2012年高考数学二轮精品复习资料 专题02 函数与导数(教师版)
2012届高考数学二轮复习精品课件(大纲版)专题1 第2讲 函数的图象与性质

第2讲 │ 要点热点探究
1 1 的值域是_______ . 已知函数 f(x)= x -2的定义域是 R,则 f(x)的值域是 = , 的值域是 方法一:∵2 >0,∴2 +1>1,∴0< x , , 2 +1 1 1 1 1 1 1 1 1 <1,则- < x , -2<2.即函数 f(x)= x 即函数 = -2的值域是-2,2. 2 2 +1 2 +1 1-2y - 1 1 x 方法二(反函数法 反函数法): .∵2x>0, 方法二 反函数法 :由 y= x = - 2, 得 2 = ∵ , 2 +1 1+2y + 1-2y - 1 1 1 1 >0,解得- <y< ,即函数 f(x)= x ,解得-2 = -2的值域是 ∴ 2 2 +1 1+2y + 1 1 - , . 2 2
第2讲 │ 要点热点探究
要点热点探究 ► 探究点一 函数的定义域和值域
1 ,则 f(x) 1 log (2x+1) 2 + )
江西卷] 例 1 [2011· 江西卷 若 f(x)= = 的定义域为( ) 的定义域为 1 A.-2,0 1 - ,+∞ C. 2,+∞
第2 讲
函数的图象与性质
第2讲 函数的图象与性质
第2讲 │ 主干知识整合
主干知识整合
1.函数及其性质 . (1)函数的定义:函数是定义在两个非空数集 A、B 上的映 函数的定义: 函数的定义 、 它由定义域、值域和对应法则组成. 射,它由定义域、值域和对应法则组成. (2)函数的性质: 函数的性质: 函数的性质反映了函数的变化规律, 函数的性质 函数的性质反映了函数的变化规律, 高考 中常考的函数性质是单调性、奇偶性和周期性. 中常考的函数性质是单调性、奇偶性和周期性. (3)函数是增 减)函数,其几何意义是函数图象上任意两点 函数是增(减 函数 函数, 函数是增 的连线的斜率都大于(小于 小于)零 函数是偶函数的充要条件是函 的连线的斜率都大于 小于 零.函数是偶函数的充要条件是函 轴对称; 数的图象关于 y 轴对称; 函数是奇函数的充要条件是函数的图 象关于原点对称. 象关于原点对称.如果函数有周期 T,则 T 的正整数倍是函数 , 的周期,其负整数倍也是函数的周期. 的周期,其负整数倍也是函数的周期.
高考数学二轮复习 专题2 函数与导数 第3讲 导数的概念

第3讲导数的概念及其简单应用导数的几何意义及导数的运算1.(2015洛阳统考)已知直线m:x+2y-3=0,函数y=3x+cos x的图象与直线l相切于Ρ点,若l ⊥m,则Ρ点的坐标可能是( B )(A)(-错误!未找到引用源。
,-错误!未找到引用源。
) (B)(错误!未找到引用源。
,错误!未找到引用源。
)(C)(错误!未找到引用源。
,错误!未找到引用源。
)(D)(-错误!未找到引用源。
,-错误!未找到引用源。
)解析:由l⊥m可得直线l的斜率为2,函数y=3x+cos x的图象与直线l相切于Ρ点,也就是函数在P点的导数值为2,而y ′=3-sin x=2,解得sin x=1,只有B,D符合要求,而D中的点不在函数图象上,因此选B.2.(2014广东卷)曲线y=e-5x+2在点(0,3)处的切线方程为.解析:由题意知点(0,3)是切点.y′=-5e-5x,令x=0,得所求切线斜率为-5.从而所求方程为5x+y-3=0.答案:5x+y-3=0利用导数研究函数的单调性3.(2015辽宁沈阳市质检)若定义在R上的函数f(x)满足f(x)+f′(x)>1,f(0)=4,则不等式f(x)>错误!未找到引用源。
+1(e为自然对数的底数)的解集为( A )(A)(0,+∞) (B)(-∞,0)∪(3,+∞)(C)(-∞,0)∪(0,+∞) (D)(3,+∞)解析:不等式f(x)>错误!未找到引用源。
+1可以转化为e x f(x)-e x-3>0令g(x)=e x f(x)-e x-3,所以g′(x)=e x(f(x)+f′(x))-e x=e x(f(x)+f′(x)-1)>0,所以g(x)在R上单调递增,又因为g(0)=f(0)-4=0,所以g(x)>0⇒x>0,即不等式的解集是(0,+∞).故选A.4.(2014辽宁卷)当x∈[-2,1]时,不等式ax3-x2+4x+3≥0恒成立,则实数a的取值范围是( C )(A)[-5,-3] (B)[-6,-错误!未找到引用源。
高考数学二轮复习精品资料 专题2 函数与导数(教师)

2012年高考数学二轮精品复习资料 专题2 函数与导数(教师版)【考纲解读】1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念;在实际情景中,会根据不同的需要选择恰当的方法表示函数;了解简单的分段函数,并能简单应用.2.理解函数的单调性及几何意义;学会运用函数图象研究函数的性质,感受应用函数的单调性解决问题的优越性,提高观察、分析、推理、创新的能力.3.了解函数奇偶性的含义;会判断函数的奇偶性并会应用;掌握函数的单调性、奇偶性的综合应用.4.掌握一次函数的图象和性质;掌握二次函数的对称性、增减性、最值公式及图象与性质的关系,理解“三个二次”的内在联系,讨论二次方程区间根的分布问题.5.了解指数函数模型的实际背景;理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算;理解指数函数的概念、单调性,掌握指数函数图象通过的特殊点;知道指数函数是一类重要的函数模型.6.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数,了解对数在简化运算中的作用;理解对数函数的概念、单调性,掌握指数函数图象通过的特殊点;知道指数函数是一类重要的函数模型;了解指数函数(0x y a a =>且1)a ≠与对数函数log (0a y x a =>且1)a ≠互为反函数.7.了解幂函数的概念;结合函数12321,,,,y x y x y x y y x x=====的图象,了解它们的变化情况.8.掌握解函数图象的两种基本方法:描点法、图象变换法;掌握图象变换的规律,能利用图象研究函数的性质.9.结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数;根据具体函数的图象,能够用二分法求相应方程的近似解.10.了解指数函数、对数函数及幂函数的境长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义;了解函数模型(指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.11.了解导数概念的实际背景;理解导数的几何意义;能利用基本初等函数的导数公式和导数的四则运算法则,求简单函数的导数.12.了解函数单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(多项式函数一般不超过三次);了解函数在某点取得极值的必要条件和充分条件,会用导数求函数的极大值、极小值(多项式函数一般不超过三次),会求在闭区间函数的最大值、最小值(多项式函数一般不超过三次);会用导数解决某些实际问题.【考点预测】1.对于函数的定义域、值域、图象,一直是高考的热点和重点之一,大题、小题都会考查,渗透面广.特别是分段函数的定义域、值域、解析式的求法是近几年高考的热点.3.由指数函数、对数函数的图象入手,推知单调性,进行相关运算,同时与导数结合在一起的题目是每年必考的内容之一,要在审题、识图上多下功夫,学会分析数与形的结合,把常见的基本题型的解法技巧理解好、掌握好.4.函数的单调性、最值是高考考查的重点,其考查的形式是全方位、多角度,与导数的有机结合体现了高考命题的趋势.5.函数的奇偶性、周期性是高考考查的内容之一,其考查形式比较单一,但出题形式比较灵活,它主要出现在选择题、填空题部分,属基础类题目,复习时要立足课本,切实吃透其含义并能准确进行知识的应用.6.应用导数的概念及几何意义解题仍将是高考出题的基本出发点;利用导数研究函数的单调性、极值、最值、图象仍将是高考的主题;利用导数解决生活中的优化问题将仍旧是高考的热点;将导数与函数、解析几何、不等式、数列等知识结合在一起的综合应用,仍将是高考压轴题.【要点梳理】1.求定义域、值域的方法有:配方法、不等式法、换元法、分离常数法等;求函数解析式的方法有:定义法、换元法、待定系数法、方程组法等;解决实际应用题的一般步骤是:分析实际问题,找出自变量,写出解析式,确定定义域,计算.2.几种常见函数的数学模型:平均增长率问题;储蓄中的得利问题;通过观察与实验建立的函数关系;根据几何与物理概念建立的函数关系.3.指数与对数函数模型是函数应用的基本模型,经常与导数在一起进行考查,应引起我们的高度重视.4.二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,应熟练掌握.函数的零点、二分法、函数模型的应用是高考的常考点和热点,应认真研究、熟练掌握.5.理解函数的单调性、奇偶性、最值及其几何意义,会运用函数图象理解和研究函数的单调性、最值,常与导数结合在一起考查,是高考的常考点.6.对于幂指对函数的性质,只需立足课本,抓好基础,掌握其单调性、奇偶性,通过图象进行判断和应用,常与导数结合在一起考查.7.导数的概念及运算是导数的基本内容,每年必考,一般不单独考查,它主要结合导数的应用进行考查.8.导数的几何意义是高考考查的重点内容之一,经常与解析几何结合在一起考查.9.利用导数研究函数的单调性、极值、最值及解决生活中的优化问题是近几年高考必考的内容之一.10.求可导函数单调区间的一般步骤和方法:(1)确定函数定义域;(2)求导数;(3)令导数大于0,解得增区间, 令导数小于0,解得减区间.11.求可导函数极值的一般步骤和方法:(1)求导数;(2)判断函数单调性;(3)确定极值点;(4)求出极值.12.求可导函数最值的一般步骤和方法:(1)求函数极值;(2)计算区间端点函数值;(3)比较极值与端点函数值,最大者为最大值,最小者为最小值.【考点在线】考点一 函数的定义域函数的定义域及其求法是近几年高考考查的重点内容之一.这里主要帮助考生灵活掌握求定义域的各种方法,并会应用用函数的定义域解决有关问题.例1.已知函数()f x 的定义域为M ,g(x)=ln(1)x +的定义域为N ,则M ∩N=( )(A ){|1}x x >- (B ){|1}x x < (C ){|11}x x -<< (D )∅ 【答案】C【解析】要使原函数有意义,只须12log (21)0x +>,即0211x <+<,解得x 1-<<02,故选A.考点二 函数的性质(单调性、奇偶性和周期性) 函数的单调性、奇偶性和周期性是高考的重点内容之一,考查内容灵活多样. 这里主要帮助读者深刻理解奇偶性、单调性和周期性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象.例2.(2011年高考全国新课标卷理科2)下列函数中,既是偶函数又是区间),0(+∞上的增函数的是( )A 3x y = B 1+=x y C 12+-=x y D xy -=2【答案】B【解析】由偶函数可排除A ,再由增函数排除C,D,故选B ;【名师点睛】此题考查复合函数的奇偶性和单调性,因为函数x y x y -==和都是偶函数,所以,内层有它们的就是偶函数,但是,它们在),0(+∞的单调性相反,再加上外层函数的单调性就可以确定.【备考提示】:熟练函数的单调性、奇偶性方法是解答好本题的关键.练习2: (2011年高考江苏卷2)函数)12(log )(5+=x x f 的单调增区间是__________ 【答案】1(,)2-+∞ 【解析】本题考察函数性质,属容易题.因为210x +>,所以定义域为1(,)2-+∞,由复合函数的单调性知:函数)12(log )(5+=x x f 的单调增区间是1(,)2-+∞. 例3.(2009年高考山东卷文科12)已知定义在R 上的奇函数()f x 满足(4)()f x f x -=-,且在区间[0,2]上是增函数,则( )A.(25)(11)(80)f f f -<<B. (80)(11)(25)f f f <<-C. (11)(80)(25)f f f <<-D. (25)(80)(11)f f f -<< 【答案】D【解析】因为(8)(4)[()]()f x f x f x f x +=-+=--=,所以8是该函数的周期;又因为(4)()()f x f x f x -=-=-,所以2x =-是该函数的对称轴,又因为此函数为奇函数,定义域为R,所以(0)0f =,且函数的图象关于2x =对称, 因为函数()f x 在区间[0,2]上是增函数,所以在[0,2]上的函数值非负,故(1)0f >,所以(25)(25)(1)0f f f -=-=-<,(80)(0)0f f ==,(11)(3)0f f =>,所以(25)(80)(11)f f f -<<,故选D.【名师点睛】本小题考查函数的奇偶性、单调性、周期性,利用函数性质比较函数值的大小. 【备考提示】:函数的奇偶性、单调性、周期性,是高考的重点和热点,年年必考,必须熟练掌握.练习3:(2011年高考全国卷文科10)设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -=( )A.-12B.1 4-C.14D.12【答案】A【解析】先利用周期性,再利用奇偶性得:5111()()().2222f f f -=-=-=-考点三 函数的图象函数的图象与性质是高考考查的重点内容之一,它是研究和记忆函数性质的直观工具,利用它的直观性解题,可以起到化繁为简、化难为易的作用.因此,读者要掌握绘制函数图象的一般方法,掌握函数图象变化的一般规律,能利用函数的图象研究函数的性质.此类题目还很好的考查了数形结合的解题思想. 例4.(2011年高考山东卷理科9文科10)函数2sin 2xy x =-的图象大致是( )【解析】因为'12cos 2y x =-,所以令'12cos 02y x =->,得1cos 4x <,此时原函数是增函数;令'12cos 02y x =-<,得1cos 4x >,此时原函数是减函数,结合余弦函数图象,可得选C正确.【名师点睛】本题考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合的思维能力. 【备考提示】:函数的图象,高考年年必考,熟练其图象的解决办法(特值排除法、函数性质判断法等)是答好这类问题的关键.练习4:(2010年高考山东卷文科11)函数22x y x =-的图像大致是( )【解析】因为当x=2或4时,2x -2x =0,所以排除B 、C ;当x=-2时,2x -2x =14<04-,故排除D ,所以选A.考点四 导数的概念、运算及几何意义 了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念.例5.(2011年高考山东卷文科4)曲线211y x =+在点P(1,12)处的切线与y 轴交点的纵坐标是( )(A)-9 (B)-3 (C)9 (D)15 【答案】C【解析】因为'23y x =,切点为P (1,12),所以切线的斜率为3,故切线方程为3x-y+9=0,令x=0,得y=9,故选C.【名师点睛】本题考查导数的运算及其几何意义.【备考提示】:导数的运算及几何意义是高考的热点,年年必考,熟练导数的运算法则及导数的几何意义是解答好本类题目的关键.练习5:(2011年高考江西卷文科4)曲线x y e =在点A (0,1)处的切线斜率为( ) A.1 B.2 C.e D.1e【答案】A【解析】1,0,0'===e x e y x .考点五 导数的应用中学阶段所涉及的初等函数在其定义域内都是可导函数,导数是研究函数性质的重要而有力的工具,特别是对于函数的单调性,以“导数”为工具,能对其进行全面的分析,为我们解决求函数的极值、最值提供了一种简明易行的方法,进而与不等式的证明,讨论方程解的情况等问题结合起来,极大地丰富了中学数学思想方法.复习时,应高度重视以下问题: 1.. 求函数的解析式; 2. 求函数的值域; 3.解决单调性问题; 4.求函数的极值(最值); 5.构造函数证明不等式.例6.设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值. (Ⅰ)求a 、b 的值;(Ⅱ)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围. 【解析】(Ⅰ)2()663f x x ax b '=++,因为函数()f x 在1x =及2x =取得极值,则有(1)0f '=,(2)0f '=.即6630241230a b a b ++=⎧⎨++=⎩,.解得3a =-,4b =.(Ⅱ)由(Ⅰ)可知,32()29128f x x x x c =-++,2()618126(1)(2)f x x x x x '=-+=--.当(01)x ∈,时,()0f x '>; 当(12)x ∈,时,()0f x '<; 当(23)x ∈,时,()0f x '>.所以,当1x =时,()f x 取得极大值(1)58f c =+,又(0)8f c =,(3)98f c =+. 则当[]03x ∈,时,()f x 的最大值为(3)98f c =+.因为对于任意的[]03x ∈,,有2()f x c <恒成立, 所以 298c c +<, 解得 1c <-或9c >, 因此c 的取值范围为(1)(9)-∞-+∞,,.【名师点睛】利用函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值构造方程组求a 、b 的值.【备考提示】:导数的应用是导数的主要内容,是高考的重点和热点,年年必考,必须熟练掌握.练习6: 设函数f (x )=ax -(a +1)ln(x +1),其中a ≥-1,求f (x )的单调区间. 【解析】由已知得函数()f x 的定义域为(1,)-+∞,且'1()(1),1ax f x a x -=≥-+(1)当10a -≤≤时,'()0,f x <函数()f x 在(1,)-+∞上单调递减, (2)当0a >时,由'()0,f x =解得1.x a='、随x 的变化情况如下表当1(1,)x a∈-时,'()0,f x <函数()f x 在1(1,)a-上单调递减.当1(,)x a∈+∞时,'()0,f x >函数()f x 在1(,)a+∞上单调递增.综上所述:当10a -≤≤时,函数()f x 在(1,)-+∞上单调递减.当0a >时,函数()f x 在1(1,)a-上单调递减,函数()f x 在1(,)a+∞上单调递增.考点六 函数的应用建立函数模型,利用数学知识解决实际问题. 例7. (2011年高考山东卷文科21)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为803π立方米,且2l r ≥.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为(3)c c >.设该容器的建造费用为y 千元.(Ⅰ)写出y 关于r 的函数表达式,并求该函数的定义域; (Ⅱ)求该容器的建造费用最小时的r . 【解析】(I )设容器的容积为V ,由题意知23480,,33V r l r V πππ=+=又 故322248044203()333V r l r r r r rππ-==-=- 由于2l r ≥ 因此0 2.r <≤所以建造费用2224202342()34,3y rl r c r r r c rππππ=⨯+=⨯-⨯+ 因此21604(2),0 2.y c r r rππ=-+<≤ (II )由(I )得3221608(2)20'8(2)(),0 2.2c y c r r r r r c πππ-=--=-<<- 由于3,20,c c >->所以当3200,2r r c -==-时,m =则0m > 所以2228(2)'()().c y r m r rm m rπ-=-++ (1)当9022m c <<>即时,∈∈当r=m 时,y'=0;当r (0,m)时,y'<0;当r (m,2)时,y'>0.所以r m =是函数y 的极小值点,也是最小值点。
浙江省2012届高考数学理二轮专题复习课件:第2课时 函数的图象与性质

第一页,编辑于星期日:十五点 二十二分。 1
1.关于函数定义域为R的结论
(1)若f(x)= ax2 bx c型的函数的定义域为
若 a 0,则 b 0, c 0
R,则有ax2+bx+c≥0恒成立⇔
若
a
0, 则
a
0 0
(2)若f(x)=lg(ax2+bx+c)型的函数的定义域为
第十二页,编辑于星期日:十五点 二十二分。12
2.绝对值函数 【例2】 (2010 全国卷Ⅰ)直线y=1与曲线y=x2-|x|+a有四个 交点,则a的取值范围是__________.
画出函数图象,利用数形结合的数学方法解题 .
第十三页,编辑于星期日:十五点 二十二分。13
曲线y x2 - | x | a关于y轴对称.当x 0时,y x2 -
第二十四页,编辑于星期日:十五点 二十二分24。
(2)求抽象函数的定义域
①已知函数f(x)的定义域为[a,b],则函数f[g(x)]的
定义域是满足不等式a≤g(x)≤b的x的取值范围.
②已知函数f[g(x)]的定义域是[a,b],则函数f(x)的
定义域是x∈[a,b]时,g(x)的值域
5.函数值域的求法
可求得b 4,c 2,
所以f
(
x)
x2 2(
4x 2( x 0)
x
0),
图象如图所示.方程f (x) x的解
的个数,即y f (x)与y x的交点
个数.由图知两图象有A,B,C
三个交点.故方程f (x) x有三个解.
第十页,编辑于星期日:十五点 二十二分。 10
函数的图象从形式上很好地反映了函数的性质,所 以在研究函数性质时,注意结合图象,在解方程和不等 式等问题时,借助图象十分快捷,但要注意,利用图象 求交点个数或解的个数问题时,作图要十分准确,否则 容易解错.
广东省2012届高考数学理二轮专题复习课件:专题1 第02课时 函数的概念与性质

解析 因为f 2011 f 2009 1 f 2007 2 f 2005 3 f 1 1006,
所以f f 2011 f f 1 1006 f 1000
lg1000 1 4. 答案: 4
第三页,编辑于星期日:九点 三十六分。
利用分段函数解决求函数值问题的关键 在于先弄清f下的元在哪个范围,如果函数式 是确定的,直接代入即可求得;如果函数式 是不确定的,需要代入相应部分进行运算, 找到规律,直到可以利用确定的函数式求出 函数值为止.
2
第十页,编辑于星期日:九点 三十六分。
解析 因为f x1 x2 f x1 f x2 令x2 x1 0得f 0 0 令x2 x1得f x1 f x1 f 0, 即f x f x 对于x R恒成立,
所以f x是一个奇函数,
所以f x在R上单调递增.
由f x f (x 1) 0,得f x f (1 x),
第六页,编辑于星期日:九点 三十六分。
切入点:首先读懂题意,三个条件分别告 诉的是函数的周期性、单调性和对称性,
然后再把f 3,f 7,f 4.5化在同一个单
调区间内进行比较.
第七页,编辑于星期日:九点 三十六分。
解析 由f (x 3) 1 ,得f (x 6) 1
f (x)
f (x 3)
为同一个单调区间内进行比较.
第九页,编辑于星期日:九点 三十六分。
变式2 设函数y f x (x R),对任意非 零实数x1,x2满足f x1 x2 f x1 f x2 , 又f x在(0, )是增函数,则不等式 f x f (x 1) 0的解集为 __(___,_14_]_ .
专题一 函数、导数与不等式
第一页,编辑于星期日:九点 三十六分。
福建省2012届高考数学文二轮专题总复习课件:专题1 第2课时 函数的图像与性质

所以 2aab
2
0
,
所以 ba
1 ,
-1
所以,f (x) x2 x 1.
第二十页,编辑于星期日:十八点 五十五分。
2由题意得x2 x 1 2x m在1,1上恒成立, 即x2 3x 1 m 0,1,1上恒成立.
设g(x) x2 3x 1 m, 其图象的对称轴为直线x 3,
变换,以基本初等函数为背景的综合题和应用题是近年 来高考命题的新趋向,在函数
第二页,编辑于星期日:十八点 五十五分。
命题中出现了大量的形式活泼、内涵丰富、立意高远的 好题.
2.易错易漏 (1)忽略函数定义域优先的原则; (2)判断一个函数的奇偶性时,忽略对定义域是否关于
原点对称的判断; (3)根据定义证明函数的单调性时,不按规范格式书写;
(3)设mn<0,m+n>0,a>0且f(x)为偶函数,判断 F(m)+F(n)能否大于0.
第十四页,编辑于星期日:十八点 五十五分。
【解析】(1)由f(-1)=0得a-b+1=0,所以b=a+1. 函数f(x)=ax2+(a+1)x+1,x∈R. 当a=0时,函数f(x)=x+1,值域为R,不合题意; 当a 0时,函数f(x)为二次函数. 又因为其值域为[0,+∞),
(4)用换元法解题时,忽略换元前后的等价性
3.归纳总结 常用的数学思想方法主要有:定义法、图象法、换元法、 待定系数法、方程思想、等价转化等.
第三页,编辑于星期日:十八点 五十五分。
1.已知f (2 1) x,则f 4 ( )
x
A. - 1
B. 1
2
2
C. 7
高考数学复习 专题02 函数与导数 函数的单调性与最值备考策略-人教版高三全册数学素材

函数的单调性与最值备考策略主标题:函数的单调性与最值备考策略副标题:通过考点分析高考命题方向,把握高考规律,为学生备考复习打通快速通道。
关键词:函数,单调性,最值,备考策略 难度:3 重要程度:5 内容考点一 确定函数的单调性或单调区间【例1】 (1)判断函数f (x )=x +k x(k >0)在(0,+∞)上的单调性. (2)求函数y =log 13(x 2-4x +3)的单调区间.解 (1)法一 任意取x 1>x 2>0,则f (x 1)-f (x 2)=⎝⎛⎭⎪⎫x 1+kx 1-⎝ ⎛⎭⎪⎫x 2+k x 2=(x 1-x 2)+⎝ ⎛⎭⎪⎫k x 1-k x 2=(x 1-x 2)+k x 2-x 1x 1x 2=(x 1-x 2)⎝ ⎛⎭⎪⎫1-k x 1x 2.当k ≥x 1>x 2>0时,x 1-x 2>0,1-kx 1x 2<0, 有f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),此时,函数f (x )=x +k x(k >0)在(0,k ]上为减函数; 当x 1>x 2≥k 时,x 1-x 2>0,1-kx 1x 2>0, 有f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),此时,函数f (x )=x +k x(k >0)在[k ,+∞)上为增函数;综上可知,函数f (x )=x +k x(k >0)在(0,k ]上为减函数;在[k ,+∞)上为增函数. 法二 f ′(x )=1-k x 2,令f ′(x )>0,则1-k x2>0, 解得x >k 或x <-k (舍).令f ′(x )<0,则1-k x2<0,解得-k <x <k .∵x >0,∴0<x <k .∴f (x )在(0,k )上为减函数;在(k ,+∞)上为增函数, 也称为f (x )在(0,k ]上为减函数;在[k ,+∞)上为增函数.(2)令u =x 2-4x +3,原函数可以看作y =log 13u 与u =x 2-4x +3的复合函数.令u =x 2-4x +3>0.则x <1或x >3. ∴函数y =log 13(x 2-4x +3)的定义域为(-∞,1)∪(3,+∞).又u =x 2-4x +3的图象的对称轴为x =2,且开口向上,∴u =x 2-4x +3在(-∞,1)上是减函数,在(3,+∞)上是增函数.而函数y =log 13u 在(0,+∞)上是减函数,∴y =log 13(x 2-4x +3)的单调递减区间为(3,+∞),单调递增区间为(-∞,1).【备考策略】(1)对于给出具体解析式的函数,证明或判断其在某区间上的单调性有两种方法:①可以利用定义(基本步骤为取值、作差或作商、变形、定号、下结论)求解;②可导函数则可以利用导数解之.(2)复合函数y =f [g (x )]的单调性规律是“同则增,异则减”,即y =f (u )与u =g (x )若具有相同的单调性,则y =f [g (x )]为增函数,若具有不同的单调性,则y =f [g (x )]必为减函数.考点二 利用单调性求参数【例2】 已知函数f (x )=ax -1x +1. (1)若a =-2,试证f (x )在(-∞,-2)上单调递减.(2)函数f (x )在(-∞,-1)上单调递减,求实数a 的取值范围. (1)证明 任设x 1<x 2<-2, 则f (x 1)-f (x 2)=-2x 1-1x 1+1--2x 2-1x 2+1=-x 1-x 2x 1+1x 2+1.∵(x 1+1)(x 2+1)>0,x 1-x 2<0,∴f (x 1)-f (x 2)>0, ∴f (x 1)>f (x 2),∴f (x )在(-∞,-2)上单调递减. (2)解 法一 f (x )=ax -1x +1=a -a +1x +1,设x 1<x 2<-1, 则f (x 1)-f (x 2)=⎝⎛⎭⎪⎫a -a +1x 1+1-⎝ ⎛⎭⎪⎫a -a +1x 2+1 =a +1x 2+1-a +1x 1+1=a +1x 1-x 2x 1+1x 2+1,又函数f (x )在(-∞,-1)上是减函数, 所以f (x 1)-f (x 2)>0. 由于x 1<x 2<-1,∴x 1-x 2<0,x 1+1<0,x 2+1<0, ∴a +1<0,即a <-1.故a 的取值范围是(-∞,-1). 法二 由f (x )=ax -1x +1,得f ′(x )=a +1x +12,又因为f (x )=ax -1x +1在(-∞,-1)上是减函数,所以f ′(x )=a +1x +12≤0在x ∈(-∞,-1)上恒成立,解得a ≤-1,而a =-1时,f (x )=-1,在(-∞,-1)上不具有单调性,故实数a 的取值范围是(-∞,-1).【备考策略】利用单调性求参数的一般方法:一是求出函数的单调区间,然后使所给区间是这个单调区间的子区间,建立关于参数的不等式组即可求得参数范围;二是直接利用函数单调性的定义:作差、变形,由f (x 1)-f (x 2)的符号确定参数的范围,另外也可分离参数转化为不等式恒成立问题.考点三 利用函数的单调性求最值【例3】 已知f (x )=x 2+2x +a x,x ∈[1,+∞).(1)当a =12时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.审题路线 (1)当a =12时,f (x )为具体函数→求出f (x )的单调性,利用单调性求最值.(2)当x ∈[1,+∞)时,f (x )>0恒成立→转化为x 2+2x +a >0恒成立.解 (1)当a =12时,f (x )=x +12x +2,联想到g (x )=x +1x 的单调性,猜想到求f (x )的最值可先证明f (x )的单调性.任取1≤x 1<x 2, 则f (x 1)-f (x 2)=(x 1-x 2)+⎝⎛⎭⎪⎫12x 1-12x 2=x 1-x 22x 1x 2-12x 1x 2, ∵1≤x 1<x 2,∴x 1x 2>1,∴2x 1x 2-1>0. 又x 1-x 2<0,∴f (x 1)<f (x 2), ∴f (x )在[1,+∞)上是增函数,∴f (x )在[1,+∞)上的最小值为f (1)=72.(2)在区间[1,+∞)上,f (x )=x 2+2x +ax>0恒成立,则⎩⎪⎨⎪⎧x 2+2x +a >0,x ≥1⇔⎩⎪⎨⎪⎧a >-x 2+2x ,x ≥1,等价于a 大于函数φ(x )=-(x 2+2x )在[1,+∞)上的最大值.只需求函数φ(x )=-(x 2+2x )在[1,+∞)上的最大值.φ(x )=-(x +1)2+1在[1,+∞)上递减,∴当x =1时,φ(x )最大值为φ(1)=-3. ∴a >-3,故实数a 的取值范围是(-3,+∞). 【备考策略】求函数最值的常用方法:(1)单调性法:先确定函数的单调性,再由单调性求最值;(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值;(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值;(4)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值; (5)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.。
2012届高三数学二轮复习讲义专题一函数与导数(定稿)

专题一 集合,常用逻辑用语,不等式,函数与导数(讲案)第二讲 函数与导数1.函数与基本初等函数的主要考点是:函数的表示方法、分段函数、函数的定义域和值域、函数的单调性、函数的奇偶性、指数函数与对数函数的图象与性质、幂函数的图象与性质。
本部分一般以选择题或填空题的形式出现,考查的重点是函数的性质和图象的应用,重在检测对该部分的基础知识和基本方法的掌握程度。
复习该部分以基础知识为主,注意培养函数性质和函数图象分析问题和解决问题的能力。
2.导数是高中数学知识的一个重要的交汇点,命题X 围非常广泛,为高考考查函数提供了广阔天地,处于一种特殊的地位,不但一定出大题而相应有小题出现。
主要考查导数有关的概念、计算和应用。
利用导数工具研究函数的有关性质,把导数应用于单调性、极值等传统、常规问题的同时,进一步升华到处理与自然数有关的不等式的证明,是函数知识和不等式知识的一个结合体,它的解题又融合了转化、分类讨论、函数与方程、数形结合等数学思想与方法,不但突出了能力的考查,同时也注意了高考重点与热点,这一切对考查考生的应用能力和创新意识都大有益处。
3.解决函数与导数结合的问题,一般有规X 的方法,利用导数判断函数的单调性也有规定的步骤,具有较强的可操作性.高考中,函数与导数的结合,往往不是简单地考查公式的应用,而是与数学思想方法相结合,突出考查函数与方程思想、有限与无限思想等,所考查的问题具有一定的综合性.在一套高考试卷中一般有2-3个小题有针对性地考查函数与导数的重要知识和方法,有一道解答题综合考查函数与导数,特别是导数在研究函数问题中的应用,这道解答题是试卷的把关题之一.【考点精析】题型一 函数的概念、图象与性质例 1 (1)函数21sin()(10)()0x x x f x ex π-⎧-<<=⎨≥⎩,若(1)()2f f a +=,则的所有可能值为( )A .1 ,2-B .2-C .1 ,2-D .1 ,2分析:解答本题可根据已知条件确定的值,利用分类讨论思想求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年高考数学二轮精品复习资料专题二 函数与导数(教师版)【考纲解读】1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念;在实际情景中,会根据不同的需要选择恰当的方法表示函数;了解简单的分段函数,并能简单应用.2.理解函数的单调性及几何意义;学会运用函数图象研究函数的性质,感受应用函数的单调性解决问题的优越性,提高观察、分析、推理、创新的能力.3.了解函数奇偶性的含义;会判断函数的奇偶性并会应用;掌握函数的单调性、奇偶性的综合应用.4.掌握一次函数的图象和性质;掌握二次函数的对称性、增减性、最值公式及图象与性质的关系,理解“三个二次”的内在联系,讨论二次方程区间根的分布问题.5.了解指数函数模型的实际背景;理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算;理解指数函数的概念、单调性,掌握指数函数图象通过的特殊点;知道指数函数是一类重要的函数模型.6.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数,了解对数在简化运算中的作用;理解对数函数的概念、单调性,掌握指数函数图象通过的特殊点;知道指数函数是一类重要的函数模型;了解指数函数(0x y a a =>且1)a ≠与对数函数log (0a y x a =>且1)a ≠互为反函数.7.了解幂函数的概念;结合函数12321,,,,y x y x y x y y x x =====的图象,了解它们的变化情况.8.掌握解函数图象的两种基本方法:描点法、图象变换法;掌握图象变换的规律,能利用图象研究函数的性质.9.结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数;根据具体函数的图象,能够用二分法求相应方程的近似解.10.了解指数函数、对数函数及幂函数的境长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义;了解函数模型(指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.11.了解导数概念的实际背景;理解导数的几何意义;能利用基本初等函数的导数公式和导数的四则运算法则,求简单函数的导数.12.了解函数单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(多项式函数一般不超过三次);了解函数在某点取得极值的必要条件和充分条件,会用导数求函数的极大值、极小值(多项式函数一般不超过三次),会求在闭区间函数的最大值、最小值(多项式函数一般不超过三次);会用导数解决某些实际问题.【考点预测】1.对于函数的定义域、值域、图象,一直是高考的热点和重点之一,大题、小题都会考查,渗透面广.特别是分段函数的定义域、值域、解析式的求法是近几年高考的热点.3.由指数函数、对数函数的图象入手,推知单调性,进行相关运算,同时与导数结合在一起的题目是每年必考的内容之一,要在审题、识图上多下功夫,学会分析数与形的结合,把常见的基本题型的解法技巧理解好、掌握好.4.函数的单调性、最值是高考考查的重点,其考查的形式是全方位、多角度,与导数的有机结合体现了高考命题的趋势.5.函数的奇偶性、周期性是高考考查的内容之一,其考查形式比较单一,但出题形式比较灵活,它主要出现在选择题、填空题部分,属基础类题目,复习时要立足课本,切实吃透其含义并能准确进行知识的应用.6.应用导数的概念及几何意义解题仍将是高考出题的基本出发点;利用导数研究函数的单调性、极值、最值、图象仍将是高考的主题;利用导数解决生活中的优化问题将仍旧是高考的热点;将导数与函数、解析几何、不等式、数列等知识结合在一起的综合应用,仍将是高考压轴题.【要点梳理】1.求定义域、值域的方法有:配方法、不等式法、换元法、分离常数法等;求函数解析式的方法有:定义法、换元法、待定系数法、方程组法等;解决实际应用题的一般步骤是:分析实际问题,找出自变量,写出解析式,确定定义域,计算.2.几种常见函数的数学模型:平均增长率问题;储蓄中的得利问题;通过观察与实验建立的函数关系;根据几何与物理概念建立的函数关系.3.指数与对数函数模型是函数应用的基本模型,经常与导数在一起进行考查,应引起我们的高度重视.4.二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,应熟练掌握.函数的零点、二分法、函数模型的应用是高考的常考点和热点,应认真研究、熟练掌握.5.理解函数的单调性、奇偶性、最值及其几何意义,会运用函数图象理解和研究函数的单调性、最值,常与导数结合在一起考查,是高考的常考点.6.对于幂指对函数的性质,只需立足课本,抓好基础,掌握其单调性、奇偶性,通过图象进行判断和应用,常与导数结合在一起考查.7.导数的概念及运算是导数的基本内容,每年必考,一般不单独考查,它主要结合导数的应用进行考查.8.导数的几何意义是高考考查的重点内容之一,经常与解析几何结合在一起考查.9.利用导数研究函数的单调性、极值、最值及解决生活中的优化问题是近几年高考必考的内容之一.10.求可导函数单调区间的一般步骤和方法:(1)确定函数定义域;(2)求导数;(3)令导数大于0,解得增区间, 令导数小于0,解得减区间.11.求可导函数极值的一般步骤和方法:(1)求导数;(2)判断函数单调性;(3)确定极值点;(4)求出极值.12.求可导函数最值的一般步骤和方法:(1)求函数极值;(2)计算区间端点函数值;(3)比较极值与端点函数值,最大者为最大值,最小者为最小值.【考点在线】考点一 函数的定义域函数的定义域及其求法是近几年高考考查的重点内容之一.这里主要帮助考生灵活掌握求定义域的各种方法,并会应用用函数的定义域解决有关问题.例1.已知函数()f x =的定义域为M ,g(x)=ln(1)x +的定义域为N ,则M ∩N=( )(A ){|1}x x >- (B ){|1}x x < (C ){|11}x x -<< (D )∅ 【答案】C【解析】要使原函数有意义,只须12log (21)0x +>,即0211x <+<,解得x 1-<<02,故选A.考点二 函数的性质(单调性、奇偶性和周期性)函数的单调性、奇偶性和周期性是高考的重点内容之一,考查内容灵活多样. 这里主要帮助读者深刻理解奇偶性、单调性和周期性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象.例2.(2011年高考全国新课标卷理科2)下列函数中,既是偶函数又是区间),0(+∞上的增函数的是( )A 3x y =B 1+=x yC 12+-=x yD x y -=2【答案】B【解析】由偶函数可排除A ,再由增函数排除C,D,故选B ;【名师点睛】此题考查复合函数的奇偶性和单调性,因为函数x y x y -==和都是偶函数,所以,内层有它们的就是偶函数,但是,它们在),0(+∞的单调性相反,再加上外层函数的单调性就可以确定.【备考提示】:熟练函数的单调性、奇偶性方法是解答好本题的关键.练习2: (2011年高考江苏卷2)函数)12(log )(5+=x x f 的单调增区间是__________ 【答案】1(,)2-+∞ 【解析】本题考察函数性质,属容易题.因为210x +>,所以定义域为1(,)2-+∞,由复合函数的单调性知:函数)12(log )(5+=x x f 的单调增区间是1(,)2-+∞. 例3.(2009年高考山东卷文科12)已知定义在R 上的奇函数()f x 满足(4)()f x f x -=-,且在区间[0,2]上是增函数,则( )A.(25)(11)(80)f f f -<<B. (80)(11)(25)f f f <<-C. (11)(80)(25)f f f <<-D. (25)(80)(11)f f f -<<【答案】D【解析】因为(8)(4)[()]()f x f x f x f x +=-+=--=,所以8是该函数的周期;又因为(4)()()f x f x f x -=-=-,所以2x =-是该函数的对称轴,又因为此函数为奇函数,定义域为R ,所以(0)0f =,且函数的图象关于2x =对称, 因为函数()f x 在区间[0,2]上是增函数,所以在[0,2]上的函数值非负,故(1)0f >,所以(25)(25)(1)0f f f -=-=-<, (80)(0)0f f ==,(11)(3)0f f =>,所以(25)(80)(11)f f f -<<,故选D .【名师点睛】本小题考查函数的奇偶性、单调性、周期性,利用函数性质比较函数值的大小.【备考提示】:函数的奇偶性、单调性、周期性,是高考的重点和热点,年年必考,必须熟练掌握.练习3:(2011年高考全国卷文科10)设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5()2f -=( ) A.-12 B.1 4- C.14 D.12【答案】A【解析】先利用周期性,再利用奇偶性得:5111()()().2222f f f -=-=-=-考点三 函数的图象函数的图象与性质是高考考查的重点内容之一,它是研究和记忆函数性质的直观工具,利用它的直观性解题,可以起到化繁为简、化难为易的作用.因此,读者要掌握绘制函数图象的一般方法,掌握函数图象变化的一般规律,能利用函数的图象研究函数的性质.此类题目还很好的考查了数形结合的解题思想.例4.(2011年高考山东卷理科9文科10)函数2sin 2x y x =-的图象大致是( )【解析】因为'12cos 2y x =-,所以令'12cos 02y x =->,得1cos 4x <,此时原函数是增函数;令'12cos 02y x =-<,得1cos 4x >,此时原函数是减函数,结合余弦函数图象,可得选C 正确.【名师点睛】本题考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合的思维能力.【备考提示】:函数的图象,高考年年必考,熟练其图象的解决办法(特值排除法、函数性质判断法等)是答好这类问题的关键.练习4:(2010年高考山东卷文科11)函数22x y x =-的图像大致是( )【解析】因为当x=2或4时,2x -2x =0,所以排除B 、C ;当x=-2时,2x -2x =14<04-,故排除D ,所以选A.考点四 导数的概念、运算及几何意义 了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念.例5.(2011年高考山东卷文科4)曲线211y x =+在点P(1,12)处的切线与y 轴交点的纵坐标是( )(A)-9 (B)-3 (C)9 (D)15【答案】C【解析】因为'23y x =,切点为P (1,12),所以切线的斜率为3,故切线方程为3x-y+9=0,令x=0,得y=9,故选C.【名师点睛】本题考查导数的运算及其几何意义.【备考提示】:导数的运算及几何意义是高考的热点,年年必考,熟练导数的运算法则及导数的几何意义是解答好本类题目的关键.练习5:(2011年高考江西卷文科4)曲线x y e =在点A (0,1)处的切线斜率为( )A.1B.2C.eD.1e 【答案】A【解析】1,0,0'===e x e y x .考点五 导数的应用中学阶段所涉及的初等函数在其定义域内都是可导函数,导数是研究函数性质的重要而有力的工具,特别是对于函数的单调性,以“导数”为工具,能对其进行全面的分析,为我们解决求函数的极值、最值提供了一种简明易行的方法,进而与不等式的证明,讨论方程解的情况等问题结合起来,极大地丰富了中学数学思想方法.复习时,应高度重视以下问题:1.. 求函数的解析式;2. 求函数的值域;3.解决单调性问题;4.求函数的极值(最值);5.构造函数证明不等式.例6.设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值.(Ⅰ)求a 、b 的值;(Ⅱ)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围.【解析】(Ⅰ)2()663f x x ax b '=++,因为函数()f x 在1x =及2x =取得极值,则有(1)0f '=,(2)0f '=.即6630241230a b a b ++=⎧⎨++=⎩,.解得3a=-,4b =. (Ⅱ)由(Ⅰ)可知,32()29128f x x x x c =-++,2()618126(1)(2)f x x x x x '=-+=--.当(01)x ∈,时,()0f x '>; 当(12)x ∈,时,()0f x '<; 当(23)x ∈,时,()0f x '>. 所以,当1x=时,()f x 取得极大值(1)58f c =+,又(0)8f c =,(3)98f c =+. 则当[]03x ∈,时,()f x 的最大值为(3)98f c =+.因为对于任意的[]03x ∈,,有2()f x c <恒成立, 所以298c c +<, 解得 1c <-或9c >,因此c 的取值范围为(1)(9)-∞-+∞ ,,.【名师点睛】利用函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值构造方程组求a 、b 的值.【备考提示】:导数的应用是导数的主要内容,是高考的重点和热点,年年必考,必须熟练掌握. 练习6: 设函数f (x )=ax -(a +1)ln(x +1),其中a ≥-1,求f (x )的单调区间.【解析】由已知得函数()f x 的定义域为(1,)-+∞,且'1()(1),1ax f x a x -=≥-+ (1)当10a -≤≤时,'()0,f x <函数()f x 在(1,)-+∞上单调递减,(2)当0a >时,由'()0,f x =解得1.x a= '、随x 的变化情况如下表当1(1,)x a ∈-时,'()0,f x <函数()f x 在1(1,)a-上单调递减.当1(,)x a ∈+∞时,'()0,f x >函数()f x 在1(,)a+∞上单调递增.综上所述:当10a -≤≤时,函数()f x 在(1,)-+∞上单调递减.当0a >时,函数()f x 在1(1,)a -上单调递减,函数()f x 在1(,)a+∞上单调递增.考点六 函数的应用建立函数模型,利用数学知识解决实际问题.例7. (2011年高考山东卷文科21)某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为803π立方米,且2l r ≥.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为(3)c c >.设该容器的建造费用为y 千元.(Ⅰ)写出y 关于r 的函数表达式,并求该函数的定义域;(Ⅱ)求该容器的建造费用最小时的r .【解析】(I )设容器的容积为V , 由题意知23480,,33V r l r V πππ=+=又 故322248044203()333V r l r r r r rππ-==-=- 由于2l r ≥因此0 2.r <≤ 所以建造费用2224202342()34,3y rl r c r r r c r ππππ=⨯+=⨯-⨯+ 因此21604(2),0 2.y c r r rππ=-+<≤ (II )由(I )得3221608(2)20'8(2)(),0 2.2c y c r r r r r c πππ-=--=-<<- 由于3,20,c c >->所以当3200,2r r c -==-时,m =则0m > 所以2228(2)'()().c y r m r rm m rπ-=-++ (1)当9022m c <<>即时, ∈∈当r=m 时,y'=0;当r (0,m)时,y'<0;当r (m,2)时,y'>0.所以r m =是函数y 的极小值点,也是最小值点。