2004年成考专升本高等数学

合集下载

成人高考成考高等数学(二)(专升本)试卷与参考答案

成人高考成考高等数学(二)(专升本)试卷与参考答案

成人高考成考高等数学(二)(专升本)自测试卷(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、设函数(f(x)=x3−3x+2),则(f(x))在区间[-2, 2] 上的最大值为:A、2B、4C、6D、82、已知函数(f(x)=e x lnx),则该函数的定义域是:A.((0,+∞))B.((−∞,0))C.((0,1))D.((1,+∞))3、设函数f(x)=x3−3x2+2在区间[−1,3]上的最大值为M,最小值为m。

则M−m 的值是:A. 4B. 6C. 8D. 10),则该函数的间断点是:4、设函数(f(x)=11+x2A.(x=0)B.(x=1)C.(x=−1)D.(x)无间断点5、设函数(f(x)=x3−3x+1),则该函数在区间 [-2, 2] 上的最大值为:A、4B、3C、2D、16、设函数f(x)=x3−6x2+9x+1,则该函数的极值点为:A.x=1B.x=2C.x=3D.x=47、若函数(f(x)=ln(x2+1)),则(f(x))在(x=1)处的导数(f′(1))是:)A、(12B、1C、2)D、(238、设函数(f(x)=x3−6x2+9x+1),则函数的极值点个数是:A. 0B. 1C. 2D. 39、设函数(f(x)=3x2−4x+5),则该函数的对称轴为:A.(x=1))B.(x=−13)C.(x=23D.(x=2)10、在下列函数中,连续函数为:())(x∈R)A.(f(x)=1x3)(x∈R)B.(f(x)=√xC.$( f(x) =)$D.(f(x)=|x|)(x∈R)),则(f′(0))的值为:11、已知函数(f(x)=1x2+1A. 0B. 1C. -1D. 不存在),求(f′(x))。

12、设函数(f(x)=2x+3x−1)A.(2(x−1)2B.(2x2−1)C.(2(x+1)(x−1))D.(1x−1)二、填空题(本大题有3小题,每小题7分,共21分)1、设函数(f(x)=e ax+b),其中(a,b)为常数,若(f(x))的单调递减区间为((−∞,1a)),则(a)的取值范围为______ 。

历年成人高考专升本高等数学真题及答案汇总

历年成人高考专升本高等数学真题及答案汇总

第一章 函数与极限一. 基础题1. 设映射:,,.f X Y A X B Y →⊂⊂证明 (1) ()()();f A B f A f B ⋃=⋃ (2) ()()().f A B f A f B ⊂证 (1)(),y f A B x A B ∈⇔∃∈ 使得()y f x =x A ⇔∈或x B ∈,且()y f x =()y f A ⇔∈或()y f B ∈()()y f A f B ⇔∈ .(2)(),y f A B x A B ∈⇒∃∈ 使得()y f x =x A ⇒∈且x B ∈, ()y f x =()y f A ⇔∈且()y f B ∈()()y f A f B ⇒∈ .2. 设()f x 为定义在(,)l l -内的奇函数,若()f x 在(0,)l 内单调增加,证明()f x 在(,0)l -内单调增加.证 设120l x x -<<<,则120x x l <-<-<,由()f x 在(0,)l 内单调增加得21()()f x f x -<-.又()f x 为(,)l l -内的奇函数,故21()()f x f x -<-,从而21()()f x f x >,即()f x 在(,0)l -内单调增加.3.设()ln(f x x =,讨论它的奇偶性. 解 显然()f x 的定义域是(,)-∞+∞.又因为()ln[ln(f x x x -=-+=-+ln=ln(()x f x ==-+=-.所以()f x 为奇函数.4. 设1(1),21xf x x +-=-求()f x . 解 设1,u x =-得1x u =-,于是()()()11221112u uf u u u+--==---,从而()212x f x x -=-.5. 设数列{}n x 的一般项为1sin 3n n x n π=.问lim n n x →∞=?求出N 使当n N >时n x 与其极限之差的绝对值小于ε.当0.001ε=时,求出N .解 lim 0n n x →∞=.我们证明如下:0,ε∀>为使110sin 3n n x n n πε-=≤<,只需1n ε>.取1N ε⎡⎤=⎢⎥⎣⎦,则当n N >时,就有0n x ε-<.当0.001ε=时, 取1N ε⎡⎤=⎢⎥⎣⎦1000==1000,此时只要1000n >,就有00.001n x -<.6. 用极限定义证明:(1)1n →∞=; (2)lim0.99991n n→∞= . (3) 21214lim 2;21x x x →--=+(4)lim 0x =证 (1)0,ε∀>为使1a nn nε=≤=<,只需an ε>.取aN ε⎡⎤=⎢⎥⎣⎦,则当n N >时,1ε-<,即lim 1n n→∞=.(2) 0ε∀> (不妨设1ε<),为使10.9999110n nε-=<,只需1lg n ε>.取1lg N ε⎡⎤=⎢⎥⎣⎦,则当n N >时,就有0.99991nε-< ,即 lim0.99991n n→∞=. (3) 因为11,22x x →-≠- 0ε∀>,为使214121222()212x x x x ε--=--=--<+,只需1()22x ε--<.取2εδ=,则当10()2x δ<--<时,就有214221x x ε--<+.故21214lim 2;21x x x →--=+ (4) 因为,x →-∞所以0x <.又10x-≤≤=-,为使0ε-<只需1x ε<-.所以0ε∀>,取1X ε=,则当x X <-时, 就有0ε-<.故21214lim 221x x x →--=+. 7. 设2()f x x =.问2lim ()x f x →=?求出δ使当2x δ-<时()f x 与其极限之差的绝对值小于ε.当0.001ε=时,求出δ.解 22lim 4x x →=.我们给出如下证明.0,ε∀>由于2,x →不妨设13x <<.为使2()44(2)(2)52f x x x x x ε-=-=+-≤-<,只需25x ε-<.取5εδ=,则当2x δ-<时,就有()4f x ε-<.当0.001ε=时, 取0.0002δ=,此时只要20.0002x -<,就有()40.001f x -<. 8.证明函数()f x x =当0x →时极限为零.证明 0,ε∀>为使()000f x x x x ε-=-==-<,只需取5εδ=,则当0x δ-<时,就有0x ε-<,即0lim 0x x →=.9.求(),()x xf x x x xϕ==当0x →时的左、右极限,并说明它们的极限是存在. 解 000l i m ()l i m l i m 11,x x x x f x x +++→→→=== 000l i m ()l i m l i m 11.x x x xf x x ---→→→=== 由于0lim ()x f x +→=0lim ()x f x -→1=知0lim ()1x f x →=;0000lim ()lim lim lim11,x x x x x x x x x ϕ++++→→→→====0000lim ()lim lim lim 1 1.x x x x x x x x x ϕ----→→→→-==-=-由于lim ()x x ϕ+→≠0lim ()x x ϕ-→1=知0lim ()x x ϕ→不存在. 10.根据定义证明: (1)21(1)sin (1)y x x =--为当0x →时的无穷小; (2)12xy x+=为当0x →时的无穷大.问x 应满足什么条件,能使410y >. 证(1)0,ε∀>为使22110(1)sin 0(1)sin 1(1)(1)y x x x x x ε-=--=-≤-<--,只需取δε=,则当01x δ<-<时,就有21(1)s i n 0(1)x x ε--<-,即21(1)sin(1)y x x =--为当0x →时的无穷小. (2)0M ∀>,为使121122x M x x x +=+≥->,只要12M x->,即12x M <+. 因此,取1,2M δ=+当00x δ<-<时,就有12xM x +>.故12x y x +=为当0x →时的无穷大.当410,M =取4112102M δ==++时,就能使41210xy x +=>.11.求极限21lim x x x →∞+并说明理由.解 21lim x x x →∞+=1lim(2)2x x→∞+=.理由:令()2f x α=+,其中1xα=.因为x →∞时,x 是无穷大,由无穷大与无穷小的关系知1xα=为无穷小.再由无穷小与极限的关系得1lim(2)2x x →∞+=.12. 计算下列极限:(1) 220()lim h x h x h→+-; (2) 22468lim 54x x x x x →-+-+;(3) 2468lim 31x x x x x →∞++-+; (4) 2lim(21)x x x →∞-+;(5) 32121lim()82x x x →---; (6)12(1)lim [()()()]n a a n ax x x n n n n→∞-++++++ ;解 (1) 22222000()2limlim lim(2)2h h h x h x x xh h x x h x h h →→→+-++-==+=. (2) 2244468(4)(2)22lim lim lim 54(4)(1)13x x x x x x x x x x x x x →→→-+---===-+---.(3) 223443416868lim lim031311x x x x x x x x x x x→∞→∞++++==-+-+ (4) 因为22211lim lim 011212x x x x x x x→∞→∞==-+-+,所以2lim(21)x x x →∞-+=∞.(5) 2332222121122(2)(4)lim()lim lim 828(2)(42)x x x x x x x x x x x x x →→→---+-==----++ 2241lim 422x x x x →+==++. (6) 原式=1lim [(1)(12(1)]n an x n n n →∞-++++-=1(1)lim [(1)]2n a n n n x n n →∞--+=2ax +. 13.利用有界变量与无穷小之积仍为无穷小计算下列极限:(1)201lim cosx x x →; (2)arctan lim x xx→∞.解 (1) 因为0,x →所以2x 0→,1cos 1x≤.故201lim cos 0x x x →=.(2) 因为,x →∞所以1x 0→,arctan 2x π<.故arctan 1limlim arctan 0x x x x xx →∞→∞==. 14.利用两个重要极限计算下列极限:(1) 0sin lim(0,0)x xxααββ→≠≠; (2) 20tan(1)lim 2x x x x →-+-;(3) 20cos 7cos5lim sin 3x x x x →-; (4) lim 2sin (2nn n x x →∞为不等于零的常数) (5)120lim(13)x x x →-; (6) 21lim()xx x x→∞+. 解 (1) 00sin sin limlim .x x x x x x x x ααααβαββ→→== (2) 2000tan(1)tan(1)tan(1)11lim lim lim 2(1)(2)122x x x x x x x x x x x x →→→---==∙=+--+-+. (3) 20cos 7cos5lim sin 3x x x x →-202sin 6sin lim sin 3x x xx→-=2220sin 6sin (3)642lim 6sin 3(3)3x x x x x x x x x x →⎛⎫=-=- ⎪⎝⎭. (4) 22sin 2lim 2sin lim 22n n n n x x x x x →∞→∞⎛⎫ ⎪== ⎪ ⎪⎝⎭.(5) 120lim(13)x x x →-=1(3)13232lim (13)e x xxx x ---→⎡⎤-=⎢⎥⎣⎦.(6) 21lim()x x x x →∞+=221lim e xx x x →∞⎡⎤⎛⎫=+=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 15.当0x →时,无穷小(1)x π-和(1)31x -,(2)sin x π是否同阶?是否等价?解 (1)因为322111(1)(1)lim lim lim 1(1)(1)13x x x x x x x x x x x ππππ→→→--===--++++,所以当0x →时,无穷小(1)x π-和31x -同阶,但不等价.(2) 因为111sin sin (1)sin (1)lim lim lim 1(1)(1)(1)x x x x x x x x x ππππππ→→→---===---,所以当0x →时,无穷小(1)x π-和sin x π是等价的.16.利用等价无穷小的性质,求下列极限:(1)0sin lim (,(sin )nm x x n mx →为正整数); (2)30sin tan lim sin x x x x→-;(3)0x →. 解 (1)000,,sin limlim 1,,(sin ).n n m m x x n m x x n m x x n m →→>⎧⎪===⎨∞<⎪⎩ (2) 因为332000sin tan sin (1sec )1sec lim lim lim sin sin sin x x x x x x x xx xx →→→---==,而2220002sin 1sec 1cos 112lim lim lim 1cos cos ()222x x x x x x x x x x x →→→⎡⎤⎡⎤⎢⎥⎢⎥--===⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎣⎦. 所以 233220000sin tan sin (1sec )1sec 12lim lim lim limsin 2x x x x x x x x x x x x →→→→----====-.(3)0x →=0x →201sin x x →=+ =201cos x x x →- =1114612-+=-. (21cos 12x x - ). 17.讨论下列函数的连续性:(1).()(11)f x x x =+-; (2) {,11,()1,1 1.x x f x x x -≤≤=<->或 解 (1) 222,1,(),1,,1.x x x f x x x x x ⎧-<⎪==⎨>⎪⎩当1x <或1x >时()f x 为初等连续函数,所以连续;当1x =时,有221111lim ()lim 1(1),lim ()lim(2)1(1),x x x x f x x f f x x x f ++--→→→→====-== 因此()f x 在1x =连续函数,故()f x 在定义域(,)-∞+∞内连续. (2) 显然()f x 在(,1)-∞-与(1,)-+∞内连续.而在1x =-11lim ()lim 1x x f x x ++→-→-==- ,但 11lim ()lim 11,x x f x --→-→-== 即 11lim ()lim ()x x f x f x +-→-→-≠.故()f x 在1x =-间断. 18.试确定,a b ,使函数1sin ,0,(),0,1sin .0.x x x f x b x x x x ⎧<⎪⎪==⎨⎪>⎪⎩在(,)-∞+∞内连续.解 显然()f x 在(,0)-∞与(0,)+∞内连续.而在分断点0x =处,由于1lim ()lim sin 0.x x f x x x++→→== , 001lim ()lim (sin )1,x x f x x a a x--→→=+=+ 根据 0lim ()lim ()(0)x x f x f x f +-→→==, 得 10,a b +== 即 1,0a b =-=.19.求下列函数的间断点,并确定其类型.如果是可去间断点,则补充或改变函数的定义使它连续:(1) 1e ,0,()0,0,1arctan .0.x x f x x x x ⎧⎪<⎪==⎨⎪>⎪⎩(2) ()tan x f x x =; (3)221()lim1nnn x f x x x →∞-=+. 解 (1)()f x 为分段函数,当0x ≠时, ()f x 显然连续.当0x =时,因为11lim ()lim e 0,lim ()lim 2xx x x x f x f x arctan x π--++→→→→====. 所以0x =是()f x 的第一类间断点(跳跃间断点). (2) ()f x 的无定义点为(0,1,2,)2x k x k k πππ=+==±± 和.对0x =, 因为0lim 1,tan x xx→=所以0x =是()f x 的第一类间断点,且为可去间断点,重新定义函数:1,,,(0,1,2,)tan 2()1,0,x x k k k x f x x πππ⎧≠+=±±⎪⎪=⎨=⎪⎪⎩则1()f x 在0x =处连续. 对(0,1,2,)2x k k ππ=+=±± ,因为2lim0,tan x k xxππ→+=所以2x k ππ=+(0,1,k =±2,)± 是()f x 的第一类间断点,且为可去间断点,重新定义函数:2,,,tan 2()(0,1,2,)0,,2xx k k x f x k x k πππππ⎧≠+⎪⎪==±±⎨⎪=+⎪⎩.则2()f x 在(0,1,2,)2x k k ππ=+=±± 处连续.对(0,1,2,)x k k π==±± ,lim,tan x k xxπ→=∞所以(0,1,2,)x k k π==±± 是()f x 的第二类间断点(无穷间断点)(3) 221()lim1n nn x f x x x →∞-=+,1,0,1,,1.x x x x x ⎧->⎪==⎨⎪<⎩为分断函数. 在分断点1x =-处,因为1111lim ()lim ()1,lim ()lim 1x x x x f x x f x x --++→-→-→-→-=-===-,11lim ()lim ()x x f x f x -+→-→-≠.所以1x =-为()f x 的第一类间断点(跳跃间断点).在分断点1x =处,因为1111lim ()lim 1,lim ()lim()1x x x x f x x f x x --++→→→→===-=-,11lim ()lim ()x x f x f x -+→→≠. 所以1x =为()f x 的第一类间断点(跳跃间断点).20.求函数32233()6x x x f x x x +--=+-的连续区间,并求极限03lim (),lim ()x x f x f x →→-及2lim ()x f x →.解 因为()f x 在123,2x x =-=点无意义,所以123,2x x =-=这两个点为间断点.故函数()f x 的连续区间为(,3),(3,2),(2,)-∞--+∞.32200331lim ()lim 62x x x x x f x x x →→+--==+-.32222333333(1)(3)(1)8lim ()lim lim lim 6(3)(2)(2)5x x x x x x x x x x f x x x x x x →-→-→-→-+---+-====-+-+--. 32222222233(1)(3)(1)lim ()lim lim lim 6(3)(2)(2)x x x x x x x x x x f x x x x x x →→→→+---+-====∞+-+--. 21.设函数()f x 与()g x 在点0x 处连续,证明函数{}{}()max (),(),()min (),()x f x g x x f x g x ϕψ==在点0x 处也连续.证 因为 {}1()max (),()[()()()()]2x f x g x f x g x f x g x ϕ==++-, {}1()m i n (),()[()()()()]2x f x g x f x g x f x g x ψ==+--, 而连续函数的绝对值、和、差仍连续,故(),()x x ϕψ在点0x 处也连续.22.利用复合函数的极限与连续定理计算下列极限(1) 1lim1x x →- (2)sin sin limx a x a x a →--;(3)lim x →+∞;(4) x →∞(5); ()()(2)()()lim ()x a x b x a b x x a x b x a b ++++→+∞++++;(6)0x →; 解(1) 12x x →→==.(2)2sin cos sinsin sin 222lim lim lim limcos cos 2x a x a x a x a x a x a x a x a x a a x a x a x a →→→→-+--+==⋅=---.(3) lim limx x →+∞=1lim2x==. (4)因为x x →∞=,而lim lim1x x →+∞==lim lim1x x →-∞==-故x →∞不存在.(5) ()()(2)()()lim ()x a x b x a b x x a x b x a b ++++→+∞++++()()()()()()lim lim ()()x a x b x a x b x x x a x b x a b x a b ++++→+∞→+∞++=⋅++++()()()()1111lim lim lim lim (1)(1)(1)(1)b a x x x x x a x b x a x b b ab a b a x a x b x a x b →+∞→+∞→+∞→+∞++++=⋅=⋅⎡⎤⎡⎤++++⎢⎥⎢⎥++++⎣⎦⎣⎦()11e .e ea b b a-+==(6) 00x x →→=0s i n l i m n x x x →=00s i n l i m l nx x x x x →→→=⋅=22220011)11112lim lim 1)2sin 2sin 22x x x x x x →→=⋅=. 23.证明方程sin x a x b =+,其中0,0a b >>,至少有一正根,并且它不越过a b +. 证 令()sin f x x a x b =--.显然()f x 在闭区间[0,]a b +上连续,(0)0,f b =-< ()[1sin()]f a b a a b +=-+.当sin()1a b +<时,()0f a b +>.由零点定理知,存在(0,)a b ξ∈+.使()0f ξ=,即ξ为原方程小于a b +的正根;当sin()1a b +=时, ()0f a b +=,a b +为原方程的正根.综合之, 方程sin x a x b =+至少有一正根,并且它不越过a b +.24.设函数()f x 对于闭区间[,]a b 上的任意两点,x y ,恒有()()f x f y L x y -≤-,其中L 为正常数,且()()0f a f b ⋅<.证明:至少有一点(,),a b ξ∈使得()0f ξ=.证 任取0(,),0,x a b ε∈∀>取00min ,,x a b x Lεδ⎧⎫=--⎨⎬⎩⎭,则当0x x δ-<时,依假设有00()()f x f x L x x L δε-≤-<≤.所以()f x 在0x 点连续.由0x 的任意性知, ()f x 在(,)a b 内连续. 当0x a =或0x b =时,取Lεδ=,当0x a δ<-<或0b x δ<-<时,有()()()f x f a L x a L x a L δε-≤-=-<≤.或 ()()()f x f b L x b L b x L δε-≤-=-<≤.故()f x 在x a =右连续, ()f x 在x b =左连续,从而()f x 在闭区间[,]a b 上连续.再借助()()0f a f b ⋅<及零点定理知,存在(,)a b ξ∈,使()0f ξ=.25. 若()f x 在闭区间[,]a b 上连续,12n a x x x b <<<<< , 1,2,,n C C C 为任意正数,1(,)n x x 内至少有一点ξ, 使112212()()()()n n nC f x C f x C f x f C C C ξ+++=+++ .证 因()f x 在闭区间[,]a b 上连续,又1[,][,]n x x a b ⊂,所以()f x 在1[,]n x x 上连续.设{}{}11max (),min ()n n M f x x x x m f x x x x =≤≤=≤≤.则有 112212()()()n n nC f x C f x C f x m M C C C +++≤≤+++ .若上面不等式为严格不等号,则由介值定理知, 存在1(,)n x x ξ∈,使112212()()()()n n nC f x C f x C f x f C C C ξ+++=+++ .若上面不等式中出现等号,如112212()()()n n nC f x C f x C f x M C C C +++=+++ ,则有1122[()][()][()]0n n C M f x C M f x C M f x -+-++-= . 于是 12()()()n f x f x f x M ==== .此时任取121,,,n x x x - 中任一点为ξ,即有1(,)n x x ξ∈,使112212()()()()n n nC f x C f x C f x f C C C ξ+++=+++ .同理可证112212()()()n n nC f x C f x C f x m C C C +++=+++ 的情形.26.证明:若()f x 在(,)-∞+∞内连续,且lim ()x f x →∞存在,则()f x 必在(,)-∞+∞内有界.证 设lim (),x f x A →∞=则给定10ε=>,可存在0X >,当x X >时,有()1f x A ε-<=.从而()()1f x f x A A ≤-+<+.由假设,显然()f x 在[,]X X -上连续,故()f x 在[,]X X -上有界,即存在K ,使[,]x X X ∀∈-,有().f x K ≤取 {}max ,1M K A =+,则(,)x ∀∈-∞+∞,有()f x M ≤.二. 提高题1. 设1,1,()0, 1.x f x x ⎧≤⎪=⎨>⎪⎩,()e xg x =,求[()]f g x .解 因为当0x ≤时,()e 1x g x =≤;当0x >时,()e 1xg x =>.所以1,0,(())0.0.x f g x x ≤⎧=⎨>⎩2. 计算下列极限.(1)n →∞; (2)2352limsin 53x x x x→∞++; (3)1101e lim ex x xx +→-+; (4)2013sin coslim (1cos )ln(1)x x x x x x →+++;(5) x →+∞;(6))n →∞);(7) 0lim x +→(8) 11lim ln x x x x x →- (9) 120e e e lim()x x nx x x n→+++ ; (10) 2lim 8xx x a x a →∞+⎛⎫= ⎪-⎝⎭,求a ;(11)(0lim xx π+→;解(1)n→∞=limn→∞n==(2)当x→∞时, 有22sinx x.因此223523526lim sin lim53535x xx xx x x x→∞→∞++=⋅=++.(3)1111001e e1lim lim1e e1x xx xx xx x++-→→---==-++.(4)21 0013sin1 3sin cos cos3 lim lim(1cos)ln(1)2(1cos)ln(1)x xxxx x xx x xx xx x→→++== ++++.(5) 原式= limx→+∞lim0x→+∞==.(6))2) 1.n n nnπ→∞→∞→∞===(7) 由于当0x+→时,12x- ,21cos2xx- ,所以(200001cos1lim lim lim lim2122x x x xxxx++++→→→→-====⋅⋅+.(8) 由于当1x→时,lne1lnx x x x- ,所以xlnx1111e1lnlim lim lim1ln ln lnxx x xx x xx x x x x x→→→--===. (9) 当0x→时, 有ln(1),e1kxx x kx+-,于是22001e e e1e e elim ln lim ln(1)x x nx x x nxx xnx n x n→→++++++-=+22001e e e1(e1)(e1)(e1) lim ln lim lnx x nx x x nxx xnx n x n→→+++--+-++-==2121lim(1).2xx x nx nnnx n→++++++===+故12e e elim()x x nxxx n→+++=1(1)2e n+.(10) 因为333233l i m l i m1l i m1ex a a xx xa x aax x xx a a ax a x a x a-⋅-→∞→∞→∞+⎛⎫⎛⎫⎛⎫=+=+=⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭,所以328l i m exaxx ax a→∞+⎛⎫==⎪-⎝⎭,故ln2a=.(11) ()00lim lim11)x xx xππ++→→⎡⎤=+⎣⎦2lim11)e.xπ+-→⎡=+=⎣3.比较下列无穷小:(1).当0→时,xxx++是x的几阶无穷小?(2).已知当x→1时,)(xf是1-x的等价无穷小,则)]()(1ln[xxfxf+-是1-x的几阶无穷小?解:(1)81limxxxxx++→=1lim2141++→xxxxx=1所以当x→0时,xxx++是x的81阶无穷小.(2)当x→1时,)(xf 1-x,所以)]()(1ln[xxfxf+-=)()1(1ln[xfx-+ )1(-x)(xf 2)1(-x即当1x→时,)]()(1ln[xxfxf+-是1-x的二阶无穷小.4.根据条件,解答下列各题:(1)当x0→时,1)1(31-+ax与1cos-x是等价无穷小,求a;(2)已知)1(lim2baxxxx--+→=0,(ba,为常数),求ba,;(3)设)(25)(22bkxxxxxf+-+--=,若)(lim xfx∞→=0,求k与b的值;(4)已知1)sin)(1ln(lim0-+→xx axxf=3,(),1,0≠>aa求2)(limxxfx→;(5)若xx xxfx1))(1(lim++→=e,求xx xxf1))(1(lim+→;解(1)当0→x时,1)1(312-+ax≈23xa,1cos-x≈221x-,则当213-=a即a=23-时,两者是等价无穷小.(2因为1)()1(lim2+-+--∞→xbxbaxax=0,所以1=a,1-=-=ab.(3)由)(lim xfx∞→=2)2)(()5(lim2+++---∞→xxbkxxxx=225)21()1(lim2+--++--∞→xbxbkxkx=0.得01=-k,3,121-==⇒=++bkbk(4)由已知有,xxxfxx))(1ln(lim++→=3,所以0sin)(lim=→xxfx.从而=-+→1)sin)(1ln(lim0xx axxfaxxxfx lnsin)(lim→=axxfx ln)(lim2→=3,故2)(limxxfx→=aaaxxfxln3lnln)(lim2=⋅→.(5)由若xx xxfx1))(1(lim++→=3e,得()ln(1)lim3xf xxxx→++=.所以 0()lim()0x f x x x→+=.从而 00()()ln(1)limlim 3x x f x f x x x x x x x→→+++==.故 0()lim 2x f x x x→=,因此 0()lim0x f x x →=. 由是()1()2()()lim 1lim 1e f x x x x f x x x x x f x f x x x →→⎡⎤⎡⎤⎛⎫⎢⎥+=+= ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎣⎦.5.求下列函数的间断点,并判断其类型:(1)22(4),0,sin ()(1)0,,1x x x x f x x x x x π⎧-⎪<⎪=⎨+>⎪⎪-⎩ (2)11().1e xxf x -=- 解 (1)当0x <时,()f x 在1,2,x =-- 无定义.对于2x =-,28lim ()x f x π→-=,所以2x =-为()f x 的可去间断点.易验证1,3,4,x =--- 是()f x 的第二类间断点且为无穷间断点.当0x >时, ()f x 在1x =无定义,且1lim ()x f x →=∞,所以1x =是()f x 的第二类间断点且为无穷间断点.当0x =时,由于220000(1)(4)4lim ()lim 0,lim ()lim 1sin x x x x x x x x f x f x x x ππ++--→→→→+-====--,所以0x =是()f x 的第一类间断点且为跳跃间断点.(2)0,1x x ==是()f x 的间断点.因为0011lim ()lim ,1e x x x x f x →→-==∞-所以0x =是()f x 的第二类间断点且为无穷间断点; 又11111111lim ()lim 1,lim ()lim 01e 1e x xx x x x x xf x f x ++--→→→→--====--,所以1x =是()f x 的第一类间断点且为跳跃间断点.6.设2122()lim 1n n n x ax bxf x x -→∞++=+是连续函数,求,a b 的值.解 当1x <时,有lim 0n n x →∞=,从而21222()lim 1n n n x ax bx f x ax bx x -→∞++==++. 当1x >时,有lim nn x →∞=∞,从而21222212211()lim lim 111n n n n n n na b x ax bx x x x f x x x x---→∞→∞++++===++. 当1x =时,11(1),(1)22a b a bf f ++-+-=-=. 因为()f x 是连续函数,所以11lim ()lim ()(1),x x f x f x f +-→→==即112a ba b ++=+=.及11lim ()lim ()(1),x x f x f x f +-→-→-==- 即 112a ba b -+--=-=, 解之得0,1a b ==. 7.试确定,a b 的值,使e ()()()x bf x x a x b -=--有无穷间断点x e =,可去间断点1x =.解 因为x e =是()f x 无穷间断点,所以a e =或b e =.若a e =,e ()()()x bf x x e x b -=--,再由1x =为间断点知1b =.此时11e 1lim ()lim ,()(1)x x x f x x e x →→-==∞--即1x =是()f x 无穷间断点,这与假设矛盾. 若b e =,e ()()()x ef x x a x e -=--,再由1x =为间断点知1a =.此时11e e lim ()lim ,lim ()lim ()(1)1()(1)x x x x x ex e e e ef x f x x e x e x e x →→→→--====∞-----. 因此地当1,a b e ==时, ()f x 有无穷间断点x e =,可去间断点1x =.三. 考研试题1.(90,3分)设函数,1,1,0,1)(>≤⎪⎩⎪⎨⎧=x x x f 则)](([x f f = .解 由)(x f 的定义知,当1≤x 时,有1)(=x f .又1)1(=f ,于是当1≤x 时,复合函数1)](([=x f f .当1>x 时,有0)(=x f .又1)0(=f ,于是当1>x 时,复合函数1)](([=x f f . 因此,对任意),(+∞-∞∈x ,有1)](([=x f f .2.(03,4分)设{}n a ,{}n b ,{}n c 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A)n n b a <对任意n 成立. (B) n n c b < 对任意n 成立. (C)极限0lim =∞→n n n c a 不存在. (D )极限0lim =∞→n n n c b 不存在.解 因为由数列极限的不等式只能得出数列“当n 充分大时”有相应的不等式,而不能得出“对于任意n ”成立的不等式,所以(A)、(B )不对.又因为“无穷小与无穷大之积”是未定型,极限可能存在也可能不存在,故(C)也不对.因此应选(D).3(92,3分).当1→x 时,函数112e 11---x x x 的极限 (A)等于2. (B)等于0.(C)为∞. (D)不存在但不为∞解 因为002e )1(lim e 11lim 1111121=⋅=+=---→-→--x x x x x x x , ∞=+=---→-→++1111121e )1(lim e 11lim x x x x x x x .所以当1→x 时,函数112e 11---x x x 的极限不存在,也不为∞.故应选(D). 4.(00,5分)求⎪⎪⎪⎭⎫ ⎝⎛+++→x x xx x sin e 1e 2lim 410.解 当0→x 时,对x1e 与x ,都必须考虑左、右根限.110sin e 1e e 2lim sin e 1e 2lim 4340410=+=⎪⎪⎪⎭⎫⎝⎛+++=⎪⎪⎪⎭⎫ ⎝⎛+++---→→++x x x x xx x x x x x , 110102sin e 1e 2lim sin e 1e 2lim 410410=-++=⎪⎪⎪⎭⎫ ⎝⎛-++=⎪⎪⎪⎭⎫ ⎝⎛+++--→→x x x x xx x x x x . 故 ⎪⎪⎪⎭⎫ ⎝⎛+++→x x x x x sin e 1e 2lim 410=1. 5.(93,5分)求xx xx )1cos 2(sin lim +∞→.解 )11cos 2(sin 1cos sin 1)11cos 2(sin 1[lim )1cos 2(sinlim -+⋅-+∞→∞→-++=+x x x xx x x x xx x x . 而 ⎪⎪⎪⎪⎭⎫ ⎝⎛-+=-+=-+∞→∞→∞→x x x x x x x x x x x x x 111cos 12sin lim 111cos 2sin lim)11cos 2(sin lim2021212sinlim 2=+=⎪⎪⎪⎪⎭⎫⎝⎛-+=∞→x x xx x . 故 2)11cos 2(sin 11cos 2sin 1e )11cos 2(sin 1[lim )1cos 2(sinlim =-++=+-+⋅-+∞→∞→x x x xx x x x xx x x .6.(03,4分)21ln(1)lim(cos )x x x +→=解 因为)1ln(1cos 1cos 10)1ln(1)]1(cos 1[lim )(cos lim x x x x x x x x +-⋅-→+→-+=.而212lim )1ln(1cos lim 22020-=-=+-→→x x x x x x .故 )1ln(1cos 1cos 10)1ln(122)]1(cos 1[lim )(cos lim x x x x xx x x +-⋅-→+→-+==21e-.7.(97,3分)求)1ln()cos 1(1cossin 3lim20x x x x x x +++→. 解 注意到,1)1ln(lim ,1sin lim00=+=→→xx x x x x 则 23)1ln()cos 1(1cossin 3lim )1ln()cos 1(1cos sin 3lim20=+++=+++→→x x x x x x x x x x x x x x . 8.(97,3分)设{=)(x f 0,0,)(cos 2=≠-x a x x x 在0=x 处连续,求a 的值.解 1e e lim )(cos lim )(lim 0cos ln 022=====-→-→→xxx x x x x x f a .9.(95,3分)⎥⎦⎤⎢⎣⎡+++++++++∞→n n n n n n n n 22222211lim . 解 记=n x n n n nn n n +++++++++22222211 ,则)21(11)21(2122n n x n n n n ++++≤≤++++ . 故由夹逼法则得21)21(11lim )21(21limlim 22=++++=++++=∞→∞→∞→n n n n n x n n n n .四.测试题1.单项选择题:(1)设22(),(())2,x f x x f x ϕ==则()()x ϕ=(A).2x ().2x B (C)2.log x (D).22log x .(2)函数()log ((1)a f x x a =+>为( )(A).有界函数 ().B 偶函数 (C).奇函数 (D).非奇非偶函数(3)011lim(sin sin )()x x x x x →+=.(A).0 (B )1 (C)2 (D).不存在.(4)0lim (xx x a x a →⎛⎫ ⎪+⎝⎭为常数)等于( ) (A).e a - (B).e a (C).1e a - (D). 1e a-(5)0ln(1sin )lim()x x x→-= (A).e B.e - C.1 D. 1- (6)设()232xxf x =+-,则当0x →时,有( )(A).()f x 与x 是等价无穷小 (B)()f x 与x 同阶但非等价无穷小 (C).()f x 是比x 高阶的无穷小 (D).()f x 是比x 低阶的无穷小2.填空题(1)设函数()f x 的定义域为[1,1]-,则(ln )f x 的定义域为 .(2)若214lim3,1x x ax x →-+=--则a = . (3)设22,11(),1x bx x x f x a x ⎧++≠⎪-⎪=⎨=⎪⎪⎩,在点1x =处连续,则 b = ,a = .3.计算题 (1)cos sin lim(0)cos sin 2n nn n n θθπθθθ→∞-≤≤+; (2)11021lim21xx x →-+; (3)10lim (0,0,0)3x x xxx a b c a b c →⎛⎫++>>>⎪⎝⎭; (4)()tan 2lim sin xx x π→. 3.设()lim e x x xxxn n n f x n n ---→∞-=+,研究()f x 的连续性. 5.证明下列各题:(1)设()f x 在[,]a b 连续,且a c d b <<<a c d b <<<,证明:在[,]a b 上至少存在一点ξ,使()()()()pf c qf d p q f ξ+=+其中,p q 为任意正常数.(2)设()f x 在[0,1]上连续,又设()f x 只取有理数,且1()22f =,试证()f x 在[0,1]上处处为()2f x =.测试题解答1.(1)(B);(2)(C );(3) (B );(4) (A);(5) (D );(6) (B ). 2.(1)1[,e]e;(2)5a =;(3)1a =,3b =-;3.(1)当04πθ≤≤时,有sin limlim tan 0cos n nn n n θθθ→∞→∞==,从而 sin 1cos sin os lim lim 1sin cos sin 1os n n n n n n n n n n c c θθθθθθθ→∞→∞--==++; 当4πθ=时,有sin cos 2θθ==,从而cos sin lim 0cos sin n n n n n θθθθ→∞-=+; 当42ππθ<≤时,有cos lim lim cot 0sin n nn n n θθθ→∞→∞==,从而os 1cos sin sin lim lim 1os cos sin 1sin n n n n n n n n n n c c θθθθθθθθ→∞→∞--==-++. (2) 因为11100111212lim lim 1,11212x x x x x x++→→--==++1102101lim 10121x x x -→--==-++,所以11021lim 21x x x →-+不存在. (3) 因为1111()1333003lim lim 133x x x x x x a b c x x xxxx x x x xa b c x x a b c a b c ---++++-→→⎡⎤⎛⎫⎛⎫++++-⎢⎥=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎢⎥⎣⎦,而3303lim 1e 3xxx x x xab c x a b c ++-→⎛⎫++-+= ⎪⎝⎭,000111limln ,lim ln ,lim ln x x x x x x a b c a b c x x x→→→---===. 故1111()1333003lim lim 133x x x x x x a b c x x xxxxx x x xa b c x x a b c a b c ---++++-→→⎡⎤⎛⎫⎛⎫++++-⎢⎥=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎢⎥⎣⎦11(ln ln ln )33e()a b c abc ++==.(4) 因为()()1tan (sin 1)tan sin 122lim sin lim 1(sin 1)xx x x x x x x ππ⋅-⋅-→→=+-()(sin 1)tan 1sin 12lim 1(sin 1)x xx x x π-⋅-→⎡⎤=+-⎢⎥⎣⎦.而 ()1s i n 12l i m 1(s i n 1)ex x x π-→+-=, 222sin (sin sin )2lim(sin 1)tan lim(sin 1)tan limsin()2x x x x x x x x x x πππππ→→→--=-=+2222sincos22limsin 222sin cos 22x x x x x x πππππ→-+=⋅++=2sin()24lim sin 0sin()24x x x x πππ→-=⋅=+. 故()tan 2lim sin 0xx x π→=.5.0x >时,有221()lim e lim e e 1x x x x x xx x xn n n n n f x n n n -------→∞→∞--===++;当0x =时,有11()lim e lim e 011x x x xxx n n n n f x n n ----→∞→∞--===++; 当0x <时,有221()lim e lim e e 1x x x x xx xx x n n n n n f x n n n -----→∞→∞--===-++. 故e ,0()0,0e ,0x xx f x x x --⎧-<⎪==⎨>⎪⎩.而0lim ()lim e 1,lim ()lim e 1x x x x x x f x f x --++--→→→→=-=-==,所以()f x 在(,)-∞+∞内除0x =为第一类间断点外,其余各点都连续.5.证(1)令()()()()()F x p q f x pf c qf d =+--,则()F x 在[,]c d 上连续,且()()()()()[()()]F c p q f c pf c qf d q f c f d =+--=-. ()()()()()[()()]F d p q f d pf c qf d q f d f c =+--=-.则当()()0f c f d -=时,可知,c d 均可取作ξ;而当()()0f c f d -≠时,又0,p >0q <,于是有2()()[()()]0F c F d p q f c f d =--<,由零点定理知,至少存在一点[,][,]c d a b ξ∈⊂,使()0F ξ=,即()()()()pf c qf d p q f ξ+=+.(2)设0x 为[0,1]上异于12的任意一点,因为()f x 在[0,1]上连续,如果01()()22f x f ≠=,则由介值定理知,()f x 必取得介于0()f x 与2之间的任何值,包括有理值和无理值.这与()f x 只取有理值矛盾,故01()()22f x f ==,因此在[0,1]上()2f x ≡.。

[专升本(地方)考试密押题库与答案解析]河南省专升本考试高等数学真题2004年

[专升本(地方)考试密押题库与答案解析]河南省专升本考试高等数学真题2004年
问题:12. 下列函数中,可以作为同一个函数的原函数的是______
A.
B.ln|lnx|和2lnx
C.
D.
答案:C[解析] 对于每一组答案中的两个函数分别求导,结果一样的,那组答案即为所求.A显然不是,对于B,令lnx>0,则令lnx<0,则
C答案正确.
问题:13. 下列等式正确的是______
A.∫f'(x)dx=f(x)
A.
B.
C.
D.
答案:D[解析]
问题:16. 若z=exy,则dz|(1,2)=______
A.exy(ydx+xdy)
B.3e2
C.2e2dx+e2dy
D.0
答案:C[解析]
问题:17. 设f(x,y)=(x-4)2+y2,则点(4,0)______
A.不是驻点
B.是驻点但非极值点
C.极大值点
D.极小值点
四、计算题
(每小题5分,共40分)
问题:1. 计算
答案:[解析]
问题:2. 设y=y(x)是由方程x2ey+y2=1所确定的函数,求
答案:[解析] 令F(x,y)=x2ey+y2-1
Fx=2xey,Fy=x2ey+2y,
另外,也可以注意y是x的函数,方程x2ey+y2=1两边对x求导.2xey+x2eyy'+2y·y'=0,解得所以,
问题:3. 计算∫x3cosx2dx.:[解析]
问题:5. 设z=f(x+y,xy)可微,求全微分dz.
答案:[解析] 令u=x+y,v=xy,z=f(u,v),du=dx+dy,dv=ydx+xdy,

成人高考成考高等数学(二)(专升本)试卷及解答参考

成人高考成考高等数学(二)(专升本)试卷及解答参考

成人高考成考高等数学(二)(专升本)复习试卷(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、设函数(f(x)=2x−3x),则函数的零点个数是:A. 1B. 2C. 3D. 02、设函数(f(x)=e x sinx),则该函数的导数(f′(x))为:A.(e x(sinx+cosx))B.(e x(sinx−cosx))C.(e x cosx)D.(e x sinx)3、设函数f(x)=x3-6x2+9x,若函数在x=1处取得极值,则该极值是:A. 4B. 0C. -4D. 84、下列函数中,定义域为实数集的有()A、f(x) = √(x^2 - 1)B、g(x) = 1/xC、h(x) = |x| + 1D、k(x) = √(-x)5、设函数(f(x)=x3−3x+2),则(f(x))的极值点为:A.(x=−1)和(x=1)B.(x=−1)和(x=2)C.(x=0)和(x=1)D.(x=0)和(x=2)6、设函数(f(x)=3x2−4x+1),则该函数的图像开口方向是:A. 向上B. 向下C. 水平D. 垂直),其定义域为((−∞,0)∪(0,+∞)),则函数(f(x))在(x=0)处7、设函数(f(x)=1x的极限值为:A. -∞B. +∞C. 0D. 不存在8、若函数(f(x)=x3−3x2+4x+1)在点(x=1)处可导,且其导数的反函数为(g(x)),则(g′(1))等于:B. -1C. 0D. 29、若函数(f(x)=11+x2)的定义域为(D f),则(D f)为:A.((−∞,+∞))B.((−∞,−1)∪(−1,+∞))C.((−∞,−1]∪[−1,+∞))D.((−1,1]∪[1,+∞))10、设函数f(x)=1xlnx,则f(x)的导数f′(x)为:A.−1x2lnx+1x2B.1x2lnx−1x2C.1x lnx−1x2D.−1x lnx+1x211、设函数(f(x)=11+x2),则(f′(0))的值为:A.(−1)B.(0)C.(12)D.(11+02)12、设函数f(x)=x 3−3xx2−1,则f′(1)的值为:A. 1C. 0D. 无定义二、填空题(本大题有3小题,每小题7分,共21分)1、设函数f(x) = x² - 3x + 2,若f(x)在x=1处的导数为0,则f(x)的极值点为______ 。

2004年河北省专接本公共课考试考试大纲—高等数学考试大纲(1)

2004年河北省专接本公共课考试考试大纲—高等数学考试大纲(1)

2004年河北省专接本公共课考试考试大纲—高等数学考试大纲(1)各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢总要求考生应理解或了解《高等数学》中函数、极限、连续、一元函数微分学、一元函数积分学、向量代数与空间解析几何、多元函数微积分学、无穷级数、微分方程的基本概念与基本理论,掌握上述各部分的基本方法;注意各部分知识结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力、空间想象能力;能运用基本概念、基本理论和基本方法正确地推理证明,准确、简捷地计算;能讯用所学知识分析并解决简单的实际问题。

《高等数学(一)》的考试旨在“理解”、“掌握”和“了解”{或“知道”}、“会”(或“能”)两个层次上对考生进行测试。

这里“理解”和“了解”两词分别是对概念、理论的高层次与低层次要求。

“掌握”和“会”两词分别是对方法、运算的高层次与次层次要求。

内容一、函数、极限与连续(一)函数1、知识范围(1)函数的概念函数的定义函数的表示法分段函数(2)函数的简单性质有界性单调性奇偶性周期性(3)反函数反函数的定义反函数的图形(4)基本初等函数及其图形幂函数指数函数对数函数三角函数反三角函数(5)复合函数(6)初等函数2、要求(1)理解函数的概念(定义域、对应规律),理解函数记号f(x)的意义并会运用。

会求函数的定义域、表达式及函数值。

会建立简单实际问题中的函数关系式。

(2)了解函数的几种简单性质,会判断函数的有界性、奇偶性、单调性、周期性。

(3)掌握基本初等函数及其图形的有关知识。

(4)理解复合函数的概念,掌握将一个复合函数分解为基本初等函数或简单函数的复合法。

(二)极限1、知识范围(1)数列的极限数列极限定义数列极限的性质数列极限的四则运算法则(2)函数的极限函数极限的定义左极限与右极限的概念自变量趋于有限值时函数极限存在的充分必要条件函数极限的四则运算法则两个重要极限:(3)无穷小量和无穷大量无穷小量和无穷大量的定义无穷小量和无穷大量的关系无穷小量的性质无穷小量阶的比较2、要求(1)了解极限概念(对极限定义中等形式的描述不作要求),能根据极限概念分析函数的变化趋势。

成人专升本高等数学一真题2004年_真题(含答案与解析)-交互

成人专升本高等数学一真题2004年_真题(含答案与解析)-交互

成人专升本高等数学一真题2004年(总分150, 做题时间90分钟)一、选择题1.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:D2.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:B3.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:B4.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:C5.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:A二、填空题6.SSS_FILL该题您未回答:х该问题分值: 4答案:e7.SSS_FILL该题您未回答:х该问题分值: 4答案:8.SSS_FILL该题您未回答:х该问题分值: 4答案:19.SSS_FILL该题您未回答:х该问题分值: 4答案:10.SSS_FILL该题您未回答:х该问题分值: 4答案:11.SSS_FILL该题您未回答:х该问题分值: 4答案:12.SSS_FILL该题您未回答:х该问题分值: 4答案:213.SSS_FILL该题您未回答:х该问题分值: 4答案:14.SSS_FILL该题您未回答:х该问题分值: 4答案:15.SSS_FILL该题您未回答:х该问题分值: 4答案:三、解答题16.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 617.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 618.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 619.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 620.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 621.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 622.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 623.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 624.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 625.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 626.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 1027.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 1028.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 101。

2004-2021年专升本高数(二)考试真题及答案

2004年成人高考专升本高等数学二考试真题及参考答案一、选择题:本大题共5个小题,每小题4分,共20分,在每小题给出的四个选项中,只有一项是符合题目的要求,把所选项前的字母填在题后的括号内。

第1题参考答案:A第2题参考答案:D第3题参考答案:D第4题第5题参考答案:C二、填空题:本大题共10个小题,每小题4分,共40分,把答案填写在题中横线上。

第6题参考答案:1第7题参考答案:0第8题参考答案:1第9题参考答案:2/x3第10题参考答案:-1第11题参考答案:0第12题参考答案:e-1第13题参考答案:1第14题参考答案:-sinx 第15题三、解答题:本大题共13个小题,共90分,解答应写出推理、演算步骤.第16题第17题第18题第19题第20题第21题第22题第23题第24第25题第26题第27题第28题2005年成人高考专升本高等数学二考试真题及参考答案一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。

第1题参考答案:D第2题第3题参考答案:C 第4题参考答案:B 第5题参考答案:D 第6题参考答案:B 第7题第8题参考答案:A第9题参考答案:D第10题参考答案:B二、填空题:本大题共10个小题,每小题4分,共40分,把答案填写在题中横线上。

第11题参考答案:2第12题参考答案:e-3第13题参考答案:0第14题参考答案:4第15题参考答案:2第16题第17题参考答案:0第18题参考答案:1/2第19题参考答案:6第20题三、解答题:共70分。

解答应写出推理、演算步骤。

第21题第22题第23题第24题第25题第26题第27题第28题2006年成人高考专升本高等数学二考试真题及参考答案一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。

第1题参考答案:D 第2题参考答案:B 第3题参考答案:D 第4题参考答案:A 第5题参考答案:C第6题参考答案:C 第7题参考答案:C 第8题参考答案:A 第9题参考答案:B 第10二、填空题:本大题共10个小题,每小题4分,共40分,把答案填写在题中横线上。

广东省专插本-高等数学-2004-2010年-历年题集(含答案)

4、下列函数中,不是 的原函数的是
A. B. C. D.
5、已知函数 ,则dz=
A. B.ydx+xdyC. D.
二、填空题(本大题共5小题,每小题3分,共15分)
6、极限 =。
7、曲线y=xlnx在点(1,0)处的切线方程是=。
8、积分 =。
9、设 ,则 =。
10、微分方程 的通解是。
三、计算题(本大题共8小题,每小题6分,共48分)
5、设 则
A.等于1 B.等于-1 C.等于0 D.不存在
二、填空题(本大题共5小题,每小题3分,共15分)
6、极限 。
7、设 ,要使 在 处连续,应补充定义 =。
8、设函数 ,则其函数图像的水平渐近线方程是。
9、微分方程 的通解是y=。
10、设 ,则全微分du=。
三、计算题(本大题共8小题,每小题6分,共48分)
11、求极限 。
12、计算不定积分 。
13、设函数 。
14、函数y = y(x)是由方程 所确定的隐函数,求 在点(1,0)处的值。
15、计算定积分 。
16、求二重积分 ,其中积分区域 。
17、设函数 ,求 。
18、求微分方程 满足初始条件 的特解。
四、综合题(本大题共2小题,第19小题14分,第20小题8分,共22分)
1、函数 的定义域是
A.( ,0) (0, )B.( ,0)
C.(0, )D.Ø
2、极限
A.等于-1 B.等于0 C.等于1 D.不存在
3、设 是 在(0, )内的一个原函数,下列等式不成立的
A. B.
C. D.
4、设函数 ,则下列结论正确的是
A. 的极大值为1 B. 的极小值为1

2004年成人高考专升本高等数学一考试真题及参考答案

2004年成人高考专升本高等数学一考试真题及参考答案一、选择题:本大题共5个小题,每小题4分,共20分,在每小题给出的四个选项中,只有一项是符合题目的要求,把所选项前的字母填在题后的括号内。

第1题参考答案:D第2题参考答案:B第3题参考答案:B第4题参考答案:C第5题参考答案:A二、填空题:本大题共10小题。

每小题4分,共40分,将答案填在题中横线上。

第6题参考答案:e第7题设函数y=x2lnx,则y′=_______参考答案:2xlnx+x第8题曲线y=1+sinx在点(0,1)处的切线的斜率k=____参考答案:1第9题第10题参考答案:xlnx-x+ C第11题参考答案:1/2第12题参考答案:2第13题设函数z=x2+ye x,则δz/δx=______。

参考答案:2x+ ye x第14题微分方程xy′=l的通解为_______参考答案:ln|x|+C第15题参考答案:2x-3y+z=0三、解答题:本大翘共8个小题,共70分。

解答应写出推理,演算步骤。

第16题第17题第18题第19题求函数y=x3-3x2-9x+l的极值(6分)第20题设函数y=e x+arctanx+π2,求dy(6分)第21题设函数y=y(x)由方程cos(x+y)+y=l确定,求dy/dx.(6分)第22题第23题第24题第25题求微分方程y″+y′-2y =O的通解.(6分)第26题第27题第28题要造一个容积为32π立方厘米的圆柱形容器,其侧面与上底面用同一种材料,下底面用另一种材料已知下底面材料每平方厘米的价格为3元,侧面材料每平方厘米的价格为1元问该容器的底面半径r与高h各为多少时,造这个容器所用的材料费用最省?。

2004年成人高考专升本高等数学二考试真题附参考答案

2004年成人高考专升本高等数学二考试真题及参考答案
一、选择题:本大题共5个小题,每题4分,共20分,在每题给出的四个选项中,只有一项为哪一项符合题目的要求,把所选项前的字母填在题后的括号内。

第1题
参考答案:A
第2题
参考答案:D
第3题
参考答案:D
第4题
参考答案:B
第5题
参考答案:C
二、填空题:本大题共10个小题,每题4分,共40分,把答案填写在题中横线上。

第6题
参考答案:1
第7题
参考答案:0
第8题
参考答案:1
第9题
参考答案:2/x3
第10题
参考答案:-1
第11题
参考答案:0
第12题
参考答案:e-1 第13题
参考答案:1
第14题
参考答案:-sinx 第15题
三、解答题:本大题共13个小题,共90分,解容许写出推理、演算步骤. 第16题
第17题
第18题
第19题
第20题
第21题
第22题
第23题
第24题
第25题
第26题
第27题
第28题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页 2004年成考专升本高等数学30
一、单项选择题(本大题共5小题,每小题2分,共10分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设函数f (x )的定义域为[0,4],则函数f (x 2)的定义域为( )
A.[0,2]
B.[0,16]
C.[-16,16]
D.[-2,2] 2.x x
x 1lim →=( )
A.0
B.1
C.-1
D.不存在
3.设f (x )为可微函数,且n 为自然数,则⎥⎦⎤
⎢⎣⎡+-∞→)n x (f )x (f 1lim n =( )
A.0
B.)x (f '
C.-)x (f '
D.不存在
4.设f (x )是连续函数,且f(0)=1,则=⎰→200x lim x dt
)t (tf x
( )
A.0
B.21
C.1
D.2
5.已知某商品的产量为x 时,边际成本为)x (e x 1004-,则使成本最小的产量是(

A.23
B.24
C.25
D.26
二、填空题(本大题共10小题,每空3分,共30分)
请在每小题的空格中填上正确答案。

错填、不填均无分。

6.函数f (x )=ln(1-x ),x ≤0的值域是___________。

7.设()
=⎪⎭⎫ ⎝⎛-+-+++=∞→n n n x n n n x lim 31231,则 ___________。

8.=++∞→x x x 2
sin 355
3lim 2x ___________。

9.设⎪⎪⎩⎪⎪⎨⎧=≠-=-0
00
12
x ,x ,x e )x (f x ,则)(f 0'=___________。

第 2 页 10.设f (x )=x
x 2-,则)(f 1'=___________ 11.函数y=(x-1)(x+1)3单调减小的区间是___________。

12.设某商品市场需求量D 对价格p 的函数关系为D (p )=1600p
⎪⎭⎫ ⎝⎛41,则需求价格弹性是___________。

13.()⎰3x x dx
=___________。

14.设y
u ,x a ,x u ay ∂∂>=则为常数,其中0=___________。

15.微分方程()032=+'-'x y y y x 的阶数是___________。

三、计算题(一)(本大题共5小题,每小题5分,共25分) 16.求极限2
)tan 1(lim 1x x x π-→. 17.设.y ,x x y x 4tan π
='=求
18.求不定积分⎰+)(221x x dx
. 19.计算定积分⎰++102169x x dx .
20.设()2
sin y x x z +=,求dz.
四、计算题(二)(本大题共3小题,每小题7分,共21分) 21.设().y ,x ,x x y '-≠++-+=求13
1-2x arctan 3111x ln 6122 22.求⎰e
dx x 1 )sin(ln 的值. 23.设D 为xoy 平面上由x=0,22y x y ,y =π=π=及所围成的平面区域,试求⎰⎰D dxdy y
x sin . 五、应用题(本大题9分)
24.某厂每批生产某产品x 单位时,边际成本为5(元/单位),边际收益为10-0.02x (元/单位),当生产10单位产
品时总成本为250元,问每批生产多少单位产品时利润最大?并求出最大利润.
六、证明题(本大题共5分) 25.证明方程⎪⎭
⎫ ⎝⎛ππ-=++220sin 1,x x 在区间内至少有一个根.。

相关文档
最新文档