数学物理方程与特殊函数课后答案
数学物理方程答案(全)

利用微分中值定理可得
T
(
x)ux
x
utt
将T (x) 的表达式代入可得
utt g(l x)uxx gux
2.长为 L,均匀细杆,x=0 端固定,另一端沿杆的轴线方向拉长 b 静止后(在弹性限 度内)突然放手,细杆做自由振动。试写出振动方程的定解条件。
T(x,t) T(x+dx,t)
界条件之一:
(1)一端(x=0)绝热,另一端(x=L)保持常温 0
解:边界条件 ux x0 0, u xL u0
(2)两端分别有热流密度 q1 和 q2 进入
解:边界条件 ux
x0
g1 k
,ux
xL
g2 k
(3)一端(x=0)温度为 1(t) ,另一端(x=L)与温度为 (t) 的介质有热交换
F ( x,
t)dtdxS
u x
cSdtdx
k
2u x2
F (x,t)
u x
c
ut
k c
uxx
F ( x, t ) c
ut
k c
uxx
(
j)2 c
习题 2.3
1.半径为
r0
的球面,在的 0
2
半球面上电势为
0
,在
2
的半球面上
电势为 0 。求空间各点应满足的泛定方程与定解条件。
解:泛定方程
4.
由静电场
Gauss
定理
s
E
dS
1 0
V
dV
,求证:
E
0
,并由此导出
静电势 u 所满足的 Poisson 方程。
数学物理方程第一章、第二章习题全解

18
数学物理方程与特殊函数导教·导学·导考
2δρ ut ( x , 0 ) = k ( c - δ≤ x ≤ c + δ) 在这个小段外,初速度仍为零, 我们想得到的是 x = c 处受到冲 击的初速度 , 所 以 最后 还 要 令 δ→ 0。此 外 , 弦是 没 有 初 位 移的 , 即 u( x, 0) = 0 , 于是初始条件为
3. 有一均匀杆 , 只要杆中任一小段有纵向位移或速度 , 必导致 邻段的压缩或伸长, 这种伸缩传开去, 就有纵波沿着杆传播, 试推导 杆的纵振动方程。
解 如图 1 9 所示, 取杆
长方向为 x 轴正向, 垂直于杆长
方向的 各截 面 均 用 它 的 平 衡 位 置 x 标记 , 在时刻 t, 此截面相对
u( x, 0) = 0 0,
ut ( x , 0 ) = δkρ,
| x - c| >δ | x - c | ≤ δ (δ→ 0)
所以定解问题为
utt - a2 uxx = 0
u(0 , t) = u( l, t) = 0 u( x, 0) = 0 , ut ( x , 0 ) =
0, | x - c| > δ δkρ, | x - c | ≤ δ (δ→ 0 )
16
数学物理方程与特殊函数导教·导学·导考
第一章 课后习题全解
1 .4 习题全解
1. 长为 l 的均匀杆 , 侧面绝缘 , 一端温度为零 , 另一端有恒定热
流 q进入 ( 即单位时间内通过单位截面积流入的热量为 q) , 杆的初始
温度分布是 x( l 2
x) ,试写出相应的定解问题。
解 见图 1 8, 该问题是一维热传导方程, 初始条件题中已给
u x
数学物理方程第二版答案(平时课后习题作业)

数学物理方程第二版答案第一章.颠簸方程§ 1 方程的导出。
定解条件4. 绝对柔嫩逐条而平均的弦线有一端固定,在它自己重力作用下,此线处于铅垂均衡地点,试导出此线的细小横振动方程。
解:如图 2,设弦长为l ,弦的线密度为,则 x 点处的张力 T ( x) 为T ( x)g(lx)且 T( x) 的方向老是沿着弦在 x 点处的切线方向。
仍以 u( x, t) 表示弦上各点在时辰 t 沿垂直于 x 轴方向的位移,取弦段 ( x, xx), 则弦段两头张力在 u 轴方向的投影分别为g(l x) sin ( x); g (l( xx)) sin (xx)此中 (x) 表示 T (x) 方向与 x 轴的夹角又sintgux.于是得运动方程x2u[l( xx)]u∣xxg [lx]u∣x gt 2xx利用微分中值定理,消去x ,再令 x0 得2ug[( l x) ut 2] 。
x x5. 考证u( x, y,t )t 21在锥 t 2 x 2 y 2 >0 中都知足颠簸方程x 2 y 22u2u2u证:函数 u( x, y,t )1在锥 t 2x 2 2内对变量 t 2x 2 y 2t 2 x 2y >0y 2x, y, t 有u3二阶连续偏导数。
且(t2x 2 y 2) 2 tt2u35(t2x2y 2) 23(t2x2y2) 2 t2t23(t 2x 2y 2) 2 (2t 2x2y 2)u3x2 y 2)2 x(t2x2u35t2x2y223 t2x2y22 x 2x25 t2x2y22 t22 x2y22 u5同理t2x2y22 t2x22y2y22 u 2u52u .所以t 2 x 2y 2 2 22x 2 y 2x2y2tt2即得所证。
§2 达朗贝尔公式、波的传抪3.利用流传波法,求解颠簸方程的特点问题(又称古尔沙问题)2ua 22ut 2x 2u x at 0(x) (0)(0)u x at( x).解: u(x,t)=F(x-at)+G(x+at)令 x-at=0得 ( x) =F ( 0) +G ( 2x )令 x+at=0得( x) =F (2x ) +G(0)所以F(x)=( x) -G(0).2G ( x ) = ( x) -F(0).2且F ( 0) +G(0)= (0) (0).所以u(x,t)=(xat) + ( x at ) - (0).22即为古尔沙问题的解。
西安邮电大学期末数理方程试题+答案

数学物理方程与特殊函数09级试题选讲一、求解定解问题22200,0,(0,0)x x lt u u a t x u u x l t xx u x ===ì¶¶=ï¶¶ï¶¶ï==<<>í¶¶ïï=ïî)()(),(t T x X t x u =)()()()(2t T x X a t T x X ¢¢=¢22)()()()(b -=¢¢=¢x X x X t T a t T 0>b 设,代入原方程得,则)()(22=+¢t T a t T b 0)()(2=+¢¢x X x X b 则,0x x lu u xx==¶¶==¶¶'(0)'()0X X l Þ==又因为得固有值问题2()()0'(0)'()0X x X x X X l b ¢¢ì+=í==î22)(ln pb =()cos 0,1,2,n n n xX x A n lp ==则固有值固有函数,数学物理方程与特殊函数09级试题选讲)()()(2=+¢t T la n t T p 2()()n a tl n T t C ep -Þ=2()01(,)cosn a tln n n x u x t C C elp p ¥-==+å从而0t ux==有因为01cosnn n x x C C lp ¥==+å所以220022[(1)1]cos 12n ln l n x l C x dx l l nl C xdx lp p --====òò2()2212(1)1(,)cos 2n a ntln l l n xu x t enlp p p¥-=--=+å数学物理方程与特殊函数09级试题选讲二、求解定解问题2222,,0(),0(),0(0)(0)t x t x u ut x t t t x ux x u x x =-=ì¶¶=-<<>ï¶¶ïï=F £íï=Y ³ïïF =Y î解:特征变换为x t x tx h =-ìí=+î2u x h¶=¶¶原方程化为12()()u f f x h =+则它的通解为00(),()()(),()()2222t xt x ux u x u u h x x h x h x h=-====F =Y +-Þ=F =F =Y =Y 又因为数学物理方程与特殊函数09级试题选讲1212(0)()()2()(0)()2f f f f h h xx +=Y +=F 2112()()(0)2()()(0)2f f f f h h x x ì=Y -ïïÞíï=F -ïî12()()((0)(0))22()()(0)22u f f x t x tx h=F +Y -+-+=F +Y -F 则它的解为三、求解定解问题)0,(,0,3,03202022222>+¥<<-¥ïïïîïïíì=¶¶==¶¶-¶¶¶+¶¶==y x y ux u y uy x u x u y y 解:原方程的特征方程为22()23()0dy dydx dx --=13C x y +=2C x y +-=,则特征线为3x y x yx h =-ìí=+î特征变换20ux h¶=¶¶原方程化为12()()u f f x h =+则它的通解为数学物理方程与特殊函数09级试题选讲12(,)(3)()u x y f x y f x y =-++即203,y y u ux y==¶==¶又因为21212(3)()3(3)()0f x f x xf x f x ì+=í¢¢-+=î则可得C x x f¢-=2149)3(C x x f ¢+=2243)(C x x f¢-=2141)(222234)(34)3(),(yx y x y x y x u +=++-=22()()C Du vv u u v d v u ds n n s ¶¶Ñ-Ñ=-¶¶òòò 四、证明平面上的格林公式其中n 为曲线的外法线向量。
数学物理方程与特殊函数老师给题答案汇总

1.证明二维laplace 方程 在极坐标下 证:2.长为l 的均匀杆,侧面绝缘,一端温度为零,另一端有恒定热流q 进入(即单位时间内通过单位截面积流入的热量为q ), 杆的初始温度分布为x (l-x ) / 2 ,试写出相应的定解问题。
解:对于杆上的一个微元d x ,流入的热量为:温度变化所需的热量为:两式相等:定解问题为:02222=∂∂+∂∂y u x u 22,arctan y x x y+==ρθθρθρρθθρθθsin ,cos 221cos ,sin /1122222=∂∂=⋅+=∂∂=∂∂-=-⋅+=∂∂y x y x x y x y x y x 2222222222222sin cos cos 2sin sin ρθθρθρρθθρθρθθρ∂∂-∂∂+∂∂+∂∂∂+∂∂=∂∂u u u u u y u x u x u x u ∂∂∂∂+∂∂∂∂=∂∂θθρρ2222222222222sin sin sin 2sin cos ρθθρθρρθθρθρθθρ∂∂+∂∂+∂∂+∂∂∂-∂∂=∂∂u u u u u x u ρρθρρ∂∂+∂∂+∂∂=∂∂+∂∂u u u y u x u 11222222222ρθθθρθθρρcos sin ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂u u y u y u y u 011222=∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂=θρρρρρu u ρθθθρsin cos ∂∂-∂∂=u u 02222=∂∂+∂∂y ux u 011222=∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂θρρρρρu u3.设弦的两端固定于x=0及x=l,弦的初始位移如图所示,初速度为零,又没有外力作用,求弦作横向振动时的位移函数u(x,t)。
解如果琴弦像上图的方法来放置,是不是边界条件将不再是齐次的。
4.解下列问题解:⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤=>=∂∂=∂∂><<∂∂=∂∂lxxxutxt luxtut lxxuatu),()0,(,0),(,0),0(,,222ϕ)()(),(tTxXtxu=XTaXT''='2XXTaT''='22=+'=+''TaTXXλλ⎩⎨⎧='='<<=+'')(,0)0(lXXlxXXλ)()(),()()0(),0(='=∂∂='=∂∂tTlXxt lutTXxtu)(,0)0(='='lXX,3,2,1,22=⎪⎭⎫⎝⎛==nlnnnπβλsin)(=-='lBlXββ)0(=='βAXxlnBXnnπcos=lnnπβ=xBxAXββcossin+=2=+''XXβ2>=βλBX=BAxX+==''X=λ==BAll eBeAlXββββ--=')()0(=-='ββBAXxx BeAeXββ-+=2=-''XXβ2<-=βλ2=+'TaTλ=λ0='T00T A=>λ02222=+'nnTlnaTπtlnanneAT2222π-=nnnTXu=xlneC tlnanππcos2222-=CAB==∑∑∞=-∞=+==1cos2222ntlnannnxlneCCuuππTXu=xlneBA tlnannππcos2222-=001()d2l lC x xlϕ==⎰022()cos d2(1)1()lnnnC x x xl llnπϕπ=⎡⎤=--⎣⎦⎰xx=)(ϕ5.达朗贝尔公式推导 解:做如下代换得:所以 因为所以所以 又因为 因为 所以所以得:即因此⎪⎪⎩⎪⎪⎨⎧+∞<<∞-=∂∂=>+∞<<∞-∂∂=∂∂x x t x u x x u t x x u a t u ),()0,(),()0,(0,,22222ψϕ⎪⎭⎫ ⎝⎛∂∂⋅-∂∂=t a x 121⎪⎭⎫ ⎝⎛∂∂⋅+∂∂=t a x 121)()(21at x f at x f u -++=ηηη∂∂∂∂+∂∂∂∂=∂∂t t x x ξξξ∂∂∂∂+∂∂∂∂=∂∂t t x x a t 2ηξ-=2ηξ+=x at x -=ηat x +=ξ)()(21ηξf f u +=)(ξξf u =∂∂02=⎪⎪⎭⎫ ⎝⎛∂∂∂∂=∂∂∂ηξηξu u t a x ∂∂⋅-∂∂=∂∂1ηt a x ∂∂⋅+∂∂=∂∂1ξ011=⎥⎦⎤⎢⎣⎡∂∂⋅-∂∂⎥⎦⎤⎢⎣⎡∂∂⋅+∂∂u t a x t a x 0122=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂⋅-⎪⎭⎫ ⎝⎛∂∂u t a x 0122222=⎪⎪⎭⎫ ⎝⎛∂∂⋅-∂∂u t a x 0122222=∂∂⋅-∂∂t u a x u )()()()0,(21x x f x f x u ϕ=+=)()()()0,(21x x f a x f a t x u ψ='-'=∂∂C a x f x f x +=-⎰021d )(1)()(ξξψ2d )(21)(21)(01C a x x f x ++=⎰ξξψϕ2d )(21)(21)(02Ca x x f x --=⎰ξξψϕ2d )(21)(212d )(21)(2100C a at x C a at x u at x at x ---++++=⎰⎰-+ξξψϕξξψϕ[]11()()()d 22x atx at u x at x at a ϕϕψξξ+-=++-+⎰6.解定解问题解:令所以因为 所以得7.P81T1求方程0,1,22>>=∂∂∂y x y x yx u满足边界条件y y u x x u cos ),1(,)0,(2==的解解:用积分法求解:对y 进行积分)(2122x g y x x u ==∂∂,再对x 积分)()(612123y f x f y x u ++=利用边界条件得 ,再用一次边界条件用积分变换法求解:对y 取拉普拉斯变换利用边界条件 得22d 2d d 3d y x y x --x y +=η2=∂∂∂ηξu )()3()0,(21x f x f x x u +-==)()3(0)0,(21x f x f y x u '+-'==∂∂Cx f x f =+--)()3(3121Cx x f 4343)3(1-=-C x x f 4341)(21-=C x x f 4343)(2+=()2222343)(4343341y x C y x C y x u +=+++--=(d 3d )(d d )0y x y x =-+=)()3(21x y f x y f ++-=x y 3-=ξ)()(21ηξf f u +=y y f f y y u x f x f x u cos )()1(61),1(,)0()()0,(212221=++=+=⎪⎪⎩⎪⎪⎨⎧+∞<<∞-=∂∂=+∞<<-∞>=∂∂-∂∂∂+∂∂x y x u x x u x y y u y x u x u ,0)0,(,)0,(,0,032222228.推导空间格林公式由高斯公式⎰⎰⎰⎰⎰ΓΩ++=∂∂+∂∂+∂∂dS x n R y n Q x n P dV z R y Q x P )],cos(),cos(),cos([)(推导 证:设函数u(x,y,z)和υ(x,y,z)在Γ+Ω上具有一阶连续偏导数,在Ω内具有连续的所有二阶偏导数。
数学物理方程答案(全)

化简之后,可以得到定解问题为
utt (Y / )uxx a2uxx u |x0 0,ux |xL 0
u
|t 0
0, ut
|t 0
I
(x
L)
5.高频传输线,原点端施以电动势 E,另一端接地,初始电流为(x) ,电压为 (x) 。
试建立电压的定解问题。(忽略电阻和介质的电导)
Q3 c 4 r2drdu
Q3 Q1 Q2
c 4 r2drdu kur (r dr,t)4 (r dr)2 dt kur (r,t)4 r2dt
4
k
r
(r
2ur
)drdt
即
ut
k c
1 r2
r
(r2ur )
3.设物体表面的绝对温度为 u ,它向外辐射出去的热量,按斯特凡-波尔兹曼定 律正比于 u4 ,即 dQ ku4dSdt ,设物体与周围介质之间,只有热辐射而无热传
习题 2.4 1.判断下列方程的类型 (1) auxx 4auxy auyy bux cuy u 0 4a2 a2 0 ,双曲型 (2) auxx 2auxy auyy bux cuy u 0 a2 a2 0 ,抛物型 (3) 2auxx 2auxy auyy 2bux 2auy u 0 a2 2a2 0 ,椭圆型 (4) uxx xuxy 0
ut
k c
ux
2k1 cr
(u
u1 )
0
2.导出匀质且在每一个同心球上等温的孤立球体的热传导方程。
S1
S2
r r+dr
解: dt 时间内通过 S1 流入壳层的能量 Q1 kur (r,t)4 r2dt dt 时间内通过 S2 流入壳层的能量 Q2 kur (r dr,t)4 (r dr)2 dt dt 时间内壳层升高 du 所需的能量
数学物理方程与特殊函数第二三章作业

习 题 2.14. 一根长为L 、截面面积为1的均匀细杆,其x=0端固定,以槌水平击其x=L 端,使之获得冲量I 。
试写出定解问题。
解:由题意可知定解问题为:⎪⎪⎩⎪⎪⎨⎧<<-=-<<===========)(,)/(,)0(,0,00,0)/(000002L x L I u L x u u u u u a u Y u t t t t t x x x xx xxtt εερερ习 题 2.23. 设物体表面的绝对温度为u ,它向外辐射出去的热量,按斯特凡—玻尔兹曼定律正比于u 4,即d Q =k u 4d S d t ,设物体与周围介质之间,只有热辐射而无热传导,周围介质的绝对温度为已知函数 ),,,(t z y x ϕ。
试写出边界条件。
解:由题意可知:dsdt u dsdt nuk)(44ϕσ-=∂∂- ∴边界条件为:)(44ϕσ--=∂∂u knu s习 题 2.34. 由静电场Gauss 定理⎰⎰⎰⎰⎰=⋅VSV S E d 1d 0ρε,求证:0▽ερ=⋅E ,并由此导出静电势u 所满足的Poisson 方程。
证明:由题意可知由静电场高斯定理:⎰⎰⎰⎰⎰⎰⎰⎰==⋅VSVV V divE S E d 1d d 0ρε∴ 00▽ερερ=⋅⇒=E divE 习 题 2.42. (1) 032=-+yy xy xx u u u 解:由题意可知:△=12-1×(-3)=4﹥0 => 双曲型03d d 2d d 2=--⎪⎭⎫⎝⎛x y x y => 3d d =x y 或 -1 令 ⎩⎨⎧+=-=yx yx ηε3则 ⎥⎦⎤⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡=1113 y x y x Q ηηεε => ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡''''08801113311111132212121122121211 T Q a a a a Q a a a a 00b 0b 21='='=-='=-='f c c L c L ηηεε∴ )()3()()(016y x g y x f g f u u ++-=+=⇒=ηεεη (5) 031616=++yy xy xx u u u 解:由题意可知:△=82-16×3=16﹥0 => 双曲型03d d 16d d 162=+-⎪⎭⎫⎝⎛x y x y =>43d d =x y 或 41 令 ⎩⎨⎧-=-=y x yx 443ηε则 ⎥⎦⎤⎢⎣⎡--=⎥⎥⎦⎤⎢⎢⎣⎡=4143y x y x Q ηηεε => ⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡''''03232044133881641432212121122121211 T Q a a a a Q a a a a 00b 0b 21='='=-='=-='f c c L c L ηηεε∴ )4()43()()(064y x g y x f g f u u -+-=+=⇒=-ηεεη习 题 2.52.试证明:若),,(τt x V 是定解问题⎪⎩⎪⎨⎧====><<=-====),(,00,0,0,002ττττx f V V V V t L x V a V t t t L x x xx tt的解,则⎰=td t x V t x u 0);,(),(ττ是定解问题⎪⎩⎪⎨⎧====><<=-====0,00,00,0),,(0002t t t L x x xx tt u u u u t L x t x f u a u的解。
数理方程与特殊函数(10-11-2A)参考答案

10---11-2 数学物理方程与特殊函数(A 卷)参考答案一.填空题1,自由项,齐次方程,非齐次方程,初值条件,(第三类)边界条件,初边值(混合)问题; 2,函数()t z y x u u ,,,= 1),具有二阶连续偏导函数;2),满足方程; 3,()xt t x w =,;4,)cos(t x π-;5,[]1,1-,t x t ≤≤-;6,4122≤+<y x ;122<+y x ; 7,()x x 35213-;()32331481-x dxd ;无界的; 8,⎪⎩⎪⎨⎧=+≠;,122,,0n m n n m ()()().,2,1,021211 =+⎰-n dx x P x f n n 二.解:相应方程的特征方程为:0)(2)(322=-+dt dxdt dx ,即:31=dt dx ,1-=dtdx。
由此得积分曲线:13C t x =-,2C t x =+。
作特征变换:t x -=3ξ,t x +=η,则:ηξ∂∂+∂∂-=∂∂u u t u ,ηξ∂∂+∂∂=∂∂u u x u 3;22222222ηηξξ∂∂+∂∂∂-∂∂=∂∂u u u t u , 22222223ηηξξ∂∂+∂∂∂+∂∂-=∂∂∂u u u x t u ,222222239ηηξξ∂∂+∂∂∂+∂∂=∂∂uu u x u 。
代入原方程,整理得:02=∂∂∂ηξu,则通解为:()()ηξ21f f u +=,其中21,f f 是任意两个连续二次可微函数。
因此原方程通解为: ()()()t x f t x f t x u ++-=213,。
由初值条件有: ()()22133x x f x f =+,()()0321='+'-x f x f 。
由微分方程有:()()C x f x f =-2133 因此 ()449321Cx x f +=,()44121C x x f +=,()44322C x x f -=。