初中数学思维拓展题训练及答案

合集下载

七年级数学思维拓展训练

七年级数学思维拓展训练

七年级数学思维拓展训练一、选择题(每小题8分,共40分)1.文具店的老板均以60元的价格卖了两个计算器,其中一个赚了20﹪,另一个亏了20﹪,则该老板( )A. 赚了5元B. 亏了25元C. 赚了25元D. 亏了5元2.观察一列数34-,57, 910-, 1713,3316-,依此规律下一个数是( ) A.4521 B.4519 C. 6519 D. 65213.方程13153520052007x x x x+++=⨯ 的解是 x =( ) A.20072006 B.20062007 C. 10032007 D.100320074.小明和哥哥在环形跑道上练习长跑,他们从同一起点沿相反方向同时出发,每隔25秒钟相遇一次.现在,他们从同一起跑点沿相同方向同时出发,经过25分钟哥哥追上了小明,并且比小明多跑了20圈,则哥哥速度是小明速度的( )倍.A. 1.5B. 2C. 3D. 45.一条笔直的街道旁依次有B 、C 、D 三幢居民楼,某大桶水经销商统计各楼居民每周所需大桶水的数量如表所示.他们计划在这三幢楼中租赁一间门市房,设立大桶水供应点.若仅考虑这三幢楼内的居民取水所走路程之和最小(假设每次只能搬运一桶),可以选择的地点应设在( )A. B 、C 、D 楼均可B.D 楼C.B 楼D.C 楼二、填空题(每小题8分,共40分)6.有一个正方体,在它的各个面上分别标上字母A 、B 、C 、D 、E 、F ,甲、乙、丙三位同学从不同方向去观察其正方体,观察结果如图所示.问:F 的对面是 .7.设a ,b ,c 为有理数,则由abcabc c c b b a a +++ 构成的各种数值是 . 8.在1、2、…、2011、2012之间添上加减号,使和的绝对值最小.算式是: .9.若x 为有理数,则| x -1|+| x -4|的最小值是 . 10.某商品降价20%后欲恢复原价,则提价的百分数为 . 三、解答题(每小题10分,共20分)11.定义:a 是不为1的有理数,我们把11a-称为a 的差倒数....如:2的差倒数是1112=--,1-的差倒数是111(1)2=--.已知113a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,依此类推,试求2012a 的值.12.我校租用两辆小汽车(设速度相同)送8名老师到市教研室参加会议,每辆限坐4人(不包括司机).其中一辆小汽车在距离教研室15km 的地方出现故障,此时离截止进场的时刻还有42分钟,这时唯一可利用的交通工具是另一辆小汽车,且这辆车的平均速度是60km/h ,人步行的速度是5km/h (上、下车时间忽略不计).(1)若小汽车送4名老师到达会场,然后再回到出故障处接其他老师,请你能过计算说明他们能否在截止进场的时刻前到达;(2)请你设计一种运送方案,使他们能在截止进场的时刻前到达,并通过计算说明方案的可行性. 参考答案:1.D 2.C 3.C 4.B 5.B6.C 7.4、-4、0 8.如(1-2-3+4)+(5-6-7+8)+ ……+(2009-2010-2011+2012)=0 9.3 10.25% 11.因为a 2是a 1的差倒数,根据定义得a 2=)31(11--=43;同样a 3=4311-=4;a 4=411-=-31;a 5=)31(11--=43;a 6=4311-=4;……,可以发现a 1、a 2、a 3、a 4、a 5、a 6……的值呈3个一循环的规律,而2012除以3的余数2,所以a 2012= a 2=43. 12.(1)不能在限定时间内到达会场.理由:如果单独用一辆小汽车来回跑3趟,所需要的时间为1533(h)45604⨯==(分钟),由于45分钟>42分钟,所以不能在限定时间内到达.(2)方案一:先将4名老师用车送到会场,另外4名老师同时步行前往会场,汽车到会场后返回到与另外4名老师的相遇处再载他们到会场.先将4名老师用车送到会场所需时间为150.25(h)1560==(分钟). 0.25小时另外4名老师步行了1.25km ,此时他们与会场的距离为15 1.2513.75-=(km ).设汽车返回(h)t 后先步行的4名老师相遇,56013.75t t +=,解得 2.7513t =.由于汽车由相遇点再去会场所需时间也是2.75h 13.所以用这一方案送这8人到会场共需2.751526040.44213+⨯⨯≈<.所以这8名老师能在截止进场的时刻前赶到.方案二:8名老师同时出发,4名老师步行,先将另4名老师用车送到离出发点km x 的A 处,然后让这4名老师步行前往会场,车回去接应后面步行的4名老师,使他们跟前面4名老师同时到达会场.由A 处步行前会场需15(h)5x -,汽车从出发点到A 处需(h)60x先步行的4名老师走了5(km)60x ⨯,设汽车返回t (h )后与先步行的4名老师相遇,则有605560x t t x +=-⨯,解得11780x t =,所以相遇点与会场的距离为112156015(km)78013x xx -+⨯=-. 由相遇点坐车到会场需1(h)4390x ⎛⎫-⎪⎝⎭.所以先步行的4名老师到会场的总时间为111(h)607804390x x x ⎛⎫++- ⎪⎝⎭,先坐车的4名老师到会场的总时间为15(h)605x x -⎛⎫+ ⎪⎝⎭,他们同时到达,则有11115607804390605x x x x x-++-=+,解得13x =. 将13x =代入上式,可得他们赶到会场所需时间为1326037605⎛⎫+⨯=⎪⎝⎭(分钟).因为37分钟<42分钟,所以他们能在截止进场的时刻前到达.4.提示:设哥哥的速度是1V 米/秒,小明的速度是2V 米/秒。

初中数学思维拓展试卷答案

初中数学思维拓展试卷答案

一、选择题1. 下列各数中,哪个数是正数?A. -3B. 0C. 3D. -5答案:C解析:正数是大于零的数,故选C。

2. 下列哪个图形是轴对称图形?A. 正方形B. 长方形C. 三角形D. 圆形答案:A解析:轴对称图形是指通过一个轴将图形分成两个完全相同的部分,故选A。

3. 已知一个等边三角形的边长为6cm,求这个三角形的周长。

答案:18cm解析:等边三角形的三条边相等,故周长为3×6=18cm。

4. 下列哪个数是偶数?A. 3B. 4C. 5D. 6答案:B解析:偶数是能被2整除的数,故选B。

5. 已知一个长方形的长为8cm,宽为4cm,求这个长方形的面积。

答案:32cm²解析:长方形的面积等于长乘以宽,故面积为8×4=32cm²。

二、填空题1. 已知一个数的绝对值是5,那么这个数可以是______或______。

答案:5,-5解析:绝对值表示一个数与零的距离,故可以是正数或负数。

2. 下列哪个数是负数?A. -3B. 0C. 3D. -5答案:A解析:负数是小于零的数,故选A。

3. 一个等腰三角形的底边长为6cm,腰长为8cm,求这个三角形的面积。

答案:24cm²解析:等腰三角形的面积等于底边乘以高的一半,高可以用勾股定理求得。

设高为h,则有h²=8²-3²=64-9=55,所以h=√55。

故面积为6×√55/2=3√55≈24cm²。

4. 下列哪个数是奇数?A. 3B. 4C. 5D. 6答案:C解析:奇数是不能被2整除的数,故选C。

5. 已知一个长方形的长为10cm,宽为5cm,求这个长方形的周长。

答案:30cm解析:长方形的周长等于两倍的长加两倍的宽,故周长为2×10+2×5=30cm。

三、解答题1. 已知一个等腰直角三角形的直角边长为3cm,求这个三角形的面积。

答案:9cm²解析:等腰直角三角形的面积等于直角边长乘以直角边长的一半,故面积为3×3/2=9cm²。

中考数学复习—思维训练题(含答案)

中考数学复习—思维训练题(含答案)

中考复习—思维训练题一.试题(共17题)1.已知a ,b 是方程2350x x −−=的两根,则代数式3222671a a b b −+++的值是( ) A .25−B .24−C .35D .362.已知方程2230x x +−=的解是11x =,23x =−,则给出另一个方程2(23)2(23)30x x +++−=,它的解是( )A .1−或3B .1或3C .1−或3−D .1或3−3.平面直角坐标系中,函数0)y x x =−<与4y x =+的图象交于点(,)P a b ,则代数式11a b−的值是( )A .BC .D 4.著名数学家华罗庚说过:“数形结合百般好,隔裂分家万事非.”请运用这句话中提到的思想方法判断方程2324x x x−=−的根的情况是( ) A .有三个实数根 B .有两个实数根 C .有一个实数根 D .无实数根5.华罗庚说过:“数形结合百般好,隔裂分家万事非.”请运用这句话中提到的思想方法判断方程2124x x x+=−+的根的情况是( ) A .有三个实数根 B .有两个实数根 C .有一个实数根 D .无实数根6.判断方程3|2|2x x =−−的根的情况是( ) A .有四个实数根 B .有两个实数根 C .有一个实数根 D .无实数根7.构建几何图形解决代数问题是“数形结合”思想的重要体现,在计算tan15︒时,如图,在Rt ABC ∆中,90C ∠=︒,30ABC ∠=︒,延长CB 使BD AB =,连接AD ,得15D ∠=︒,所以tan152AC CD ︒====−tan 22.5︒的值为( )A1 BC1 D .128.已知1x 、2x 、3x 为方程323940x x x +−−=的三个实数根,则下列结论一定正确的是( )A .1230x x x <B .1230x x x +−>C .1230x x x −−>D .1230x x x ++<9.如图是一些有规律的图案,它们由一些线段组成.图1中有3条线段,图2中有7条线段,图3中有15条线段,⋯,以此类推,第6个图中有( )条线段.A .63B .65C .127D .25510.如图所示,由一些点组成形如三角形的图形,每条“边”(包括两个顶点)有(1)n n >个点,每个图形总共的点数是S ,当8n =时,S 的值是( )A .18B .21C .24D .2711.我国宋朝时期的数学家杨辉,曾将大小完全相同的圆弹珠逐层堆积,形成“三角垛”,图1有1颗弹珠;图2有3颗弹珠;图3有6颗弹珠,往下依次是第4个图,第5个图,⋯;若用n a 表示图n 的弹珠数,其中1n =,2,3,⋯,则12320231111(a a a a +++⋯+= )A .40442023B .40422023C .20211011D .2023101212.关于x 的方程(2)(3)x x m −−=有两个不相等的实数根1x ,212()x x x <,则下列结论一定正确的是( )A .14m >−B .12522x x += C .当0m >时,1223x x <<< D .当0m >时,1223x x <<<13.已知2x =−,代数式244x x ++的值为 .14.若x =3231x x x +++的值为 . 15.已知实数a ,b 满足2222(21)(21)80a b a b +++−=,试求222a b +的值. 解:设222a b m +=.原方程可化为(1)(1)80m m +−=,即281m =,解得9m =±.2220a b +, 2229a b ∴+=.上面的这种方法称为“换元法”,换元法是数学学习中最常用的一种思想方法,在结构较复杂的数和式的运算中,若把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂问题简单化.请根据以上阅读材料,解决问题.已知实数x ,y 满足2222(221)()3x y x y +−+=,则22332x y +−的值为 . 16.若21m n +=,则2366m mn n ++的值为 .17.当代数式235x x ++的值为7时,代数式23911x x +−的值为 .思维2024参考答案与试题解析一.试题(共17题)1.已知a ,b 是方程2350x x −−=的两根,则代数式3222671a a b b −+++的值是( ) A .25−B .24−C .35D .36【解答】解:a ,b 是方程2350x x −−=的两根, 2350a a ∴−−=,2350b b −−=,3a b +=, 235a a ∴−=,235b b =+, 3222671a a b b ∴−+++22(3)3571a a a b b =−++++10106a b =++ 10()6a b =++1036=⨯+ 36=. 故选:D .2.已知方程2230x x +−=的解是11x =,23x =−,则给出另一个方程2(23)2(23)30x x +++−=,它的解是( )A .1−或3B .1或3C .1−或3−D .1或3−【解答】解:方程2230x x +−=的解是11x =,23x =−, ∴方程2(23)2(23)30x x +++−=,231x +=,233x +=−, 22x =−,26x =−,11x =−,23x =−, 故选:C .3.平面直角坐标系中,函数0)y x =<与4y x =+的图象交于点(,)P a b ,则代数式11a b−的值是( )A .BC . D【解答】解:把点(,)P a b 分别代入0)y x =<与4y x =+中,得b =,4b a =+,即ab =,4b a −=,∴11b a a b ab −−===故选:A .4.著名数学家华罗庚说过:“数形结合百般好,隔裂分家万事非.”请运用这句话中提到的思想方法判断方程2324x x x−=−的根的情况是( ) A .有三个实数根 B .有两个实数根 C .有一个实数根 D .无实数根【解答】解:画出函数3y x=和函数242y x x =−+的图象如图,观察图象,函数3y x=和函数242y x x =−+的图象有一个交点, 所以,方程2324x x x−=−有一个实数根, 故选:C .5.华罗庚说过:“数形结合百般好,隔裂分家万事非.”请运用这句话中提到的思想方法判断方程2124x x x+=−+的根的情况是( ) A .有三个实数根 B .有两个实数根 C .有一个实数根 D .无实数根【解答】解:方程变形为2142x x x=−+−, ∴21(2)2x x=−−+,把解方程理解为求反比例函数1y x=图象与抛物线2(2)2y x =−−+的交点的横坐标, 反比例函数图象分布在第一、三象限,在第一象限,抛物线的顶点(2,2)在反比例函数图象上方,且抛物线的开口向下,如图, ∴反比例函数1y x=图象与抛物线2(2)2y x =−−+有3个交点, ∴原方程有3个实数解.故选:A .6.判断方程3|2|2x x =−−的根的情况是( ) A .有四个实数根 B .有两个实数根 C .有一个实数根 D .无实数根【解答】解:3|2|2x x =−−, 20x ∴−>,2(2)3x ∴−=,2x ∴−解得2x =,经检验,2x =+是原方程的解. 故方程3|2|2x x =−−的根的情况是有一个实数根.故选:C .7.构建几何图形解决代数问题是“数形结合”思想的重要体现,在计算tan15︒时,如图,在Rt ABC ∆中,90C ∠=︒,30ABC ∠=︒,延长CB 使BD AB =,连接AD ,得15D ∠=︒,所以tan152AC CD ︒====−tan 22.5︒的值为( )A 1BC 1D .12【解答】解:在Rt ABC ∆中,90C ∠=︒,45ABC ∠=︒,延长CB 使BD AB =,连接AD ,得22.5D ∠=︒,设1AC BC ==,则AB BD =,tan 22.51AC CD ∴︒===, 故选:C .8.已知1x 、2x 、3x 为方程323940x x x +−−=的三个实数根,则下列结论一定正确的是( )A .1230x x x <B .1230x x x +−>C .1230x x x −−>D .1230x x x ++<【解答】解:323940x x x +−−=,当0x =时,40−≠,24390x x x∴+−−=, 1x ∴、2x 、3x 可以看作是抛物线239y x x =+−与反比例函数4y x=的三个交点的横坐标,由函数图象可知1230x x x>,1230x x x++<,根据已知条件无法判定1230x x x+−>,1230x x x−−>,故选:D.9.如图是一些有规律的图案,它们由一些线段组成.图1中有3条线段,图2中有7条线段,图3中有15条线段,⋯,以此类推,第6个图中有()条线段.A.63B.65C.127D.255【解答】解:由图可知,图1中有3条线段,图2中有7条线段,734=+,图3中有15条线段:15724=+⨯,图4中有31条线段:311544=+⨯,图5中有63条线段:633184=+⨯,则第6个图中有线段:63164127+⨯=(条),故选:C.10.如图所示,由一些点组成形如三角形的图形,每条“边”(包括两个顶点)有(1)n n>个点,每个图形总共的点数是S,当8n=时,S的值是()A .18B .21C .24D .27【解答】解:根据题意分析可得:2n =时,3S =, 3n =时,6S =, 4n =时,9S =, 5n =时,12S =,...此后,n 每增加1,S 就增加3个. 故当8n =时,(81)321S =−⨯=. 故选:B .11.我国宋朝时期的数学家杨辉,曾将大小完全相同的圆弹珠逐层堆积,形成“三角垛”,图1有1颗弹珠;图2有3颗弹珠;图3有6颗弹珠,往下依次是第4个图,第5个图,⋯;若用n a 表示图n 的弹珠数,其中1n =,2,3,⋯,则12320231111(a a a a +++⋯+= )A .40442023B .40422023C .20211011D .20231012【解答】解:当1n =时,11212a ⨯==, 当2n =时,22(12)231222a +⨯=+==, 当3n =时,33(13)3412322a +⨯=++==, 当4n =时,44(14)45123422a +⨯=+++==, ⋯当2023n =时:20232023(12023)202320241234202322a +⨯=+++++==;12320231111a a a a +++⋅⋅⋅+222221223344520232024=+++++⨯⨯⨯⨯⨯111112()1223344520232024=+++++⨯⨯⨯⨯⨯1111111112(1)223344520232024=−+−+−+−++− 12(1)2024=− 20231012=; 故选:D .12.关于x 的方程(2)(3)x x m −−=有两个不相等的实数根1x ,212()x x x <,则下列结论一定正确的是( ) A .14m >−B .12522x x += C .当0m >时,1223x x <<< D .当0m >时,1223x x <<<【解答】解:由(2)(3)x x m −−=得2560x x m −+−=,1x ∴,2x 为2560x x m −+−=的两个不相等的实数根, ∴△2(5)4(6)0m =−−−>,解得14m >−,选项A 正确;抛物线256y x x m =−+−的对称轴为直线5522x −=−=, ∴12522x x +=,选项B 正确; 当0m >时,抛物线(2)(3)y x x =−−与直线y m =交点在x 轴上方, 抛物线开口向上,1212x x ∴<<<,选项D 正确. 故选:ABD .13.已知2x =−,代数式244x x ++的值为 3 . 【解答】解:原式2(2)x =+.当2x =−时,原式222)3=+=, 故答案为3.14.若x =3231x x x +++的值为 3 . 【解答】解:322231(1)1x x x x x x +++=+++,当x =时,原式2211213=++=+=+=. 故答案为:3.15.已知实数a ,b 满足2222(21)(21)80a b a b +++−=,试求222a b +的值.解:设222a b m +=.原方程可化为(1)(1)80m m +−=,即281m =,解得9m =±.2220a b +,2229a b ∴+=.上面的这种方法称为“换元法”,换元法是数学学习中最常用的一种思想方法,在结构较复杂的数和式的运算中,若把其中某些部分看成一个整体,并用新字母代替(即换元),则能使复杂问题简单化.请根据以上阅读材料,解决问题.已知实数x ,y 满足2222(221)()3x y x y +−+=,则22332x y +−的值为52. 【解答】解:设22x y m +=,原方程可化为(21)3m m −=,即2230m m −−=,解得11m =−,232m =, 220x y +, ∴2232x y +=, 22332x y ∴+−3322=⨯− 52=, 故答案为:52.16.若21m n +=,则2366m mn n ++的值为 3 .【解答】解:21m n +=,2366m mn n ∴++3(2)6m m n n =++316m n =⨯+36m n =+3(2)m n =+31=⨯3=,故答案为:3.17.当代数式235x x ++的值为7时,代数式23911x x +−的值为 5− .【解答】解:由题意得,2357x x ++=, 232x x ∴+=,23911x x ∴+−23(3)11x x =+−3211=⨯−611=−5=−,故答案为:5−.。

初中一年级思维逻辑训练数学题300道附答案

初中一年级思维逻辑训练数学题300道附答案

初中一年级思维逻辑训练数学题300道附答案1.一束鲜花原价8元,经过打折后只需支付6元。

打了多少折扣?答案:打了25%的折扣。

2.如果3个苹果等于2个橘子,而4个橘子等于5个香蕉,那么6个苹果等于多少个香蕉?答案:6个苹果等于10个香蕉。

3.小明的生日是星期二。

他从那一天开始数,第10天是星期几?答案:第10天是星期五。

4.在一个矩形花坛中,有12株玫瑰和8株郁金香。

如果从中随机选取一株花,那么选到玫瑰的概率是多少?答案:选到玫瑰的概率是12/20或3/5。

5.如果一个数的1/4等于12,那么这个数是多少?答案:这个数是48。

6.如果一本书的原价是40元,现在打了20%的折扣,打折后的价格是多少?答案:打折后的价格是32元。

7.一个三角形的三个内角分别是60度、70度和50度,这个三角形的最大内角是多少度?答案:这个三角形的最大内角是70度。

8.一个正方形的周长是32厘米,那么它的边长是多少厘米?答案:这个正方形的边长是8厘米。

9.如果6个苹果的重量等于4个橘子的重量,而3个橘子的重量等于2个香蕉的重量,那么6个苹果的重量等于多少个香蕉的重量?答案:6个苹果的重量等于6个香蕉的重量。

10.如果一个长方形的宽度是5厘米,面积是15平方厘米,那么它的长度是多少厘米?答案:这个长方形的长度是3厘米。

11.一个数加上8等于20,那么这个数是多少?答案:这个数是12。

12.将一个正方形分成四个小正方形,每个小正方形的边长为2cm。

如果将每个小正方形的一个角剪掉,剩下的部分拼接在一起能否组成一个等腰直角三角形?答案:不能。

剪去一个角后,剩下的部分的三个内角和为270度,而等腰直角三角形的三个内角和为180度。

13.某数的三倍减去2的结果是14,求这个数。

答案:设这个数为x,根据题意可列方程:3x - 2 = 14,解得x = 5。

14.一个矩形的长度是宽度的3倍,如果周长为32cm,求矩形的面积。

答案:设矩形的宽度为x,则长度为3x,根据题意可列方程:2(x + 3x) = 32,解得x = 4。

初中数学数学思维拓展练习题及参考答案

初中数学数学思维拓展练习题及参考答案

初中数学数学思维拓展练习题及参考答案一、选择题1. 已知正整数a、b满足a/b=2/3,且a的10倍比b的7倍小6,那么a/b等于:A. 2/9B. 4/21C. 8/21D. 6/92. 直角三角形的两条直角边分别是3cm和4cm,求斜边的长。

A. 5cmB. 7cmC. 9cmD. 12cm3. 若正方形的边长为x,则其对角线的长度是:A. xB. x√2C. 2xD. 2x√24. 一辆火车正常行驶时,从一个站到另一个站需要2小时,如果每小时增加10分钟的停站时间,则从一个站到另一个站需要2小时20分钟。

求每个站的停站时间。

A. 6分钟B. 8分钟C. 10分钟D. 12分钟5. 一辆车从A地到B地,全程120公里,前一半路程速度为60km/h,后一半路程速度为80km/h。

那么从A地到B地需要多长时间?A. 2小时B. 2.5小时C. 3小时D. 3.5小时二、填空题1. 已知a:b=5:3, b:c=4:7,求a:b:c的比值为______。

2. 一条铁路上,相邻两个车站的距离为10km,A、B两辆列车同时从两个车站出发,相对速度为30km/h,那么两辆列车相遇需要______分钟。

3. 甲车速率为60km/h,乙车速率为80km/h,两车同时从A地到B 地,甲车先出发,已知甲车比乙车晚1个小时到达B地,从A地到B 地的距离为______公里。

4. 若一个图形的内角和是900°,则这个图形是一个______。

5. 一块边长为12cm的正方形纸板,按照下图所示方式剪下4个边长为xcm的小正方形,则x的值为______。

(图形描述)三、计算题1. 甲乙两个数的和是25,差为3,求这两个数分别是多少。

2. 已知梯形的上底长度为6cm,下底长度为14cm,高度为8cm,求梯形的面积。

3. 如果一个数a加上它自己的2/5再减去它自己的1/2等于15,求这个数a是多少。

4. 一辆车以每小时60km的速度行驶,过了10分钟后又以每小时80km的速度行驶,那么这辆车行驶了多远?5. 甲、乙两位运动员进行百米赛跑,以秒为单位分别记作甲的成绩和乙的成绩,甲跑完全程的速度是乙的4倍,已知甲的成绩比乙的成绩多4秒,求甲、乙两位运动员的成绩。

七年级(下)数学思维拓展训练试题附答案

七年级(下)数学思维拓展训练试题附答案

图4 七(下)数学思维拓展训练时间:45分钟 分值:100分一、选择题(每小题5分,共25分)1.若n 为正整数,且x 2n =3,则(3x 3n )2-4(x 2)2n 的值为( ) (A )207 (B )36 (C )45 (D )217 2.一个长方形的长是2x 厘米,宽比长的一半少4厘米,若将长方形的长和宽都增加3厘米,则该长方形的面积增加为( )(A)9 (B )2x 2+x -3 (C )-7x -3 (D )9x -3 3.若(x-5)·A= x 2+x+B ,则( )(A )A=x+6,B=-30 (B )A=x -6,B=30 (C )A=x+4,B=-20 (D )A=x -4,B=204.已知6141319,27,81===c b a ,则a ,b ,c 大小关系是( )(A )a>c>b (B )a>b>c (C )a<b<c (D )b>c>a5.如图1,直线MN//PQ ,OA ⊥OB ,∠BOQ=30︒.若以点O 为旋转中心,将射线OA 顺时针旋转60︒后,这时图中30︒的角的个数是 ( )(A) 4个 (B) 3个 (C) 2个 (D) 1个二、填空题(每小题5分,共25分)6.用如图2所示的正方形和长方形卡片若干张,拼成一个边长为a+b 的正方形,需要B 类卡片_______张.7.如图3,AB ∥CD ,M 、N 分别在AB ,CD 上,P 为两平行线间一点,那么∠1+∠2+∠3= ︒.8.如图4,一把矩形直尺沿直线断开并错位,点E 、D 、B 、F 在同一条直线上,若∠ADE =125︒, 则∠DBC= ︒.9.三个同学对问题“若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是 . 10. 数学家发明了一个魔术盒,当任意数对()b a ,进入其中时,会得到一个新的数:图1O N M A B P Qa b图2 3 2 C P D 1B N A M 图3()()21--b a .现将数对()1,m 放入其中得到数n ,再将数对()m n ,放入其中后,如果最后得到的数是 .(结果要化简) 三、解答题(每小题10分,共50分)11.计算:(1+2+3+…+2013)(2+3+4+…+2012)-(1+2+3+…+2012) (2+3+4+…+2013).12.图5是按一定规律排列的方程组集合和它解的集合的对应关系图,若方程组集合中的方程组自左至右依次记作方程组1、方程组2、方程组3、……方程组n . (1)将方程组1的解填入图中;(2)请依据方程组和它的解变化的规律,将方程组n 和它的解直接填入集合图中; (3)若方程组⎩⎨⎧-=+1my x y x 的解是⎨⎧=10x ,求m 的值,并判断该方程组是否符合(2)中的规律?13.如图6,已知两组直线分别互相平行. (1)若∠1=115º,求∠2,∠3的度数;(2)题(1)中隐含着一个规律,请你根据(1)的结果进行归纳,试用文字表述出来; (3)利用(2)中的结论解答:如果两个角的两边分别平行,其中一个角是另一个角的2倍,求这两个角的大小.方程组图514.下面是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.解:设x2-4x=y.原式=(y+2) (y +6)+4 ①=y2+8y+16 ②=( y+4)2 ③=(x2-4x+4)2 ④回答下列问题:(1)该同学②到③运用了因式分解的_______.(A)提取公因式(B)平方差公式(C)两数和的完全平方公式(D)两数差的完全平方公式(2)该同学因式分解的结果是否彻底?________(填“彻底”或“不彻底”);若不彻底,请直接写出因式分解的最后结果_________.(3)请模仿以上方法对多项式(x2-2x)(x2-2x+2)+1进行因式分解.15.如下几个图形是五角星和它的变形.(1)图7中是一个五角星,则∠A+∠B+∠C+∠D+∠E= º.(2)图7中的点A向下移到BE上时,五个角的和(即∠CAD+∠B+∠C+∠D+∠E)有无变化?如图8,说明你的结论的正确性.(3)把图8中的点C向上移到BD上时,五个角的和(即∠CAD+∠B+∠ACE +∠D+∠E)有参考答案 1~5.ADABA6.27.3608.559. 510x y =⎧⎨=⎩ 10. -m 2+2m11.设1+2+3+…+2012=a ,2+3+4+…+2012=b ,则a= b+1.(1+2+3+…+2013)(2+3+4+…+2012)-(1+2+3+…+2012) (2+3+4+…+2013)= (a+2013)b -a(b+2013)=ab+2013b -ab -2013a=2013b -2013a=2013b -2013(b+1)= 2013b -2013 b -2013=-2013.12.(1)直接消元可求出⎩⎨⎧==01y x ;(2)观察第一个方程都是x+y=1,第二个方程x 前面的系数都是1,而y 前面的系数应是-n ,常数项应是n 2,这样第二个方程应是x -ny= n 2,所以第n 个方程组为⎩⎨⎧=-=+21n ny x y x .其解的规律是x 从1开始依次增1,y 从0开始依次减1,这样第n 个方程组的解为⎩⎨⎧-==n y n x 1;(3)把⎩⎨⎧-==9y 10x 代入方程x -my=16,得m=32.显然不符合(2)中的规律.13.(1)因为两组直线分别互相平行,所以由平行线的性质可得∠2=∠1=115º,∠3+∠2=180º,则∠3=180º-115º=65º;(2)如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补;(3)设其中的一个角为xº,则另一个角为2xº.因为xº+2xº=180º,所以x=60º.故这两个角分别为60º和120º. 14.(1)C(2)不彻底,( x -2)4(3)设x 2-2x=y .原式=y (y +2)+1= y 2+2y+1=( y+1)2=(x 2-2x+1)2=( x -1)4 . 15.(1)180º.(2)无变化.因为∠BAC=∠C+∠E ,∠EAD=∠B+∠D ,所以∠CAD+∠B+∠C+∠D+∠E=∠BAC+∠CAD+∠EAD=180º.(3)无变化.因为∠ACB=∠CAD+∠D ,∠ECD=∠B+∠E ,所以∠CAD+∠B+∠ACE +∠D+∠E=∠ACB+∠ACE+∠ECD=180º.。

七年级思维训练80题(含答案),拔高数学思维能力

七年级思维训练80题(含答案),拔高数学思维能力

1. 计算:七年级思维训练80题(含答案),拔高数学思维能力111113355720212023________. 2. 已知20212021202120222022202220232023202320202020+2020202120212021202220222022a b c,,,则abc ________.3. 123499910001001(1)1(1)1(1)1(1) 的值是________.4. 设11112018201920202050M,则1M的整数部分是________. 5.计算:44444444441032422324343244632458324432416324283244032452324 =________.6.已知5555284110133144□,其中□里的数字是________.7.哪些连续正整数之和为1000?试求出所有的解.8.2023减去它的12,再减去余下的13,再减去余下的14,以此类推,一直到最后减去余下的11000,最后的结果为________.9.n个正数的乘积的n次方根称为这n个数的几何平均数.喜羊羊写了4个数,这4个数的几何平均数是2048;美羊羊也写了4个数,这4个数的几何平均数是8.那么,喜羊羊和美羊羊写的这8个数的几何平均数是________.10.有下列三个命题:(1)若α,β是不相等的无理数,则αβ + α – β是无理数;(2)若α,β是不相等的无理数,则是无理数;(3)若α,β是无理数.其中正确的命题个数是________.11. 如果a ,b ,c 是三个任意整数,那么2a b ,2a c ,2b c( ). A. 都不是整数B. 至少有两个整数C. 至少有一个整数D. 都是整数12. 有理数m ,n 在数轴上的位置如图所示,在m n ,m n ,n m ,m n 中正数的个数是________.13. 如果实数a ,b ,c 在数轴上的位置如图所示,那么代数式||||a b b c 可以化简为( ).A. 2c – aB. 2a – 2bC. –aD. a14. 把4个不同的整数两两相加得到6个和,并且这6个和是5个互不相同的数:23,26,29,32和35.那么这4个整数中最大的是________.15. 从1~26这26个整数中取出两个数,选出的两个数相乘所得的积正好是剩余的24个数之和.选出的两个数分别是________和________.16. 已知a – b = 4,ab + c 2 + 4 = 0,则a + b = ________.17. 已知a 、b 、c 是实数,且13ab a b ,17bc b c ,112ac a c ,则acbc ab abc=________.18. 已知 | x | + x + y =5,x + | y |-y = 10,则 x + y 的值是________.19.________.20. 222 − 4有________个不同的质因数.21. 已知x 是实数,则(x 2-4x +3)(x 2+4x +3)的最小值是________.22. 若实数a ,b ,c 满足等式36b ,96b c ,则c 可能取的最大值为________.23. 已知x ,y 是非负整数,且满足4(2)34x y ,那么满足条件的x + y 的最大值是________.24. 若正整数x ,y ,z 满足11145x y z ,则xyz 的最大值是________.25. 231x x x 的最小值是________.26. 满足24x y y 的整数对(x ,y )有________个.27. 设a 是整数,关于x 的方程12x a 只有三个不同的整数解,求这三个解.28. 若a 为整数,则关于x 的方程(a – 1) x = a + 1的所有整数解的和是________.29. 已知x 与y 使得x + y ,x – y ,xy ,x y四个数中的三个相等,则这样的数对(x ,y )有________对.30. 若关于x ,y 的二元一次方程组 132kx y bk x y 有无穷多组解,则22k b 的值为________.31. 若[x ]表示不超过x 的最大整数,且满足方程3x + 5[x ] – 49 = 0,则3x +1=________.32. 如果关于x 的不等式组9080x a x b 的整数解仅有1,2,3,那么整数a ,b 组成的有序数对(a ,b )共有________对.33. 如果关于x 的不等式组100x x a无解,则a 的取值范围是________.34. 在1~100的自然数中与10互质的自然数共有________个.35. 已知三个质数a ,b ,c 满足133a b c ab bc ac ,则abc =________.36.已知三位数abc能被5整除,但不能被6和7整除;三位数cba能被6整除,但不能被5和7整除;三位数cab能被7整除,但不能被5和6整除,则abc =________.37.九位数ABCABCBBB能被1~17中的任意整数整除,且A,B,C是不同的数字,则九位数ABCABCBBB是________.38.乘积376×733的个位数字是________.39.四位数aabb是一个整数的平方,aabb=________.p 的不同正因数的个数不超过10,则满足题意的p 40.已知p是质数,且271的个数是________.41.如图所示有4种类型的几何体,每个几何体都是由4个单位正方体组成.选出8个同类型的几何体,把它们组合成一个2×4×4的长方体.可以完成组合的几何体有________种类型.42.已知圆环内直径为a厘米,外直径为b厘米,将50个这样的圆环一个接一个环套地连成一条锁链,那么这条锁链拉直后的长度为________厘米.43.设有一个边长为1的正三角形,记作A1(如图1),将A1的每条边三等分,以中间的线段为一边向形外作正三角形,去掉中间的线段后所得到的图形记作A2(如图2);将A2的每条边三等分,并重复上述过程,所得到的图形记作A3(如图3);再将A3的每条边三等分,并重复上述过程,所得到的图形记作A4,那么A4的周长是________.图1 图2 图344. 如图所示,AOB 是一条直线,若1:2:3:41:2:4:5 ,则2 的余角是________度.45. 如图,AB //CD ,那么∠1 –∠2 +∠3 –∠4 +∠5 =________度.46. 如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=( ).A .450°B .540°C .630°D .720°47.从一个凸n边形的纸板上剪下一个三角形,剩余的是一个内角和为2160°的多边形,则n最大是________.48.一个凸n边形的内角和小于1998°,那么n的最大值是________.49.如果一个凸多边形的内角和等于外角和的3倍,那么这个多边形的边数是().A.4B.6C.8D.10E.1250.如图所示,在△ABC中,AC=7,BC=4,D为AB中点,E为AC边上一点,且1902AED C,则CE =________.51.在△ABC中,已知BD和CE分别是两边上的中线,并且BD⊥CE,BD=4,CE=6,那么△ABC的面积是________.52.△ABC中,∠A为最小角,∠B为最大角,且2∠B = 5∠A,若∠B的最大值为m°,∠B的最小值为n°,则m + n =________.53.如图,在锐角△ABC中,高线CD,BE相交于点F,若∠A=55°,则∠BFC的度数是________度.54.如图,PQ=PR=QS,线段PR与QS相互垂直,则∠PRQ与∠PSQ度数之和是________度.55.在平行四边形ABCD中,AD = 2AB,点M是AD的中点,CE⊥AB于E.如果∠CEM = 40°,那么∠DME的值是().A.150° B.140° C.135° D.130°56.若长方形内有一点P,点P到各边的距离从小到大依次为1,2,5,6则长方形面积最小为________.57.如图所示的4×5的方格图中,过格点P的直线与方格图上、下边界相交形成的直角梯形ABCD(其中AB<CD)的面积最大是________.58. 如图,CD 是Rt △ABC 斜边AB 上的高,∠BAC 的平分线AE 交CD 于H ,交∠BCD 的平分线CF 于G .求证:HF ∥BC .59. 由8个相同的小正方体搭成的一个几何体,俯视图如下,那么这个几何体的左视图一定不是( ).60. 若n 个人完成一项工程需要m 天,则(m +n )个人完成这项工程需要( )天. A.nm mnB.m nm nC.m nmnD.2mnm n61. 一个商人用m 元(m 为正整数)买来了n 台(n 为质数)电视机,其中有两台以成本的一半价钱卖给某个慈善机构,其余的电视机在商店出售,每台盈利500元,结果该商人获得利润为5500元,则n 的最小值是________.62. 某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润率增加了8个百分点,那么经销这种商品原来的利润率是________%. (注:100% 销售价进价利润率进价)63. 小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正整数,则n 的最大值是________.64. 图书馆内,在标有号码1,2,3,4的书架上分别有书120,135,142,167本.若干天后,每个书架上都各被借出a 本书,又过了若干天,四个书架又分别被借出0,b ,c ,d 本书,并且四个书架上余下同样本数的书. 若b ,c ,d ≥1,b +c +d =a ,则两次借出书后,1号书架剩有________本书.65.五个不同的数,两两之和依次等于3,4,5,6,7,8,11,12,13,15 则这五个数的平均数是________.66.王明在早晨六点至七点之间外出晨练,锻炼时长不超过一小时,出门和回家的时候,时针与分针的夹角都是110°.则王明晨练的时间为________分钟.67.某人骑车沿直线旅行,先前进了a千米,休息了一段时间,又原路返回b千米(b﹤a),再前进c千米,则此人离起点的距离S与时间t的关系示意图是().68.某届运动会的十一天的比赛中,醒狮队拿了16块金牌,其中每天至少拿一枚金牌,则醒狮队拿金牌的不同的情况可能有________种.(假设金牌都是一样的)69.将正方形的每条边8等分,再以这些分点为顶点(不包括正方形的顶点),可以得到不同的三角形的个数是________.70.口袋中装有20个只有颜色不同其他都相同的球,其中白球9个,红球5个,黑球6个.现从中任取10个球,使得白球不少于2个但不多于8个,红球不少于2个,黑球不多于3个,那么这样取法有________种.71.将若干红黑两种颜色的球摆成一行,要求两种颜色的球都要出现,且任意中间夹有5个或10个球的两个球必为同一种颜色的球.按这种要求摆放,最多可以摆放________个球.72.在{1000,1001,1002,…,2000}中有________对相邻的数满足下列条件:每对中的两数相加时不需要进位.73.试求所有满足如下性质的四元实数组(a,b,c,d):组中的任一数都等于其余三个数中某两个数的乘积.(注:四元实数组中的数相同,顺序不同,算作同一组)74.将三位数A各个数位上的数字重新排列,得出的所有数的算术平均值等于A.这样的三位数A共有________个.75.如图,6个人围成一圈做传球游戏,每个人接到球后传给和他不相邻的某一人(如:A接到球后可以传给C、D或E),开始时,球在A的手中,若球被传递三次后又回到A,此种情况出现的概率是________.76.如图,△ABC中,D、E分别是边BC、AC的中点,从这8个图形△ABD、△ACD、△ABE、△BCE、△GAB、△GAE、△GBD、四边形CEGD中任取2个图形,取出的2个图形面积相等的概率是________.77.按如图的程序进行操作,规定:程序运行从“输入一个值x”到“结果是否>487?”为一次操作.如果操作进行四次才停止,那么x的取值范围是________.78.如图是一个正方体的平面展开图,若该正方体相对的两个面上的代数式的值相等,则x – y – z的值是________.79. 设)(n f 为正整数n (十进制)的各数位上的数字的平方之和,如14321)123(222 f .记)()(1n f n f ,))(()(1n f f n f k k ,k =1,2,3……,则2016(2016)f 的值是________.80. 有16枚棋子,都是一面黑色,另一面白色,放在4×4的正方形网格里.最初,所有棋子都是黑面朝上.规定:每次操作,将一个2×2正方形中的4枚棋子都正反面翻转一次.那么,要得到如图所示的排列,至少需要经过________次操作.1.计算:7年级思维训练80题答案1111 13355720212023________.答案:1011 20232.已知202120212021202220222022202320232023 20202020+2020202120212021202220222022 a b c,,,则abc ________.答案:13.123499910001001(1)1(1)1(1)1(1)的值是________.答案:–14.设11112018201920202050M,则1M的整数部分是________.答案:615.计算:4444444444 1032422324343244632458324 432416324283244032452324=________.答案:3736.已知5555284110133144□,其中□里的数字是________.答案:77.哪些连续正整数之和为1000?试求出所有的解.答案:198+199+200+201+202;55+56+...+70;28+29+ (52)8. 2023减去它的12,再减去余下的13,再减去余下的14,以此类推,一直到最后减去余下的11000,最后的结果为________.答案:202310009. n 个正数的乘积的n 次方根称为这n 个数的几何平均数.喜羊羊写了4个数,这4个数的几何平均数是2048;美羊羊也写了4个数,这4个数的几何平均数是8.那么,喜羊羊和美羊羊写的这8个数的几何平均数是________. 答案:12810. 有下列三个命题:(1)若α,β是不相等的无理数,则αβ + α – β是无理数; (2)若α,β是不相等的无理数,则是无理数;(3)若α,β是无理数. 其中正确的命题个数是________. 答案:011. 如果a ,b ,c 是三个任意整数,那么2a b ,2a c ,2b c( ). A. 都不是整数B. 至少有两个整数C. 至少有一个整数D. 都是整数答案:C12. 有理数m ,n 在数轴上的位置如图所示,在m n ,m n ,n m ,m n 中正数的个数是________.答案:213. 如果实数a ,b ,c 在数轴上的位置如图所示,那么代数式||||a b b c 可以化简为( ).A. 2c – aB. 2a – 2bC. –aD. a答案:C14. 把4个不同的整数两两相加得到6个和,并且这6个和是5个互不相同的数:23,26,29,32和35.那么这4个整数中最大的是________. 答案:1915. 从1~26这26个整数中取出两个数,选出的两个数相乘所得的积正好是剩余的24个数之和.选出的两个数分别是________和________. 答案:15,2116. 已知a – b = 4,ab + c 2 + 4 = 0,则a + b = ________.答案:017. 已知a 、b 、c 是实数,且13ab a b ,17bc b c ,112ac a c ,则acbc ab abc=________.答案:11118. 已知 | x | + x + y =5,x + | y |-y = 10,则 x + y 的值是________.答案:119.________.答案:20. 222 − 4有________个不同的质因数.答案:621. 已知x 是实数,则(x 2-4x +3)(x 2+4x +3)的最小值是________.答案:–1622. 若实数a ,b ,c 满足等式36b ,96b c ,则c 可能取的最大值为________. 答案:223. 已知x ,y 是非负整数,且满足4(2)34x y ,那么满足条件的x + y 的最大值是________. 答案:424. 若正整数x ,y ,z 满足11145x y z,则xyz 的最大值是________. 答案:16025. 231x x x 的最小值是________.答案:526. 满足24x y y 的整数对(x ,y )有________个.答案:627. 设a 是整数,关于x 的方程12x a 只有三个不同的整数解,求这三个解.答案:–3,1,528. 若a 为整数,则关于x 的方程(a – 1) x = a + 1的所有整数解的和是________.答案:429. 已知x 与y 使得x + y ,x – y ,xy ,x y四个数中的三个相等,则这样的数对(x ,y )有________对. 答案:230. 若关于x ,y 的二元一次方程组 132kx y bk x y 有无穷多组解,则22k b 的值为________. 答案:531. 若[x ]表示不超过x 的最大整数,且满足方程3x + 5[x ] – 49 = 0,则3x +1=________. 答案:2032. 如果关于x 的不等式组9080x a x b的整数解仅有1,2,3,那么整数a ,b 组成的有序数对(a ,b )共有________对. 答案:7233. 如果关于x 的不等式组100x x a无解,则a 的取值范围是________.答案:1a34. 在1~100的自然数中与10互质的自然数共有________个.答案:4035. 已知三个质数a ,b ,c 满足133a b c ab bc ac ,则abc =________.答案:15436. 已知三位数abc 能被5整除,但不能被6和7整除;三位数cba 能被6整除,但不能被5和7整除;三位数cab 能被7整除,但不能被5和6整除,则abc =________. 答案:67537. 九位数ABCABCBBB 能被1~17中的任意整数整除,且A ,B ,C 是不同的数字,则九位数ABCABCBBB 是________. 答案:30630600038. 乘积376 ×733 的个位数字是________.答案:739. 四位数aabb 是一个整数的平方,aabb =________.答案:774440. 已知p 是质数,且271p 的不同正因数的个数不超过10,则满足题意的p的个数是________. 答案:241. 如图所示有4种类型的几何体,每个几何体都是由4个单位正方体组成.选出8个同类型的几何体,把它们组合成一个2×4×4的长方体.可以完成组合的几何体有________种类型.答案:442. 已知圆环内直径为a 厘米,外直径为b 厘米,将50个这样的圆环一个接一个环套地连成一条锁链,那么这条锁链拉直后的长度为________厘米. 答案:49a +b43. 设有一个边长为1的正三角形,记作A 1(如图1),将A 1的每条边三等分,以中间的线段为一边向形外作正三角形,去掉中间的线段后所得到的图形记作A 2(如图2);将A 2的每条边三等分,并重复上述过程,所得到的图形记作A 3(如图3);再将A 3的每条边三等分,并重复上述过程,所得到的图形记作A 4,那么A 4的周长是________.图1 图2 图3答案:64944. 如图所示,AOB 是一条直线,若1:2:3:41:2:4:5 ,则2 的余角是________度.答案:6045.如图,AB//CD,那么∠1 –∠2 +∠3 –∠4 +∠5 =________度.答案:046.如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=().A.450° B.540° C.630° D.720°答案:B47.从一个凸n边形的纸板上剪下一个三角形,剩余的是一个内角和为2160°的多边形,则n最大是________.答案:1548.一个凸n边形的内角和小于1998°,那么n的最大值是________.答案:1349.如果一个凸多边形的内角和等于外角和的3倍,那么这个多边形的边数是().A.4B.6C.8D.10E.12答案:C50.如图所示,在△ABC中,AC=7,BC=4,D为AB中点,E为AC边上一点,且1902AED C,则CE =________.答案:5.551.在△ABC中,已知BD和CE分别是两边上的中线,并且BD⊥CE,BD=4,CE=6,那么△ABC的面积是________.答案:1652.△ABC中,∠A为最小角,∠B为最大角,且2∠B = 5∠A,若∠B的最大值为m°,∠B的最小值为n°,则m + n =________.答案:17553.如图,在锐角△ABC中,高线CD,BE相交于点F,若∠A=55°,则∠BFC的度数是________度.答案:12554.如图,PQ=PR=QS,线段PR与QS相互垂直,则∠PRQ与∠PSQ度数之和是________度.答案:13555.在平行四边形ABCD中,AD = 2AB,点M是AD的中点,CE⊥AB于E.如果∠CEM = 40°,那么∠DME的值是().A.150° B.140° C.135° D.130°答案:A56.若长方形内有一点P,点P到各边的距离从小到大依次为1,2,5,6则长方形面积最小为________.答案:3357.如图所示的4×5的方格图中,过格点P的直线与方格图上、下边界相交形成的直角梯形ABCD(其中AB<CD)的面积最大是________.答案:1258. 如图,CD 是Rt △ABC 斜边AB 上的高,∠BAC 的平分线AE 交CD 于H ,交∠BCD 的平分线CF 于G .求证:HF ∥BC .答案:证明:由∠DCB =90°-∠B =∠BAC ,知∠HCG =12∠DCB =12∠BAC =∠HAD .而∠CHG =∠AHD ,从而∠CGH =180°-(∠HCG +∠CHG )=180°-(∠HAD +∠AHD )=90°,知AG ⊥CG ,即AG ⊥CF .此时,∠FCA =90°-∠GAC =90°-∠GAF =∠CF A ,故AC =AF ,即点A 在CF 的垂直平分线AG 上.又H 在AG 上,则HC =HF ,即知∠HFC =∠FCH =∠FCB ,故HF ∥BC .59. 由8个相同的小正方体搭成的一个几何体,俯视图如下,那么这个几何体的左视图一定不是( ).答案:C60. 若n 个人完成一项工程需要m 天,则(m +n )个人完成这项工程需要( )天. A.nm mnB.m nm nC.m nmnD.2mnm n答案:A61. 一个商人用m 元(m 为正整数)买来了n 台(n 为质数)电视机,其中有两台以成本的一半价钱卖给某个慈善机构,其余的电视机在商店出售,每台盈利500元,结果该商人获得利润为5500元,则n 的最小值是________. 答案:1762. 某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润率增加了8个百分点,那么经销这种商品原来的利润率是________%. (注:100% 销售价进价利润率进价)答案:1763. 小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱将是你的n倍”;小玲对小倩说:“你若给我n元,我的钱数将是你的2倍”,其中n为正整数,则n的最大值是________.答案:864.图书馆内,在标有号码1,2,3,4的书架上分别有书120,135,142,167本.若干天后,每个书架上都各被借出a本书,又过了若干天,四个书架又分别被借出0,b,c,d本书,并且四个书架上余下同样本数的书.若b,c,d≥1,b+c+d=a,则两次借出书后,1号书架剩有________本书.答案:3665.五个不同的数,两两之和依次等于3,4,5,6,7,8,11,12,13,15 则这五个数的平均数是________.答案:4.266.王明在早晨六点至七点之间外出晨练,锻炼时长不超过一小时,出门和回家的时候,时针与分针的夹角都是110°.则王明晨练的时间为________分钟.答案:4067.某人骑车沿直线旅行,先前进了a千米,休息了一段时间,又原路返回b千米(b﹤a),再前进c千米,则此人离起点的距离S与时间t的关系示意图是().答案:C68.某届运动会的十一天的比赛中,醒狮队拿了16块金牌,其中每天至少拿一枚金牌,则醒狮队拿金牌的不同的情况可能有________种.(假设金牌都是一样的)答案:300369.将正方形的每条边8等分,再以这些分点为顶点(不包括正方形的顶点),可以得到不同的三角形的个数是________.答案:313670.口袋中装有20个只有颜色不同其他都相同的球,其中白球9个,红球5个,黑球6个.现从中任取10个球,使得白球不少于2个但不多于8个,红球不少于2个,黑球不多于3个,那么这样取法有________种.答案:1671.将若干红黑两种颜色的球摆成一行,要求两种颜色的球都要出现,且任意中间夹有5个或10个球的两个球必为同一种颜色的球.按这种要求摆放,最多可以摆放________个球.答案:1572.在{1000,1001,1002,…,2000}中有________对相邻的数满足下列条件:每对中的两数相加时不需要进位.答案:15673.试求所有满足如下性质的四元实数组(a,b,c,d):组中的任一数都等于其余三个数中某两个数的乘积.(注:四元实数组中的数相同,顺序不同,算作同一组)答案:(0,0,0,0),(1,1,1,1),(-1,-1,1,1),(-1,-1,-1,1)74.将三位数A各个数位上的数字重新排列,得出的所有数的算术平均值等于A .这样的三位数A 共有________个. 答案:1575. 如图,6个人围成一圈做传球游戏,每个人接到球后传给和他不相邻的某一人(如:A 接到球后可以传给C 、D 或E ),开始时,球在A 的手中,若球被传递三次后又回到A ,此种情况出现的概率是________.答案:22776. 如图,△ABC 中,D 、E 分别是边BC 、AC 的中点,从这 8个图形△ABD 、△ACD 、△ABE 、△BCE 、△GAB 、△GAE 、△GBD 、四边形CEGD 中任取2个图形,取出的2个图形面积相等的概率是________.答案:2777. 按如图的程序进行操作,规定:程序运行从“输入一个值x ”到“结果是否>487?”为一次操作.如果操作进行四次才停止,那么x 的取值范围是________.答案:7<x ≤1978. 如图是一个正方体的平面展开图,若该正方体相对的两个面上的代数式的值相等,则x – y – z 的值是________.答案:379. 设)(n f 为正整数n (十进制)的各数位上的数字的平方之和,如14321)123(222 f .记)()(1n f n f ,))(()(1n f f n f k k ,k =1,2,3……,则2016(2016)f 的值是________. 答案:14580. 有16枚棋子,都是一面黑色,另一面白色,放在4×4的正方形网格里.最初,所有棋子都是黑面朝上.规定:每次操作,将一个2×2正方形中的4枚棋子都正反面翻转一次.那么,要得到如图所示的排列,至少需要经过________次操作.答案:6。

初中数学思维拓展训练试卷

初中数学思维拓展训练试卷

一、选择题(每题5分,共25分)1. 下列各数中,有理数是()A. √-1B. √2C. πD. 2.52. 下列各式中,正确的是()A. 2x + 3 = 5x + 1B. 2(x + 3) = 2x + 6C. 2(x + 3) = 2x + 9D. 2(x + 3) = 2x + 123. 下列各数中,绝对值最小的是()A. -3B. -2C. -1D. 04. 已知函数f(x) = 2x - 3,若f(x) > 0,则x的取值范围是()A. x > 1.5B. x > 1C. x < 1D. x < 1.55. 在直角坐标系中,点A(2, 3)关于y轴的对称点B的坐标是()A. (-2, 3)B. (2, -3)C. (-2, -3)D. (2, 3)二、填空题(每题5分,共25分)6. 已知数列{an}中,a1 = 1,an = an-1 + 2,则数列的前10项之和为______。

7. 若等腰三角形底边长为8,腰长为6,则该三角形的面积为______。

8. 已知函数f(x) = x^2 - 4x + 3,则f(2)的值为______。

9. 在直角坐标系中,点P(3, 4)关于原点的对称点Q的坐标是______。

10. 若a、b、c是等差数列,且a + b + c = 15,则a^2 + b^2 + c^2的值为______。

三、解答题(每题15分,共45分)11. (15分)已知数列{an}中,a1 = 3,an = 2an-1 + 1,求:(1)数列{an}的通项公式;(2)数列的前n项和Sn。

12. (15分)已知等腰三角形底边长为10,腰长为8,求:(1)该三角形的周长;(2)该三角形的面积。

13. (15分)已知函数f(x) = x^3 - 6x^2 + 9x - 1,求:(1)函数f(x)的零点;(2)函数f(x)的单调区间。

四、应用题(15分)14. (15分)某工厂生产一批产品,计划每天生产120件,共需10天完成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学思维拓展题训练及答案一、选择题1、若一次函数y=kx+1与两坐标轴围成的三角形面积为3,则k 为(C ) A 、16 B 、-16 C 、±16 D 、±132、若11m n -=3,2322m mn nm mn n+---的值是(B ) A 、1.5 B 、35 C 、-2 D 、-753、判断下列真命题有(C )①任意两个全等三角形可拼成平行四边形②两条对角线垂直且相等的四边形是正方形③四边形ABCD ,AB=BC=CD ,∠A=90°,那么它是正方形④在同一平面内,两条线段不相交就会平行⑤有一条对角线平分一个内角的平行四边形是菱形 A 、②③ B 、①②④ C 、①⑤ D 、②③④4、如图,矩形ABCD 中,已知AB=5,AD=12,P 是AD 上的动点,PE ⊥AC ,E,PF ⊥BD 于F,则PE+PF=(B ) A 、5 B 、6013 C 、245 D 、55125、在直角坐标系中,已知两点A (-8,3)、B (-4,5)以及动点C (0,n )、D(m,0),则当四边形ABCD 的周长最小时,比值为 mn(B )A 、-23B 、-32C 、-34D 、34二、填空题6、当x= 负数 时,||3x x -与3x x-互为倒数。

9、已知x 2-3x+1=0,求(x-1x )2= 57、一个人要翻过两座山到另外一个村庄,途中的道路不是上山就是下山,已知他上山的速度为v ,下山的速度为v ′,单程的路程为s .则这个人往返这个村庄的平均速度为 (2vv v v '+')8、将点A (4,0)绕着原点O 顺时针方向旋转30°角到对应点A ',则点A '的坐标是 (23,2)9、菱形ABCD 的一条对角线长为6,边AB 的长是方程(X-3)(X-4)=0的解,则菱形ABCD 的周长为 1610、△ABC 中,∠A=90°,AB=AC ,BD 是△ABC 的中线,△CDB 内以CD 为边的等腰直角三角形周长是 (222AB +或122AB +)11235...11231511211321④③②①11. 如图,边长为6的菱形ABCD 中,∠DAB=60°,AE=BE ,F 是AC•上一动点,EF+BF 的最小值为 (33) 12、如图,边长为3的正方形ABCD 顺时针旋转30°,得上图,交DE 于D ’,阴影部分面积是 (933-)13、如图,已知四边形ABCD 中,AC 和BD 相交于点O , 且∠AOD =90°,若BC =2AD ,AB =12,CD =9,四边形ABCD 的周长是 (215+)14、有这样一组数:1,1,2,3,5…,现以这组数据的数作为正方形边长的长度构造如下正方形;再分别从左到右取2个、3个、4个、5个正方形拼成如下矩形记为①、②、③、④.第⑩个矩形周长是 46615、如图,在直线y=-33x+1与x 轴、y 轴交于点A 、B ,以线段AB 为直角边在第一象限内作等腰直角△ABC ,∠BAC=90°,第二象限内有一点P (a,12 ),且△ABP 的面积与△ABC 的面积相等,则a= (342-+) 三、解答题16、如图,已知矩形ABCD ,延长CB 到E ,使CE=CA ,连结AE 并取中点F ,连结AE 并取中点F ,连结BF 、DF ,求证BF ⊥DF 。

证明:连结BD 交AC 于O ,则在△AEC 中,由中位线定理,得FO =(1/2)CE 又因为已知CE=AC, 且从已知矩形ABCD 得到AC=BD, 所以FO =(1/2)BD, 从而有FO=BO,FO=DO,于是有∠OFB=∠OBF, ∠OFD=∠ODF, 又△BFD 的三个内角和是180°,因此∠BFD=∠OFB+∠OFD=1/2(∠OFB+∠OFD+∠OBF+∠ODF)=1/2×180°=90°,第17题所以△BFD 是直角三角形, 所以BF ⊥DF 。

17、如图,已知在等腰ABCD 中,AD=x ,BC=y,梯形高为h (1)用含x 、y 、h 的关系式表示周长C (2)(AD=8,BC=12,BD=102,求证∠DCA+∠BAC=90°解:(1)C =2212()4x y y x h ++-+(2)作DE ∥AE ,交BC 延长线于点E ,则BD=AC=DE=102,BE =BC+CE =BC+AD =20, 从而有222BD DE BE +=, 由勾股定理得到∠BDE =90°。

此外,由DE ∥AE 得到∠DCA=∠CDE,由△ABC ≌△DCB 得到∠BAC=∠CDB, 所以∠DCA+∠BAC=∠CDE+∠CDB=90°18、如图,过原点的直线l 1:y=3x ,l 2:y=12x 。

点P 从原点O 出发沿x 轴正方向以每秒1个单位长度的速度运动。

直线PQ 交y 轴正半轴于点Q ,且分别交l 1、l 2于点A 、B 。

设点P 的运动时间为t 秒时,直线PQ 的解析式为y=―x+t 。

△AOB 的面积为S l (如图①)。

以AB 为对角线作正方形ACBD ,其面积为S 2(如图②)(1)求S l 关于t 的函数解析式; (2)求S 2关于t的函数解析式; 解:因Q 是动点还是定点未告知,所以无解.19、如图,菱形OABC 边长为4cm ,∠AOC=60度,动点P 从O 出发,以每秒1cm 的速度沿O —A —B 运动,点P 出发2秒后,动点Q 从O 出发,在OA 上以每秒1cm 的速度,在AB 上以每秒2cm 的速度沿O —A —B 运动,过P 、Q 两点分别作对角线AC 的平行线,设P 点运动的时间为x 秒,这两条平行线在菱形上截出的图形(阴影部分)的周长为y cm,请回答下问题。

(1)当x=3时,y 是多少?D C②l 2l 1yxS 2OQPBA①l 2l 1yxS 1OQPBA(2)求y 与x 的关系式, ,并画出此函数的图象.。

(注意取值范围)分析:(1)当x=3时,可得所截图形为等腰梯形,然后可得PQ=EF ,FQ=OQ=OF=1,PE=OP=OE=3,可求出y 值.(2)根据题意可分四种情况进行分析①当0≤x≤2时,y=3OP ,即y=3x ; ②当2≤x≤4时,y=3PO-QO=3x-•(x-2)=2x+2;③当4≤x≤6时,y=2(OA+AP )-QO+BP=2x-(x-2)+(8-x )=10;④当6≤x≤8时,AQ=2[(x-2)-4]=2x-12,y=3[(AB-AQ )]-PB=3[4-(2x-12)]-(8-x )=-5x+40.解答:(1)当x=3时,所截图形为等腰梯形,PQ=EF=2 FQ=OQ=OF=1,PE=OP=OE=3 故y=2+2+1+3=8 (3分)(2)根据题意可得①当0≤x≤2时,y=3OP ,即y=3x ; ②当2≤x≤4时,y=3PO-QO=3x-•(x-2)=2x+2;③当4≤x≤6时,y=2(OA+AP )-QO+BP=2x-(x-2)+(8-x )=10;④当6≤x≤8时,AQ=2[(x-2)-4]=2x-12,y=3[(AB-AQ )]-PB=3[4-(2x-12)]-(8-x )=-5x+40.y 与x 的关系式是,此函数的图象是(图象是一分段函数图象)20. 已知(1)A m -,与(233)B m +,是反比例函数ky x=图象上的两个点. (1)求k 、m 的值;(2)若点(10)C -,,则在反比例函数ky x=图象上是否存在点D ,使得以A B C D ,,,四点为顶点的四边形为梯形?若存在,求出点D 的坐标;若不存在,请说明理由. 解;答案与方法如下,过程略 (1)k=3 m=23- (2)存在,直线AB 3C 与直线AB 平行的直线方程是3(1)x -,与反比例函数23联立成方程组解得x=-2,y=3-或者x=1,y=23D 的坐标是(2,3-1,23。

21直线10-=x y 与x 轴、y 轴分别交于A 、B 两点,点P 从B 点出发,沿线段BA 匀速运动至A 点停止;同时点Q 从原点O 出发,沿x 轴正方向匀速运动 (如图1),且在运动过程中始终保持PO =PQ ,设OQ =x . (1)试用x 的代数式表示BP 的长.(2)过点O 、Q 向直线AB 作垂线,垂足分别为C 、D (如图2),求证:PC =AD .(3)在(2)的条件下,以点P 、O 、Q 、D 为顶点的四边形面积为S ,试求S 与x 的函数关系式,并写出自变量x 的范围.解:(1)BP=22x x = (2)因为102PCBC BP =-=⨯-=()(102)22AD OA OQ x =-⨯=-⨯=, ,所以 AD=PC (3)11()22PCO CDQO SS S PC OC QD OC CD =+=⨯⨯++⨯⨯1()22PC QD AD =++⨯⨯ 其中PC=QD=AD 设都等于t ,则由(2)知t=,所以222211]255252222S t t t x x =+-⨯=-++=-++22 。

(本题满分8分)(1)如图7,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OABxxBA PC DB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC .求∠AEB 的大小;解: ∵∠AEB 是△DEA 的外角 即∠AEB=∠EDA+∠EAD∵OC=OD,OA=OB, ∠COA=∠BOD,∴△COA ≌△BOD (SAS),∴∠CAO=∠DBO ∴∠AEB=∠EDA+∠DBO又∵∠BOA 是△BDO 的外角 即∠BOA=∠EDA+∠DBO∴∠AEB=∠EDA+∠DBO=∠BOA ∴∠AEB=60°(2)如图8,ΔOAB 固定不动,保持ΔOCD 的形状和大小不变,将ΔOCD 绕着点O 旋转(ΔOAB 和ΔOCD 不能重叠),求∠AEB 的大小.解:方法类似于(1) ,故略去解法。

23.已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150.求证:△PBC 是正三角形.证明如下。

首先,PA=PD ,∠PAD=∠PDA=(180°-150°)÷2=15°,∠PAB=90°-15°=75°。

在正方形ABCD 之外以AD 为底边作正三角形ADQ , 连接PQ , 则∠PDQ=60°+15°=75°,同样∠PAQ=75°,又AQ=DQ,,PA=PD ,所以△PAQ ≌△PDQ , 那么∠PQA=∠PQD=60°÷2=30°,在△PQA 中,∠APQ=180°-30°-75°=75°=∠PAQ=∠PAB ,于是PQ=AQ=AB , 显然△PAQ ≌△PAB ,得∠PBA=∠PQA=30°,PB=PQ=AB=BC ,∠PBC=90°-30°=60°,所以△ABC 是正三角形。

相关文档
最新文档