05年复变函数和数理方程
05年数学三大纲

2005年全国硕士研究生入学统一考试数学三考试大纲考试科目微积分、线性代数、概率论考试时间 3小时总分 150分微积分一、函数、极限、连续考试内容函数的概念及其表示法 函数的有界性、单调性、周期性和奇偶性 反函数、复合函数、隐函数、分段函数 基本初等函数的性质及其图形 初等函数 简单应用问题函数关系的建立。
数列极限与函数极限的定义以及它们的性质 函数的左极限和右极限 无穷小和无穷大的概念及关系 无穷小的性质及无穷小的比较 极限四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限,)11(lim ,1sin lim 0e x x xx x x =+=∞→→函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立简单应用问题函数关系。
2.了解函数的有界性、单调性、周期性和奇偶性.3. 理解复合函数及分段函数的概念,了解隐函数及反函数的概念。
4.掌握基本初等函数的性质及其图形,理解初等函数的概念.5. 了解数列极限和函数极限(包括坐极限和右极限)的概念.6. 理解无穷小的概念和基本性质,掌握无穷小的比较方法,了解无穷大的概念及其与无穷小的关系.7. 了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,会应用两个重要极限.8. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理)及其简单应用.二、一元函数微分学考试内容导数的概念 导数的几何意义和经济意义 函数的可导性与连续性之间的关系 导数的四则运算 基本初等函数的导数 复合函数、反函数和隐函数的导数 高阶导数 微分的概念和运算法则 一阶微分形式不变性 中值定理 洛必达(L'Hospital)法则 函数单调性函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值和最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际和弹性的概念).2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则;掌握反函数与隐函数求导法,了解对数求导法.3.了解高阶导数的概念,会求简单函数的高阶导教.4.了解微分的概念,导数与微分之间的关系,以及一阶微分形式的不变性,会求函数的微分.5. 理解罗尔(Rolle)定理和拉格朗日(Lagrange)中值定理,了解柯西(Cauchy)中值定理,掌握这三个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法及简单应用,掌握函数极值、最大值和最小值的求法,会求解较简单的应用题.8.会用导数判断函数图形的凹凸性,会求函数图形的拐点和渐近线.9.掌握函数作图的基本步骤和方法,会作简单函数的图形.三、一元函数积分学考试内容原函数与不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿一莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法广义积分的概念及计算定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式,以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积和旋转体的体积,会利用定积分求解一些简单的经济应用问题.4.了解广义积分的概念,会计算广义积分。
【免费下载】数学物理方法讲义

0
ih t
复数
ቤተ መጻሕፍቲ ባይዱ
h2 2m
x, y, z, t
1. 数的概念的扩充
正整数(自然数) 1,2,…
负数
整数
运算规则 +,-,×,÷, 2 ,
- 1 2 1
÷2
2
x2
0,-1,-2,…
…,-2,-1,0,1,2,…
2
y 2
1 0.5 1 0.333
有理数(分数) 整数、有限小数、无限循环小数
无理数 无限不循环小数
实 数 有理数、无理数
虚数 复数
2. 负数的运算符号
2 1.414
1 i yi
实数、虚数、实数+虚数
x2 1
x i
3
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
数学物理方法讲义

《数学物理方法》(Methods of MathematicalPhysics)《数学物理方法》是物理类及光电子类本科专业学生必修的重要基础课,是在《高等数学》课程基础上的一门重要的应用数学类课程,为专业课程的深入学习提供所需的数学方法及工具。
课程内容:复变函数(18学时),付氏变换(20学时),数理方程(26学时)第一篇复变函数(38学时)绪论第一章复变函数基本知识4学时第二章复变函数微分4学时第三章复变函数积分4学时第四章幂级数4学时第五章留数定理及应用简介2学时第六章付里叶级数第七章付里叶变换第八章拉普拉斯变换第二篇数学物理方程(26学时)第九章数理方程的预备知识第十章偏微分方程常见形式第十一章偏微分方程的应用绪 论含 义使用数学的物理——(数学)物理 物理学中的数学——(应用)数学Mathematical Physics方 程1=x{222111c y b x a c y b x a =+=+()t a dtdx= ⎰=)(t a xdt常微分方程0222=⎪⎪⎭⎫ ⎝⎛+x dt x d ω ()C t A x +=ωcos偏微分方程——数学物理方程0222222=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂z y x ψψψ ()z y x ,,ψψ=12=x()ψψψψψz y x U zy x m h t h i ,,22222222+⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂-=∂∂()t z y x ,,,ψψ=复 数1. 数的概念的扩充正整数(自然数) 1,2,…运算规则 +,-,×,÷,()2,- 121-=-负 数 0,-1,-2,…整 数 …,-2,-1,0,1,2,…÷ 5.021= 333.031=有理数(分数) 整数、有限小数、无限循环小数414.12=无理数 无限不循环小数 实 数 有理数、无理数i =-1 虚 数y i复 数 实数、虚数、实数+虚数 yi x y x +,,2. 负数的运算符号12-=xi x ±=i 虚数单位,作为运算符号。
05年版刘建亚复变函数与积分变换课描

05年版刘建亚复变函数与积分变换课描【原创实用版】目录一、课程概述二、课程的历史沿革三、课程的目标与定位四、课程内容与教学方法五、课程的评价与影响六、总结正文一、课程概述复变函数与积分变换课程是一门以复数函数为基础,研究复变函数的积分和变换的学科。
该课程主要面向自动化、电子信息、机械设计制造、给水排水工程等专业的学生,是这些专业的基础课程之一。
二、课程的历史沿革复变函数与积分变换课程在我国已有多年的历史,经过不断的发展和完善,已经成为了一门具有特色的课程。
2007 年,该课程被评为山东大学精品课程,同年被评为山东省精品课程,2010 年被评为国家精品课程,2019 年被评为山东省一流课程。
三、课程的目标与定位复变函数与积分变换课程旨在培养学生掌握复变函数的基本概念、性质和运算方法,以及积分变换的基本原理和应用技巧。
该课程不仅与高等数学有着密切的联系,而且与工程力学、电工技术、电子技术和自动控制等专业课程有着重要的联系。
四、课程内容与教学方法复变函数与积分变换课程主要包括复数函数、解析函数、调和函数、共形映射、积分变换、逆变换等内容。
教学方法主要包括课堂讲解、案例分析、练习题和作业等。
五、课程的评价与影响复变函数与积分变换课程在学生中具有较高的评价,许多学生认为该课程对提高自己的数学素养和专业技能有很大帮助。
此外,该课程的优秀教学质量也得到了社会的广泛认可,对学生的就业和发展产生了积极的影响。
六、总结复变函数与积分变换课程是一门具有特色的基础课程,对于培养学生的数学素养和专业技能有着重要的作用。
第1页共1页。
2005年全国硕士研究生入学考试数学二考试大纲.doc

2005年全国硕士研究生入学考试数学二考试大纲数学二[考试科目]高等数学、线性代数高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数简单应用问题的函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小和无穷大的概念及其关系无穷小的性质及无穷小的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系式。
2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的基本概念。
5.理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容。
导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线基本初等函数的导数导数和微分的四则运算复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数的极值函数单调性的判别函数图形的凹凸性、拐点及渐近线函数图形的描绘函数最大值和最小值弧微分曲率的概念曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的n阶导数.4. 会求分段函数的一阶、二阶导数.5.会求隐函数和由参数方程所确定的函数以及反函数的导数.6.理解并会用罗尔定理、拉格朗日中值定理和泰勒定理,了解柯西中值定理.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用.8.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.掌握用洛必达法则求未定式极限的方法.10.了解曲率和曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿一莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分广义积分定积分的应用考试要求1.理解原函数概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式及简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式.5.了解广义积分的概念,会计算广义积分.6.了解定积分的近似计算法.7.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力)及函数的平均值.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数、隐函数求导法二阶偏导数多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算考试要求1.了解多元函数的概念,了解二元函数的几何意义。
大学英语课程分层次改革方案

大学英语课程分层次改革方案非专业类数学课程分层次改革方案一、指导思想为了提高非数学专业类大学本科生的数学素质,加强数学基础知识的掌握、数学思维方法与工作能力的训练,本轮非数学类改革指导思想为:守正创新,协调发展。
即在坚持被长期的教学实践所证明的正确教学内容、方案和体系基础上,通过优化课程体系设置,创新教学方式方法,提高大学生的数学素质和综合应用能力。
二、改革思路1.通识教育课程:基于调查研究,根据学校实际,逐步完善并建设该类课程。
2.通修课程:《大学数学》的教学可以分为下列五个层次:第一层次:大学数学E:三个学期(6学时/周)共计12个学分。
(1)课程名称:微积分Ⅰ,(第一层次Ⅰ,6学时/周,4学分)。
开课时间:每个学年的第一学期。
教学内容:一元微积分学,空间解析几何。
(2)课程名称:微积分Ⅱ,(第一层次Ⅱ,6学时/周,4学分)。
开课时间:每个学年的第二学期。
教学内容:多元微积分学、级数、微分方程初步。
(3)课程名称:线性代数,(第一层次Ⅲ,4学时/周,4学分)。
开课时间:每个学年的第二学期。
教学内容:矩阵、线性(空间、方程组、变换)、欧氏空间、二次型。
第二层次:大学数学D:二个学期(5学时/周)共10个学分。
(1)课程名称:微积分Ⅰ,(第二层次Ⅰ,5学时/周,5学分)。
开课时间:每个学年的第一学期。
教学内容:一元微积分学、多元微分学。
(2)课程名称:微积分Ⅱ,(第二层次Ⅱ,5学时/周,5学分)。
开课时间:每个学年的第二学期。
教学内容:多元积分学、级数、微分方程初步。
第三层次:大学数学C:二个学期(4学时/周)共8个学分。
(1)课程名称:微积分Ⅰ,(第三层次Ⅲ,4学时/周,4学分)。
开课时间:每个学年的第一学期。
教学内容:一元微积分学。
(2)课程名称:微积分Ⅱ,(第三层次Ⅱ,4学时/周,4学分)。
开课时间:每个学年的第二学期。
教学内容:多元微积分学。
第四层次:大学数学B:一个学期(4学时/周)共4个学分。
2005年高考数学考试大纲解读

3.知识强调本质、综合
大纲对知识的考查虽然保持了04版大纲的要求,但
对知识的考查价值正处于不断认识和研究的过程之 中。[文1] (1)04版大纲首次将数学思想和方法列入知识的范畴, 这是对知识考查价值的最新认识,必将在下一阶段 的命题中保持。认知心理学认为,知识分为陈述性 知识、程序性知识。前者静态的,被激活后往往只 是信息的再现,而后者“是怎样进行认知的知识”, 主要是数学思想和数学方法,教材中对它很少直接 表述,而只是蕴含其中,在学习陈述性知识的过程 中潜移默化地获取。程序性知识是动态的,被激活 后是信息的转移与迁移。是创造性思维的基础。
对比即知,只要证:
A
x1 3 x1 2 ,即:2 x1 x2 5( x1 x2 ) 12 0 x2 3 2 x2
将韦达定理代入即可。
| PH | | AP | | BP | | BP | e | PF | | QN | | AQ | | CQ | | CQ | e | QF |
1.1.2运算能力的界定
运算能力,保留“运算能力是思维能力与 运算技能的结合”。新增“运算能力包 括分析运算条件、探究运算方向、选择 运算公式、确定运算程序等一系列过程 中的思维能力,也包括在实施运算过程 中遇到障碍而调整运算的能力”。其实 是对运算能力要求的进一步明确,即: 特别强调思维能力在运算过程中所起的 作用。
4.2少数内容稍有变化
(1)“三角函数”的第(7)点要求中,删去了 “能利用计算器解决三角形的计算问题”。 (2)“立体几何”的第(3)点要求中,三垂线 定理及其逆定理由了解层次,提高为掌握。 (3)“直线与圆的方程”的第(1)点的要求中 增加“理解直线的倾斜角的概念”。 (4)将“了解函数的奇偶性”从三角函数中调整 回函数内容之中,明确要求“掌握判断一些简 单函数奇偶性的方法”。
05年《高等数学》试题及答案

2005年河南省普通高等学校 选拔优秀专科生进入本科阶段学习考试高等数学 试卷题号 一 二 三 四 五 六 总分 核分人 分数一、单项选择题(每小题2分,共计60分)在每小题的四个备选答案中选出一个正确答案,并将其代码写在题 干后面的括号内。
不选、错选或多选者,该题无分.1.函数xx y --=5)1ln(的定义域为为 ( )A. 1>xB.5<xC.51<<xD. 51≤<x解:C x x x ⇒<<⇒⎩⎨⎧>->-510501.2.下列函数中,图形关于y 轴对称的是 ( ) A .x x y cos = B. 13++=x x yC. 222x x y --=D. 222xx y -+=解:图形关于y 轴对称,就是考察函数是否为偶函数,显然函数222xx y -+=为偶函数,应选D.3. 当0→x 时,与12-x e 等价的无穷小量是 ( )A. xB.2xC. x 2D. 22x解: ⇒-x e x~12~12x ex -,应选B.4.=⎪⎭⎫ ⎝⎛++∞→121lim n n n ( ) A. e B. 2e C. 3e D. 4e解:2)1(2lim2)1(22121lim 21lim 21lim e n n n n n n n nn n n n n n =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛++∞→+⋅∞→+∞→∞→,应选B.5.设⎪⎩⎪⎨⎧=≠--=0,0,11)(x a x xxx f 在0=x 处连续,则 常数=a ( ) A. 1 B. -1 C. 21 D. 21-解:21)11(1lim )11(lim 11lim)(lim 0000=-+=-+=--=→→→→x x x x x x x f x x x x ,应选C. 得分 评卷人6.设函数)(x f 在点1=x 处可导,且21)1()21(lim0=--→h f h f h ,则=')1(f ( )A. 1B. 21-C. 41D. 41-解:41)1(21)1(22)1()21(lim 2)1()21(lim020-='⇒='-=----=--→-→f f h f h f h f h f h h ,应选D. 7.由方程y x e xy +=确定的隐函数)(y x 的导数dydx为 ( )A.)1()1(x y y x --B.)1()1(y x x y --C.)1()1(-+y x x yD.)1()1(-+x y y x 解:对方程y x e xy +=两边微分得)(dy dx e ydx xdy y x +=++,即dy x e dx ey y x yx )()(-=-++,dy x xy dx xy y )()(-=-,所以dy dx )1()1(x y y x --=,应选A. 8.设函数)(x f 具有任意阶导数,且2)]([)(x f x f =',则=)()(x f n ( )A. 1)]([+n x f nB. 1)]([!+n x f nC. 1)]()[1(++n x f nD. 1)]([)!1(++n x f n解:423)]([3)()(32)()]([2)()(2)(x f x f x f x f x f x f x f x f !='⋅='''⇒='='',⇒ =)()(x f n 1)]([!+n x f n ,应选B.9.下列函数在给定的区间上满足罗尔定理的条件是 ( ) A.]1,1[,1)(2--=x x f B.]1,1[,)(-=-x xe x f C.]1,1[,11)(2--=xx f D .]1,1[|,|)(-=x x f 解:由罗尔中值定理条件:连续、可导及端点的函数值相等来确定,只有]1,1[,1)(2--=x x f 满足,应选A.10.设),(),12)(1()(+∞-∞∈+-='x x x x f ,则在)1,21(内,)(x f 单调 ( ) A.增加,曲线)(x f y =为凹的 B.减少,曲线)(x f y =为凹的 C.增加,曲线)(x f y =为凸的 D.减少,曲线)(x f y =为凸的解: 在)1,21(内,显然有0)12)(1()(<+-='x x x f ,而014)(>-=''x x f ,故函数)(x f 在)1,21(内单调减少,且曲线)(x f y =为凹的,应选B. 11.曲线xe y 1-= ( ) A. 只有垂直渐近线 B. 只有水平渐近线C. 既有垂直渐近线,又有水平渐近线,D. 无水平、垂直渐近线解:0lim ;11lim 0=⇒∞==⇒=-→±∞→x y y y x x ,应选C. 12.设参数方程为⎩⎨⎧==t b y t a x sin cos ,则二阶导数=22dx yd ( ) A.t a b 2sin B.ta b32sin -C.t a b 2cos D.t t a b22cos sin - 解:dxdt t a t b t a t b dx y d t a t b x y dx dy t x t t ⨯'⎪⎭⎫ ⎝⎛-='⎪⎭⎫ ⎝⎛-=⇒-=''=sin cos sin cos sin cos 22ta b t a t a b 322sin sin 1sin -=-⨯=,应选B. 13.若⎰+=C e dx ex f xx11)(,则=)(x f ( )A. x 1-B. 21x -C. x 1D. 21x解:两边对x 求导 22111)()1()(xx f x e e x f x x -=⇒-⨯=,应选B.14. 若⎰+=C x F dx x f )()( ,则⎰=dx x xf )(sin cos ( )A.C x F +)(sinB.C x F +-)(sinC.C x F +)(cosD.C x F +-)(cos 解:⎰⎰+==C x F x d x f dx x xf )(sin )(sin )(sin )(sin cos ,应选A.15.下列广义积分发散的是 ( )A.⎰+∞+0211dx x B.⎰-10211dx x C.⎰+∞e dx x x ln D.⎰+∞-0dx e x解:2arctan 11002π==+∞++∞⎰x dx x ;2arcsin 1110102π==-⎰x dx x; ∞==+∞∞+⎰eex dx x x 2)(ln 21ln ;10=-=+∞-+∞-⎰xx e dx e ,应选C.16.=⎰-11||dx x x ( )A.0B.32 C.34 D.32- 解:被积函数||x x 在积分区间[-1,1]上是奇函数,应选A. 17.设)(x f 在],[a a -上连续,则定积分⎰-=-aadx x f )( ( )A.0B.⎰adx x f 0)(2 C.⎰--aadx x f )( D.⎰-aadx x f )(解:⎰⎰⎰⎰-----===-===-aaa aa aaaut dx x f du u f u d u f dx x f )()()()()(,应选D.18.设)(x f 的一个原函数是x sin ,则='⎰xdx x f sin )( ( )A.C x x +-2sin 2121 B.C x x ++-2sin 4121 C.x 2sin 21 D.C x +-2sin 21 解: x x f x x f x f x sin )(cos )()()(sin -='⇒=⇒='C x x dx x xdx xdx x f ++-=--=-='⎰⎰⎰2sin 412122cos 1sin sin )(2,应选B. 19.设函数)(x f 在区间],[b a 上连续,则不正确的是 ( )A.⎰ba dx x f )(是)(x f 的一个原函数 B.⎰xadt t f )(是)(x f 的一个原函数C.⎰a x dt t f )(是)(x f -的一个原函数D.)(x f 在],[b a 上可积解: ⎰badx x f )(是常数,它的导数为零,而不是)(x f ,即⎰ba dx x f )(不是)(x f 的原函数 ,应选A.20.直线22113+=-=-z y x 与平面01=+--z y x 的关系是 ( ) A. 垂直 B.相交但不垂直 C. 直线在平面上 D. 平行 解:n s n s⊥⇒--=-=)1,1,1{},2,1,1{ ,另一方面点)2,0,3(-不在平面内,所以应为平行关系,应选D..21.函数),(y x f z =在点),(00y x 处的两个偏导数x z ∂∂和yz ∂∂存在是它在该点处可微的 ( )A.充分条件B.必要条件C.充要条件D.无关条件解:两个偏导数存在,不一定可微,但可微一定有偏导数存在,因此为必要条件,应选B.22.设yxz 2ln= ,则=)2,1(dz ( ) A.dx x y 2 B.dy dx 2121- C.dy dx 21- D.dy dx 21+ 解:dy ydx x dz y x y x z 11ln 2ln 2ln-=⇒-==dy dx dz 21)2,1(-=⇒,应选C. 23.函数1),(22+-+++=y x y xy x y x f 的极小值点是 ( ) A.)1,1(- B.)1,1(- C. )1,1(-- D. )1,1(解:)1,1(),(012012-=⇒⎪⎪⎩⎪⎪⎨⎧=-+=∂∂=++=∂∂y x y x yz y x xz,应选B.24.二次积分⎰⎰22),(x dy y x f dx 写成另一种次序的积分是 ( ) A. ⎰⎰402),(y dx y x f dy B. ⎰⎰400),(ydx y x f dyC.⎰⎰422),(xdx y x f dy D. ⎰⎰402),(ydx y x f dy解:积分区域}2,40|),{(}0,20|),{(2≤≤≤≤=≤≤≤≤=x y y y x x y x y x D ,应选A. 25.设D 是由上半圆周22x ax y -=和x 轴所围成的闭区域,则⎰⎰=σDd y x f ),(( )A.⎰⎰πθθθ2020)sin ,cos (ardr r r f d B.⎰⎰πθθθ2020)sin ,cos (adr r r f d C.⎰⎰πθθθθ20cos 20)sin ,cos (a rdr r r f d D.⎰⎰πθθθθ20cos 20)sin ,cos (a dr r r f d解:积分区域在极坐标下可表示为:}θc o s 20,2πθ0|)θ,{(a r r D ≤≤≤≤=,从而⎰⎰=σDd y x f ),(⎰⎰πθθθθ20cos 20)sin ,cos (a rdr r r f d ,应选C.26.设L 为抛物线2x y =上从)0,0(O 到)1,1(B 的一段弧,则=+⎰Ldy x xydx 22( )A. -1B.1C. 2D. -1 解:L :,2⎩⎨⎧==xy x x x 从0变到1 ,14222104131332===+=+⎰⎰⎰xdx x dx x dx x dy x xydx L,应选B.27.下列级数中,条件收敛的是 ( )A .∑∞=+-11)1(n nn n B .∑∞=-1321)1(n nnC .∑∞=-121)1(n n n D .∑∞=+-1)1()1(n n n n解:∑∞=+-11)1(n nn n 发散, ∑∞=-121)1(n n n 和∑∞=+-1)1()1(n n n n 绝对收敛,∑∞=-1321)1(n n n是收敛的,但∑∞=1321n n 是32=p 的级数发散的,从而级数∑∞=-1321)1(n n n条件收敛,应选B. 28. 下列命题正确的是 ( ) A .若级数∑∞=1n nu与∑∞=1n nv收敛,则级数21)(n n nv u+∑∞=收敛B . 若级数∑∞=1n nu与∑∞=1n nv收敛,则级数)(212n n n v u+∑∞=收敛C . 若正项级数∑∞=1n nu与∑∞=1n nv收敛,则级数21)(n n nv u+∑∞=收敛D . 若级数∑∞=1n nn vu 收敛,则级数∑∞=1n nu与∑∞=1n n v都收敛解:正项级数∑∞=1n nu与∑∞=1n nv收敛⇒∑∞=12n nu与∑∞=12n nv收敛,而)(2)(222n n n n v u v u +≤+,所以级数21)(n n n v u +∑∞=收敛 ,应选C 。