不等式复习课-
不等式的性质基本不等式课件高三数学一轮复习

举题说法
不等式的性质
1 (1) (多选)已知a,b,c满足c<a<b,且ac<0,那么下列各式一
定成立的是
( BCD
)
A.ac(a-c)>0
B.c(b-a)<0
【解C析.】c因b2为<aa,b2b,c满足c<a<b,且Dac.<a0b,>所a以c c<0,a>0,b>0,a-c>0,b
3.已知 x>1,则 x+x-1 1的最小值为 ( C )
A.1 C.3
B.2 D.4
【解析】因为 x>1,所以 x-1>0,所以 x+x-1 1=(x-1)+x-1 1+1≥2 (x-1)·x-1 1 +1=3,当且仅当 x-1=x-1 1,即 x=2(x=0 舍去)时等号成立,此时 x+x-1 1取最小 值 3.
4.(多选)下列说法正确的是
()
A.若
x<1,则函数 2
y=2x+2x1-1的最小值为-1
B.若实数 a,b,c 满足 a>0,b>0,c>0,且 a+b+c=2,则a+4 1+b+1 c的最小值
是3
C.若实数 a,b 满足 a>0,b>0,且 2a+b+ab=6,则 2a+b 的最大值是 4
D.若实数 a,b 满足 a>0,b>0,且 a+b=2,则a+a21+b+b21的最小值是 1
【解析】设 2α-β=m(α+β)+n(αห้องสมุดไป่ตู้β),则mm+ -nn= =2-,1, 解得mn==3212,,
所以 2α-β
=12(α+β)+32(α-β).
因为 π<α+β<54π,-π<α-β<-π3,所以π2<12(α+β)<58π,-32π<32(α-β)<-π2,所
以-π<12(α+β)+32(α-β)<π8,即-π<2α-β<π8,所以 2α-β 的取值范围是-π,π8.
等式性质、不等式性质与基本不等式复习课公开课教案教学设计课件资料

等式性质、不等式性质与基本不等式复习课公开课教案教学设计课件资料第一章:等式性质的复习与探究1.1 等式的概念与基本性质回顾等式的定义和基本性质(如交换律、结合律、分配律等)。
通过示例和练习,让学生熟悉等式的应用和解题方法。
1.2 等式的变形与解复习等式的变形规则,如两边加减乘除相同的数等。
讲解等式解的定义和求解方法,通过例题展示解题步骤和技巧。
第二章:不等式性质的复习与探究2.1 不等式的概念与基本性质回顾不等式的定义和基本性质(如传递性、同向不等式的可加性等)。
通过示例和练习,让学生熟悉不等式的应用和解题方法。
2.2 不等式的变形与解复习不等式的变形规则,如两边加减乘除相同的数等。
讲解不等式解的定义和求解方法,通过例题展示解题步骤和技巧。
第三章:基本不等式的复习与探究3.1 基本不等式的概念与性质回顾基本不等式的定义和性质,如算术平均数不小于几何平均数等。
通过示例和练习,让学生熟悉基本不等式的应用和解题方法。
3.2 基本不等式的证明与应用讲解基本不等式的证明方法,如使用AM-GM不等式等。
探讨基本不等式在实际问题中的应用,如优化问题、经济问题等。
第四章:等式与不等式的综合应用4.1 等式与不等式的联立讲解等式与不等式的联立解法,如解方程组和不等式组。
通过例题和练习,让学生熟悉解题步骤和技巧。
4.2 等式与不等式的应用问题分析等式与不等式在实际问题中的应用,如几何问题、物理问题等。
通过例题和练习,让学生熟悉解题思路和方法。
第五章:复习与练习5.1 等式性质的复习与练习总结等式的性质和解题方法,进行复习和练习。
提供练习题,让学生自主练习和巩固知识点。
5.2 不等式性质的复习与练习总结不等式的性质和解题方法,进行复习和练习。
提供练习题,让学生自主练习和巩固知识点。
5.3 基本不等式的复习与练习总结基本不等式的性质和解题方法,进行复习和练习。
提供练习题,让学生自主练习和巩固知识点。
第六章:等式与不等式的转换6.1 等式到不等式的转换讲解如何将等式转换为不等式,以及在不同情况下如何处理不等式的符号变化。
不等式的解法(复习课)(1)

1、一元一次不等式的法
ax>b 或 ax<b
2、绝对值不等式 |x|>a (a>0) x<-a或x>a |x|<a (a>0) -a<x<a
3、一元二次不等式的解法 ax2+bx+c>0 (a>0) 或 ax2+bx+c<0 (a>0)
判别式 一元二次方程 ax2+bx+c=0的 根 二次函数 y=ax2+bx+c的 图象 (a>0) ax2+bx+c>0 (a>0)
二、应用举例:
1、解关于x的不等式: ax+1<a2+x 2、已知a≠b,解关于的不等式:
a2x+b2(1-x) ≥[ax+b(1-x)]2
3、解关于x的不等式
x2-(a+a2)x+a3 >0
4、解关于x的不等式
a x x b 0
ax b
b ( >a>b>0 ) a
>0
2
=0
无实根
<0
两相异实根
b b 4ac x 1 、2 = 2a
两相等实根 b x1=x2= 2a
{x|x<x1或 {x|x∈ R x>x2 } 且X≠X1}
R
ax2+bx+c<0 {X|X1<X (a>0) <X2}
4、分式不等式的源自法x 0 (1)简单分式不等式的解法 如: 3 x
5、解关于x的不等式:
ax2-2(a+1)x+4>0 6、解不等式: |x+3|-|x-5|>7 (其中a≠0)
7、已知关于x的不等式 ax+b>0的解 集为 (1,+∞ ) ,解不等式
不等式复习课件

3
的最小整数解为( A )
A,-1
C,2
D,3
2 x 4 0 -3,-2 例7:不等式组 1 的整数解为_________ 2 x 2 0
4、不等式2x-2≥3x-4的正整数解的个数为(
(A)1个 (B)2个 (C)3个
B )
(D)4个
2 x 3 0 5、不等式组 的整数解的个数是( C ) 3 x 5 0
由不等式②得: x≥5
-1 0 1 2 3 4 5 6 7 8
注意:不等式组的 公共解集,可用口诀: 同大取大,同小取小 大小,小大中间夹, 大大小小无解答.
∴ 原不等式组的解集为:5≤x≤8
∴原不等式组的整数解x为: 5,6,7,8.
二,求不等式的特殊解:
例6:不等式 2 x
x 1 8 2x
数轴显示
b a
语言叙述
同大取大 同小取小
大小小大中间找 大大小小无解集
1 2
xa x b
xa x b
b
a
3 xa 4 xb
xa x b
b
a
b
a
一元一次不等式(组)的解
例1:不等式4-3x>0的解是( D )
4 A, x 3 4 B, x 3 4 C, x 3 4 D, x 3
x 2 0 x 3 0
x>2 的解集为___.ห้องสมุดไป่ตู้
的解集是
3x 1 5 x 7.(05上海)解不等式组: ,并把解集在 2 x 1 6 x 数轴上表示出来.
-5 -4 -3 -2 -1 O 1 2 3 4
4.(04青海)已知点M(3a-9,1-a)在第三象限,且它 们的坐标都是整数,则a=___ A. 1 B. 2 C. 3 D. 0 5.(05临沂市)关于x的不等式3x-2a≤-2的解集如图所 示,则a的值是___ 2 x 7>3 x-1 -1 0 1 6.(05天津)不等式组 的解集为___ x-2 0
不等式的性质(复习课)

定理5 补充
若a>b>0 则n a >n b (n ∈N且 n>1)
11
若a>b且ab>0 则 <
ab
定理:若a、b∈R,那么 a2+b2≥2ab (当且仅当a=b取“=”)
定理:如果是a、b正数,那么
a
2
b
≥
a b(当且仅当a=b取“=”)
(1) 两个定理中条件的区别 (2)两个定理的结构特征及应用 (3)要注意“=”的取到,事实上在“=”处是一种边界情况
v
2两火车的间距不得ຫໍສະໝຸດ 于 2 0 千米,那么这批物资全部到
达灾区最少需要 ( B )小时
(A) 5 (B)10 (C)15 (D)20
;
安全柜 ;
之色/马开那双凌厉の眸子所过之处/这些人忍不住后退壹步/到最后开始溃败咯起来/马开就站在那里/以壹双眼睛/逼の这些人四处逃窜/这种威势/让为首の几佫人惊恐不已/就算荒原の最出名の凶人/都不可能凭借着目光让这些久经战斗の人溃败/可面前这佫少年做到咯/几佫人在见到马开目光落 在它们身上后/它们也再无战意/随着众人壹起逃离/钟薇见到这壹幕/忍不住向马开の侧脸/马开此刻の侧脸拾分坚毅/这种坚毅/让她の有些呆滞/感受到马开身体传来の温热/钟薇那绝美の脸蛋上/飘扬起无端の绯红/醉人美艳/"再坚持几滴/就能到器宗の实力范围咯/到时候/我们就安全咯/"马开背 着钟薇/对着她说道/"嗯/"钟薇点头道/"不过刀疤皇从那壹战后/就壹直没有出现/它见过你身上の不少好东西/肯定不会放过你/怕确定还有什么算计/它能有什么算计?无非确定找壹些强悍の人围杀我/"马开回答道/"它不来倒好/来の话先杀咯它/你不要轻敌/它见过你青莲の恐怖/要确定它还敢再来 /肯定会有把握/"钟薇对马开说道/&
不等式复习课件(职高)

综合练习
基础练习题
通过解老师提供的练习题,检验一下自己对不等 式的掌握程度吧!
提高练习题
来挑战一下自己吧!这些练习题将考验您的不等 式应用能力。
总结
1 知识点回顾
通过本次课程,您已经全面回顾了职高数学中的各种不等式。
2 学习建议
继续做题,不断积累,加油!
二元不等式的应用 之一是约束条件。 例如,当一个工程 需要满足多个条件 时,可以将这些条 件用二元不等式表 示出来。
三元不等式
三元不等式是三个 变量之间的不等式。 三元不等式在最值 和优化问题中经常 用到。
三元不等式的应 用
三元不等式的应用 之一是优化问题。 例如,当需要最小 化或最大化某个函 数时,可以将函数 与三元不等式组合 起来,以实现优化。
绝对值不等式的定义
绝对值表示一个数到0的距离。绝对值不等式是指包含绝对值的不等式,通常在求解问题时要将绝 对值拆开讨论。
绝对值不等式的解法
绝对值不等式的解法是将绝对值拆开讨论,每一种情况有不同的解法。
多元不等式
二元不等式
二元不等式是两个 变量之间的不等式。 二元不等式在生活 和工作中经常用到。
二元不等式的应 用
如果a>b,则a+c>b+c(c为任意数)
一元一次不等式
一元一次不等式的解法
使用图像法或非图像法求解一元一次不等式
一元一次不等式的应用
一元一次不等式的应用之一是求最值
一元二次不式
1
一元二次不等式的解法
使用图像法或非图像法求解一元二次不等式
2
一元二次不等式的应用
一元二次不等式的应用之一是求区间
绝对值不等式
不等式复习课件(职高)
人教高中数学必修一B版《不等式》等式与不等式说课复习(不等式及其性质)
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
已知-1<x<4,2<y<3.
(1)求 x-y 的取值范围;
(2)求 3x+2y 的取值范围.
【解】 (1)因为-1<x<4,2<y<3,所以-3<-y<-2,所以
-4<x-y<2.
(2)由-1<x<4,2<y<3,得-3<3x<12,4<2y<6,所以 1<3x+2y<18.
栏目 导引
第二章 等式与不等式
■名师点拨
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
(1)推论 1 表明,不等式中的任意一项都可以把它的符号变成相
反的符号后,从不等式的一边移到另一边.
(2)推论 2 表明,两个同向不等式的两边分别相加,所得到的不
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
________.
解析:M-N=x2+x-4x+2=x2-3x+2=(x-1)(x-2), 又因为 x<1,所以 x-1<0,x-2<0,所以(x-1)(x-2)>0,所 以 M >N.
不等式的解法(复习课)(1)
1、一元一次不等式的法 ax>b 或 ax<b
2、绝对值不等式 |x|>a (a>0) x<-a或x>a |x|<a (a>0) -a<x<a
3、一元二次不等式的解法 ax2+bx+c>0 (a>0) 或 ax2+bx+c<0 (a>0)
判别式
>0
=0 <0
一元二次方程 ax2+bx+c=0的 根
6、解不等式: |x+3|-|x-5|>7
7、已知关于x的不等式 ax+b>0的解 集为 (1,+∞ ) ,解不等式
ax b x2 5x 6 >0
1、含参数不等式要注意参数的范围、参数引起 的讨论
2、含两个绝对值不等式的解法 ——零值点法
二、应用举例:
1、解关于x的不等式: ax+1<a2+x
2、已知a≠b,解关于的不等式: a2x+b2(1-x) ≥[ax+b(1-x)]2
3、解关于x的不等式 x2-(a+a2)x+a3 >0
4、解关于x的不等式
a xxb 0
b
( >a>b>0 )
ax b
a
5、解关于x的不等式: ax2-2(a+1)x+4>0 (其中a≠0)
注意:
1、以后解不等式最后的结果都要写成集合或区间。
2、解不等式时一定要注意“是否有=”。
3、对绝对值不等式一定要分清是 “或”还是“且”, 是求并集还是要求交集。
4、对一元二次不等式,要注意二次项系数a是否大于0
5、数轴标根法—分式不等式—高次整式不等式
6、有关计算的要求------移项、去括号、通分、两边同 乘一个数是正还是负。
不等式复习课
如果a b,
那么a c b c.
不等式的性质2 不等式两边乘(或除以) 同一个正数,不等号的方向不变.
如果a b, c 0, a b 那么ac bc(或 ). c c
不等式的性质3 不等式两边乘(或除以) 同一个负数,不等号的方向改变.
一个工程队原定在10天内至少要挖土 600m³ ,在前两天一共完成了12m³ , 由于整个工程调整工期,要求提前两 天完成挖土任务。问以后几天内,平 均每天至少要挖土多少m³ ?
2.学校图书馆搬迁,有15万册图书, 原准备每天在一个班级的劳动课上, 安排一个小组同学帮助搬运图书,两 天共搬了1.8万册。如果要求在一周 内搬完,设每个小组搬运图书数相同, 则在以后五天内,每天至少安排几个 小组搬书?
解不等式,并把解集表示在数轴上:
(1)3(2x+7)>23 (2)12-4(3x-1)≤2(2x-16)
x 3 < 2 x 5 -1 (3) 3 5 2 x 1 3x 1 5 (4) ≥ 12 3 2
P134
解: 39.98≤ V ≤40.02.
解:设蛋白质的含量为x g, 由题意,得 x ≥300×0.6% x ≥1.8 答:蛋白质的含量不小于1.8 g.
(5) x的
2
3
与y的0.5的和是非正数;
2
3
x+0.5y≤0
(6) a的平方与3的差不大于a与5的和.
a² ≤a+5 -3
(7)m与n的平方和是非负数;
m² +n² ≥0
你认为是这样吗 ?
小辉在学了不等式的基本性质这一节后,他
觉得很容易;并用很快的速度做了一道填空题,
绝对值不等式专题复习课件
令g ( x) x 1 x 4
f ( x)的 最 小 值 为 5
a
4 a 2 5a 4 由a 5 0成 立 a a 0 a 1或a 4 a (0,1] [4,)
例3、已知关于x的不等式 ax 2 ax a 2(a 0) (1)当a 1时,求此不等式的解集; (2)若此不等式的解集为R,求实数a的取值范围。 解:(1)当a=1时,不等式为 x 2 x 1 2 由绝对值的几何意义知,不等式的意义可解释为数轴上的点x到1、2的距离
(3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型 不等式的解法 法一:利用绝对值不等式的几何意义求解,体现了 数形结合的思想; 法二:利用“零点分段法”求解,体现了分类讨论 的思想; 法三:通过构造函数,利用函数的图象求解,体现 了函数与方程的思想.
2.绝对值的三角不等式
当且仅当( x a)(1 x) 0 时,即 f ( x) a 1 记不等式( x a)(1 x) 0 的解集为A,则
(3,1) A故a 3
a (,3]
例2、已知关于x的不等式2x 1 x 1 log2 a (其中a 0 ) (1)当 a 4时,求不等式的解集; (2)若不等式有解,求实数a 的取值范围。 解:(1)令 f ( x) 2x 1 x 1 ,当a 4时, f ( x) 2 1 1 当 x 时, x 2 2 ,得 4 x ; 2 2 1 当 x 1 时, 3 x 2 ,得 4 x 2 ; 2 3 当 x 1 时, x 0 ,此时的x不存在。
2 x 5, x 2 1,2 x 3 2 x 5, x 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
下载附件
念人:窗外的风景
2019-11-29 16:55 上传
住在十八层楼,对于高楼林立的大都市来说,十八楼算是中层住宿。尽管楼房有电梯,但是,除上班外,周末一到,我懒得下楼去,愿在家中享受个人世界。