是两种分布转换的关键.如在2。

专题-二项分布与超几何分布辨析

专题-二项分布与超几何分布辨析

专题-二项分布与超几何分布辨析
二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决.在实际应用中,理解并区分两个概率模型是至关重要的.下面举例进行对比辨析.
1、超几何分布和二项分布都是离散型分布
2、超几何分布和二项分布的区别:
3、超几何分布需要知道总体的容量,而二项分布不需要;
4、超几何分布是不放回抽取,而二项分布是放回抽取(独立重复)
5、当总体的容量非常大时,超几何分布近似于二项分布。

例1、袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求:
(1)有放回抽样时,取到黑球的个数X的分布列;
(2)不放回抽样时,取到黑球的个数Y的分布列.
解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到黑球
1的概率均为,3次取球可以看成3次独立重复试验,则,B3.5 6414∴P(0)C;551250
303
4814P(1)C;551251
312
1214P(2)C;551252
321
114P(3)C.551253
330
因此,分布列为
2,且有:
031221C2C8C2C8C2C717P(Y0)3;P(Y1)3;P (Y2)38.C1015C1015C1015
因此,Y的分布列为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

这时发现发现两种不同的分布其对应的概率之间的差距进一步缩小了,我们做出这样的猜想:样本个数越大超几何分布和二项分布的对应概率相差就越小,当样本个数为无穷大时,超几何分布和二项分布的对应概率就相等,换而言之超几何分布的极限就是二项分布!也就是说。

下面我们对以上猜想作出证明:
产品个数N无限大,设废品率为p,则,
以上的证明与我们的直观思想相吻合:在废品为确定数M的足够多的产品中,任意抽取n个(由于产品个数N无限多,无返回与有返回无区别,故可看作n次独立试验)中含有k 个废品的概率当然服从二项分布。

在这里,超几何分布转化为二项分布的条件是(1)产品个数应无限多,否则无返回地抽取n件产品是不能看作n次独立试验的.(2)在产品个数N 无限增加的过程中,废品数应按相应的“比例”增大,否则上述事实也是不成立的。

对于超几何分布的数学期望,二项分布的数学期望,当我们将“不返回”改为“返回”时,,两种分布的数学期望相等,方差之间没有相等关系。

超几何分布和二项分布的数学期望和方差是否也具有我们以上猜想并证明的极限关系呢?
事实上超几何分布的数学期望,方差当这两个极限值分别是二项分布的数学期望与方差。

需要指明的是这一性质并非只为超几何分布与二项分布之间所具有,一般地,如果随机变量依分布收敛于随机变量,则随机变量的数学期望和方差分别是随机变量的数学期望和方差的极限。

这样超几何分布与二项分布达到了统一。

一般说来,有返回抽样与无返回抽样计算的概率是不同的,特别在抽取对象数目不大时更是如此。

但当被抽取的对象数目较大时,有返回抽样与无返回抽样所计算的概率相差不大,人们在实际工作中常利用这一点,把抽取对象数量较大时的无返回抽样(例如破坏性试验发射炮弹;产品的寿命试验等),当作有返回来处理。

那么,除了在有无“返回”上做文章,有没有什么办法快速实现超几何分布向二项分布的转化呢?
设想N件产品装在一个大袋中,其中M件为废品,无返回地从中抽取n件,那么其中废
品件数 X服从超几何分布。

现若在大袋中再放进两个小袋,一袋装正品,一袋装废品,然后从大袋中任摸一个小袋,无返回地从中任取一件产品,则这样任取n件,其中废品件数X 就不再服从超几何分布,而应服从的二项分布了。

事实上,我们把摸到正品袋中的产品看作“成功”,摸到废品袋中的产品看作“失败”,则“成功”与“失败”的概率相等,皆为且每次试验是相互独立的,正是典型的伯努力试验概型,因此可用二项分布去刻划其概率分布列。

,从这一点上讲,两种分布仅“一袋之隔”。

将正品和废品隔离,则超几何分布将成为二项分布。

超几何分布和二项分布这两种离散型随机变量的概率分布表面上看来风马牛不相及,但通过以上的论证,我们发现这两种分布可以通过有无“返回”,隔离正品和次品等方法来互相转换,抛开转换问题,也可把二项分布看作超几何分布的极限,它们的期望和方差之间也存在这种极限关系。

相关文档
最新文档