钢结构桥梁焊接节点腐蚀疲劳研究
钢结构桥梁中的焊接疲劳应力研究现状

钢结构桥梁中的焊接疲劳应力研究现状摘要:钢结构桥梁是桥梁发展过程中的重要组成部分,钢结构疲劳问题一直是桥梁研究中需要关注的重要方面。
焊接过程会产生较大的应力集中,即焊接残余应力,容易使结构材料达到屈服,而影响结构的刚度。
在结构承受动力荷载作用下经常不需达到强度极限便会破坏,因此研究焊接过程的应力分布和对疲劳的影响对桥梁安全具有重要意义。
本文结合我国焊接钢桥疲劳研究的现状,总结出目前焊接钢结构桥梁疲劳破坏的机理、设计研究的主要方法以及一些有效的应对措施。
关键词:钢桥;焊接;疲劳应力;研究现状钢桥疲劳应力的研究始于20世纪初,当时欧美等国的一些铆接钢桥细部出现了因疲劳而产生的裂纹,但当时并未引起人们的重视。
到了20世纪中叶,一方面高强钢材的使用和设计技术的提高,减小了钢桥构件的截面尺寸,增大了结构活载与恒载之比;另一方面焊接技术在桥梁中的应用,使焊缝内部不可避免地留有初始缺陷而导致局部应力集中,加之结构构造形式的多样化等因素,使得钢桥疲劳裂纹的出现开始变得频繁,给桥梁运营带来了严重的安全隐患。
一、影响焊接结构疲劳强度的主要因素1.静载强度对焊接结构疲劳强度的影响一般情况下,基本金属的疲劳强度总是随着静载强度的增加而提高,但对于焊接结构来说情况就不一样了,因为焊接接头的疲劳强度与母材静强度、焊缝金属静强度、热影响区的组织性能以及焊缝金属强度匹配没有多大的关系,也就是说只要焊接接头的细节一样,高强钢和低碳钢的疲劳强度是一样的,具有同样的曲线。
2.应力集中对疲劳强度的影响1)接头类型的影响焊接接头的形式主要有:对接接头、十字接头、T形接头和搭接接头,在接头部位由于传力线受到干扰,因而发生应力集中现象。
2)焊缝形状的影响无论是何种接头形式,它们都是由两种焊缝连接的,对接焊缝和角焊缝。
焊缝形不同,其应力集中系数也不相同,从而疲劳强度具有较大的分散性。
对接焊缝的形状对接头的疲劳强度影响最大。
3)焊接缺陷的影响焊接中的裂纹、未焊透、咬边、气孔、夹渣都易产生应力集中,对焊接疲劳应力都有较大影响。
探讨钢结构桥梁的常见病害及防护措施

探讨钢结构桥梁的常见病害及防护措施钢结构桥梁是公路、铁路等交通基础设施的重要组成部分,它的安全性和可靠性直接关系到人民生命财产安全和国家经济发展。
由于长期风吹雨打和车辆的频繁行驶,钢结构桥梁常常会受到各种不同的病害影响。
对钢结构桥梁的常见病害及防护措施进行探讨是非常重要的。
一、常见病害1. 腐蚀病害腐蚀是钢结构桥梁最为常见的病害之一。
这是由于大气中的氧气、二氧化碳、水蒸气和酸性物质的存在,以及桥梁所处环境中的盐雾、化工废气等因素引起的。
当钢结构桥梁表面的保护层破损或受损时,这些有害物质会侵蚀钢材表面,造成钢材的腐蚀。
腐蚀病害会降低桥梁的承载能力,严重时可能导致桥梁的破坏甚至倒塌。
2. 疲劳病害疲劳病害是由于钢结构桥梁长期以来承受频繁的荷载交替作用,导致桥梁材料发生疲劳变形和开裂。
疲劳损伤通常发生在桥梁梁体和焊接接头等部位,而且通常不易察觉。
如果不及时修复,疲劳病害会导致桥梁的安全隐患,甚至可能引发严重事故。
3. 锈蚀病害钢结构桥梁常常会受到锈蚀的影响,特别是在潮湿的环境中更为明显。
当桥梁表面的涂层受损时,空气中的水分和氧气会与铁发生化学反应,形成氧化铁,即锈蚀。
长期的锈蚀会使桥梁的表面变得不平整,严重时甚至可能穿透钢材,导致桥梁结构的损坏。
4. 变形病害由于受力不均、温度变化和材料老化等原因,钢结构桥梁在使用过程中会出现变形。
这种变形不仅会影响桥梁的外观和舒适性,还会影响桥梁的使用性能和安全性。
及时发现并处理桥梁的变形病害是非常重要的。
二、防护措施1. 表面涂层为了防止钢结构桥梁受到腐蚀、锈蚀等病害的影响,可以在桥梁表面进行防护涂层处理。
这种处理方法不仅可以防止外界有害物质的侵蚀,还可以延长桥梁的使用寿命。
在选择涂层材料时,应该考虑桥梁所处的环境和其功能要求,并严格按照涂层施工规范进行操作,以确保涂层的质量和效果。
2. 定期检测为了及时发现和处理钢结构桥梁的各种病害,应该建立定期检测机制。
定期检测可以通过目视检查、无损检测等多种手段进行,对桥梁的表面、连接部位、焊接接头等进行全面和精细的检查,及时发现和修复病害点,确保桥梁的安全可靠性。
探讨钢结构桥梁的常见病害及防护措施

探讨钢结构桥梁的常见病害及防护措施钢结构桥梁作为重要的交通基础设施,承载着重要的交通运输任务。
由于长期使用和外部环境的影响,钢结构桥梁也会出现一些常见的病害。
本文将讨论一些常见的病害,并介绍相应的防护措施。
1. 腐蚀:钢结构桥梁暴露在大气中,容易受到氧气、水蒸气和酸雨等的侵蚀,从而发生腐蚀。
腐蚀不仅会导致钢结构在强度和刚度上的下降,还会导致桥梁的安全性降低。
针对腐蚀问题,可以采取以下防护措施:1.1. 表面涂装:通过将钢结构表面进行涂装,形成一层抵抗氧气、水蒸气和酸雨的保护层,延缓腐蚀的发生。
1.2. 防腐涂层:在表面涂装的基础上,加强涂层的耐腐蚀性能,延长钢结构的使用寿命。
1.3. 防腐漆:使用具有较高防腐性能的防腐漆进行表面涂装,提高防腐效果。
1.4. 外包装:对特殊环境下的桥梁,可以进行外包装,隔绝空气和水分侵蚀。
2. 疲劳:长期使用和受力会导致钢结构桥梁的疲劳损伤。
疲劳常常表现为钢结构表面的裂纹和变形。
为了防止疲劳损伤,可以采取以下防护措施:2.1. 加强监测:定期对钢结构进行监测,及时发现并修复裂纹,防止疲劳损伤的进一步扩展。
2.2. 增加结构强度:通过增加梁的截面面积或加强连接部位,提高钢结构的强度和刚度,降低受力引起的疲劳损伤风险。
2.3. 减少振动:通过采取减震装置等措施,降低桥梁受到外界振动的影响,减少疲劳损伤的发生。
3. 锈蚀引起的断裂:当桥梁发生腐蚀时,锈蚀会侵蚀钢材的表面,从而导致钢材的断裂。
为了防止锈蚀引起的断裂,可以采取以下防护措施:3.1. 定期维修:定期检查和修复出现锈蚀的部位,及时更换受损的钢材。
3.2. 增加防护层:在钢材的表面涂覆防腐涂层,增加抵抗锈蚀的能力。
3.3. 加强连接:加强桥梁的连接部位,降低断裂的风险。
4. 桥梁振动:桥梁在使用过程中会受到风、车辆通行等因素的作用,可能引起振动。
当振动幅度过大时,可能导致桥梁的破坏。
针对振动问题,可以采取以下防护措施:4.1. 加固措施:通过增加桥墩和墩柱的高度、增加桥梁横向支撑等加固措施,降低桥梁的振动风险。
探讨钢结构桥梁的常见病害及防护措施

探讨钢结构桥梁的常见病害及防护措施
钢结构桥梁是现代交通建设中常见的桥梁类型。
由于长期受到外界环境和运输荷载的
影响,钢结构桥梁容易出现各种病害。
本文将探讨钢结构桥梁的常见病害及防护措施。
1. 锈蚀:钢结构桥梁常受到大气、水分和化学物质的腐蚀,导致钢材表面生锈。
长
期下去,会损害桥梁的结构强度和稳定性。
应采取以下防护措施:定期进行表面清洗和除锈,涂刷防腐漆或涂层,增加防腐蚀涂层厚度,使用耐腐蚀材料等。
2. 疲劳:钢结构桥梁经常受到运输荷载的作用,受力循环次数较多,易于出现疲劳
破坏。
应采取以下防护措施:提高桥梁的疲劳强度设计,使用高强度材料,进行定期的疲
劳监测和评估,及时进行疲劳裂缝的修复和加固。
5. 热胀冷缩:钢结构桥梁在温度变化时,容易发生热胀冷缩现象。
应采取以下防护
措施:加强热胀冷缩计算和分析,使用伸缩缝或伸缩支座,合理设计桥面铺装结构,增加
桥梁的变形能力。
6. 风荷载:钢结构桥梁在受到风荷载作用时,容易发生结构振动,并可能导致破坏。
应采取以下防护措施:加强风荷载设计和风振分析,采用风阻抗装置和风振减振措施,提
高桥梁的抗风能力。
钢结构桥梁的常见病害主要有锈蚀、疲劳、腐蚀疲劳、塑性变形、热胀冷缩和风荷载。
为了防止和减轻这些病害的影响,需要加强钢结构桥梁的设计、监测和维护,并根据具体
情况采取相应的防护措施。
钢结构施工中的焊缝疲劳性能研究

钢结构施工中的焊缝疲劳性能研究钢结构在现代工程建筑中起着至关重要的作用。
焊接是连接钢材的常用方法之一,然而焊缝的疲劳性能,尤其是在长期受到变动荷载的情况下,对结构的稳定性和安全性有重要影响。
因此,对钢结构施工中的焊缝疲劳性能进行深入研究至关重要。
1. 研究背景钢结构的应用已经广泛存在于桥梁、建筑物和其他重要工程中。
焊接作为一种常用的连接方法,在这些结构中得到了广泛应用。
但由于外部荷载的作用,焊缝可能会受到不同程度的应力,导致其疲劳性能发生变化。
因此,为了确保钢结构的安全性和可靠性,有必要对焊缝的疲劳性能进行研究。
2. 疲劳性能测试方法为了评估焊缝的疲劳性能,通常采用疲劳试验来模拟实际工作环境中的变动载荷。
这种试验方法可以通过加载特定频率和振幅的荷载来模拟实际情况下的应力变化,从而评估焊缝的疲劳寿命。
3. 影响焊缝疲劳性能的因素焊缝的疲劳性能受多种因素的影响,包括焊缝质量、材料选择、设计荷载等。
首先,焊缝的质量对疲劳性能至关重要。
焊接过程中产生的缺陷或裂纹可能导致焊缝的强度下降,从而影响其疲劳性能。
其次,材料的选择也对焊缝的疲劳性能有一定影响。
不同材料具有不同的强度和韧性,因此其焊接后的疲劳性能也会有所不同。
最后,设计荷载是影响焊缝疲劳性能的重要因素。
合理的设计荷载可以减少焊缝受到的应力,从而延长其使用寿命。
4. 提高焊缝疲劳性能的方法为了提高焊缝的疲劳性能,可以采取一些措施来减少焊缝受到的应力和裂纹的发生。
首先,焊缝的设计要尽量避免应力集中和应力过大的情况。
此外,焊接过程中需要注意消除焊缝内部的缺陷和裂纹,以确保焊缝的质量。
另外,采用更高强度和韧性的材料,也可以提高焊缝的疲劳性能。
5. 结论钢结构施工中的焊缝疲劳性能研究是为了确保钢结构的安全性和可靠性。
研究发现,焊缝的疲劳性能受到焊接质量、材料选择和设计荷载等因素的影响。
采用适当的测试方法和合理的措施,可以提高焊缝的疲劳性能,从而延长结构的使用寿命。
钢结构的疲劳性能研究与结构寿命评估

钢结构的疲劳性能研究与结构寿命评估1. 引言在工程领域中,钢结构广泛应用于大型桥梁、高层建筑等重要工程项目中。
然而,由于长期受到复杂荷载和环境作用,钢结构容易发生疲劳破坏,对结构的安全性和可靠性构成威胁。
因此,钢结构的疲劳性能研究及结构寿命评估显得尤为重要。
2. 疲劳性能研究2.1 疲劳损伤机制钢结构在长期循环荷载作用下,由于应力集中、裂纹形成等原因,会逐渐发展出裂纹并扩展,最终导致疲劳破坏。
了解疲劳损伤机制对于研究钢结构的疲劳性能具有重要意义。
2.2 影响疲劳性能的因素钢材的质量、结构的几何形状、荷载类型和频次、应力历程等因素都会对钢结构的疲劳性能产生影响。
因此,疲劳性能研究需要考虑多种因素的综合影响。
2.3 疲劳试验与数值模拟方法疲劳试验是研究钢结构疲劳性能的重要手段,可以通过对试验样件的疲劳寿命进行评估。
同时,数值模拟方法也逐渐成为研究疲劳性能的重要工具,可以通过建立结构的数学模型,模拟实际的荷载作用,预测结构的疲劳寿命。
3. 结构寿命评估3.1 疲劳寿命的定义与评估方法疲劳寿命是指结构在规定的荷载和振动频次下能够安全运行的时间。
常用的评估方法包括判据法、损伤积累法和应变寿命法等,通过对疲劳裂纹的扩展情况进行评估,预测结构的寿命。
3.2 结构寿命评估的可靠度在结构寿命评估中,不确定性是一个不可忽视的因素。
可靠度理论可应用于结构寿命评估中,通过考虑不同参数的不确定性,计算结构的可靠度指标,为工程决策提供科学依据。
4. 增强疲劳性能的措施4.1 结构设计阶段的考虑在钢结构的设计阶段,可以通过减小应力集中区、合理设置连接方式等措施来增加结构的疲劳寿命。
4.2 修复与维护钢结构在使用过程中可能会受到损伤,及时进行损伤修复和维护是保障结构疲劳性能的重要举措。
4.3 监测与预警结构的长期监测和预警,能够及早发现结构的疲劳裂纹和变形等问题,采取相应的措施进行处理,减少疲劳破坏的发生。
5. 结论钢结构的疲劳性能研究与结构寿命评估对于保障工程项目的安全性和可靠性具有重要意义。
钢桥节点焊接局部疲劳寿命分析的开题报告

钢桥节点焊接局部疲劳寿命分析的开题报告
一、研究背景:
随着经济的发展和交通运输的不断发展,钢桥的搭建也越来越普遍。
而钢桥的节点是钢桥结构的重要组成部分,其安全稳定性直接影响着钢桥的使用寿命和安全性。
由于荷载的作用和自重的影响,钢桥节点处会产生较大的应力和变形,从而对节点的疲劳寿命和安全性产生影响。
二、研究目的:
本研究旨在分析钢桥节点焊接的局部疲劳寿命,并提出有效的预防和处理方法,以提高钢桥的使用寿命和安全性。
三、研究内容:
1. 钢桥节点焊接的基本原理和应力分析
2. 局部疲劳寿命的理论模型及算法分析
3. 焊接工艺对局部疲劳寿命的影响
4. 钢桥节点焊接局部疲劳寿命的实验研究
5. 钢桥节点焊接局部疲劳寿命预防和处理措施研究
四、研究方法:
本研究采用理论和实验相结合的方法,基于节点焊接的原理和应力分析,建立局部疲劳寿命的理论模型,通过实验测试和数据分析,验证理论模型的正确性,并提出有效的预防和处理方法。
五、研究意义:
本研究将为钢桥技术的发展提供一定的理论和实践指导,为提高钢桥的使用寿命和安全性做出贡献。
同时,本研究的研究成果也将为其他类似结构的安全性分析提供参考。
探讨钢结构桥梁的常见病害及防护措施

探讨钢结构桥梁的常见病害及防护措施钢结构桥梁是现代交通建设中经常使用的一种桥梁类型,它具有结构强度高、施工周期短、维护成本低等优点。
钢结构桥梁在使用过程中也会出现一些常见的病害问题,这些问题可能会对桥梁的安全性和使用寿命造成影响。
对钢结构桥梁的常见病害及防护措施进行深入探讨,对于提高桥梁的使用寿命和安全性具有重要意义。
一、常见病害(一)锈蚀钢结构桥梁锈蚀是其最为常见的病害之一。
在桥梁的使用过程中,受到氧气、水汽等外部介质的影响,钢结构桥梁的表面易受到氧化作用,产生锈蚀。
当锈蚀严重时,会减小钢材的截面积,导致桥梁承载能力下降,甚至出现断裂的情况。
(二)疲劳裂缝疲劳裂缝是由于桥梁长期受到交通荷载等外部作用,导致材料表面出现微小裂纹,并逐渐扩展形成的。
疲劳裂缝一旦形成,会对桥梁的结构强度和安全性造成较大威胁,如果得不到及时修复和加固,就会引发严重的事故。
(三)变形钢结构桥梁在使用过程中,受到温度变化、交通荷载等因素的影响,易发生变形。
桥梁的变形不仅会对行车安全造成隐患,还会加速桥梁的疲劳破坏,降低桥梁的使用寿命。
(四)腐蚀钢结构桥梁在潮湿的环境中易受到腐蚀。
水汽中的盐分等物质会对桥梁的表面产生腐蚀,导致钢材表面产生坑洼和破损,严重影响桥梁的整体美观和结构强度。
二、防护措施钢结构桥梁在施工完成后,可以对其进行防锈处理,常用的方法有喷涂防锈漆、热浸镀锌等。
这些方法可以有效地阻止氧化作用的发生,延缓桥梁的锈蚀速度,提高其使用寿命。
(二)定期检测钢结构桥梁的使用寿命是与其使用环境、荷载情况等因素密切相关的,为了及时发现和监测桥梁的病害情况,可以定期对桥梁进行检测。
常见的检测方法有超声波检测、磁粉检测等,这些方法可以有效地发现桥梁的内部和表面病害,为后续的维修提供参考依据。
(三)加固修复一旦发现桥梁存在疲劳裂缝、变形等情况,就需要及时进行加固修复。
加固方法有增加剪力墙、加装钢筋混凝土等,这些方法可以提高桥梁的整体结构强度,延长其使用寿命。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要为深化对钢桥焊接节点腐蚀疲劳问题的认识,通过对既有研究成果进行梳理,从钢桥腐蚀原因及特点、焊接节点腐蚀疲劳性能影响因素及焊接节点腐蚀预测模型等方面进行了总结,探讨了钢桥焊接节点腐蚀疲劳研究的现状和发展趋势。
针对环境腐蚀下疲劳裂纹萌生机理,重点讨论了点蚀疲劳损伤过程。
基于3种典型的腐蚀疲劳模型(叠加模型,竞争模型和乘积模型),对腐蚀疲劳裂纹扩展机理进行了综述。
对基于S-N曲线、Miner线性累积损伤理论和基于断裂力学裂纹扩展速率公式的两种主要的腐蚀疲劳寿命预测方法进行了归纳。
研究结果表明:钢桥焊接节点腐蚀疲劳体现为环境介质和循环应力双重驱动下的裂纹扩展问题,其疲劳破坏模式、疲劳损伤机理、抗疲劳设计等问题更为复杂;钢桥腐蚀疲劳损伤驱动机理、腐蚀疲劳寿命评估方法及适用的疲劳性能强化技术,是钢桥的全寿命周期设计理论的重要基础和钢桥可持续发展亟待解决的重要研究课题。
钢桥焊接节点包含多种缺口效应构造细节,构造处疲劳强度降低较多,是抗疲劳设计的关键部位。
桥梁结构服役期内,由于所处环境复杂、荷载作用不确定、服役时间长,使材料不断劣化,局部损伤演化造成结构劣化。
桥梁所处地理位置千变万化、气候条件复杂,很多桥梁架设在海洋、工业腐蚀、酸雨等环境中,承受载荷并受到SO2、雨水、盐雾等多种因素的影响,在计入结构缺陷和腐蚀损伤带来的影响后,结构的抗断能力会大幅度降低。
作为钢结构桥梁两类时变损伤,腐蚀与疲劳是影响钢结构桥梁耐久性的主要因素。
腐蚀过程中,交变应力和腐蚀相互促进加速了裂纹的扩展。
环境腐蚀介质与交变应力耦合作用下,钢桥焊接节点的疲劳性能的加速劣化问题值得关注。
实际上在任何介质中腐蚀疲劳均可能出现,即使应力强度因子小于应力腐蚀疲劳裂纹应力强度因子门槛值时,疲劳裂纹仍会扩展,腐蚀疲劳裂纹源有多处。
自1917年首次提出腐蚀疲劳现象以来,国内外学者在腐蚀损伤机理、局部腐蚀规律以及腐蚀疲劳损伤等方面做了许多研究工作,取得了有价值的研究成果,但主要集中在材料、机械及航空等领域,研究重点是材料本身的腐蚀和疲劳。
钢桥焊接节点的腐蚀疲劳行为与腐蚀特征、焊接残余应力、复杂应力场及构造本身引起的应力集中程度等有关,钢桥焊接节点腐蚀疲劳损伤机理的影响因素更复杂。
钢桥腐蚀疲劳研究早期主要集中在无防锈涂层保护的耐候钢桥梁上。
20世纪90年代国内外学者对焊接细节腐蚀条件下疲劳性能开展了一些研究。
为深化对钢桥焊接节点腐蚀疲劳问题的认识,通过对既有研究成果进行梳理,从钢桥腐蚀原因及特点、焊接节点腐蚀疲劳性能影响因素及焊接节点腐蚀预测模型等方面进行了总结,探讨了钢桥焊接节点腐蚀疲劳研究的现状和发展趋势。
针对环境腐蚀下疲劳裂纹萌生机理,重点讨论了点蚀疲劳损伤过程。
1 钢桥腐蚀原因及特点钢桥的腐蚀是指钢材与环境介质之间发生化学或电化学作用从而引起钢材材质变化甚至破坏的过程。
钢桥腐蚀按所处的环境可分为大气腐蚀和海水腐蚀。
大气腐蚀主要是受大气中的水分、氧气和腐蚀介质(包括杂质、尘埃、表面沉积物等)的作用而引起的破坏。
海水腐蚀主要是由于海水中的溶解氧、氯离子和海洋环境生物的作用而导致的破坏。
钢桥中的腐蚀类型可以分为均匀腐蚀和局部腐蚀。
局部腐蚀又包括点蚀、缝隙腐蚀、应力腐蚀和腐蚀疲劳。
局部腐蚀破坏集中在局部位置,从而引起应力集中,使钢结构更容易产生脆性断裂破坏,甚至引起重大的事故,所以局部腐蚀比全面腐蚀的危害更严重。
桥梁钢结构的易腐蚀部位主要包括桁梁结构、钢箱梁和缆索系统,由于不同桥梁部位的腐蚀条件存在差异,导致腐蚀情况有很大的不同。
1)桁梁结构。
桁梁结构桥面板以上部位的钢腐蚀因素主要是雨水侵蚀和紫外线照射等。
桁梁结构桥面板以下部位的腐蚀主要是由于水蒸气蒸发,在钢结构表面形成水膜,同时还有自由排放的各种污染物和粉尘等作用。
2)钢箱梁。
钢箱梁内部的通风环境很差,由于潮湿气体的聚集引起锈蚀,所以钢箱梁的主要腐蚀类型是大气腐蚀。
3)缆索系统。
主要指悬索桥的主缆和吊索、斜拉桥的拉索以及拱桥的吊杆等,缆索系统的主要腐蚀类型是大气腐蚀。
钢桥所处的环境不同,影响钢桥大气腐蚀的因素一般也不同,主要包括环境因素、材料因素和人为因素。
由于腐蚀影响因素众多,腐蚀过程比较复杂,不同地域可能差别很大,所以应该根据当地的大气腐蚀数据来选择合适的腐蚀预测模型,才能更好地反映实际情况。
根据世界各国关于钢材大气暴露腐蚀试验数据回归分析的结果,认为钢的大气腐蚀深度的发展符合幂函数规律,即:式中:D为腐蚀深度,mm;t为暴露时间,a;A、n为常数。
A值相当于钢材第1年的腐蚀深度,与环境因素和钢种有关,随着污染程度的增加而增加,取值范围一般在0.02~0.10 mm。
n值表示钢材长期腐蚀发展趋势,锈蚀层作为钢的大气腐蚀产物,一般具有保护作用,因此大气腐蚀是一个减缓的过程,一般环境下n为0.4~0.5,极端环境(湿热海洋)可高达0.7~1.5。
2 焊接节点腐蚀疲劳裂纹扩展机理腐蚀对疲劳的影响主要表现在对疲劳缺口效应的强化及加速裂纹扩展速度。
腐蚀环境下构件的耐疲劳性能与未腐蚀构件的耐疲劳性能存在着明显的差异。
腐蚀疲劳在实际结构中可以分为两类:I类,腐蚀环境下的疲劳。
即结构在腐蚀介质和疲劳载荷共同作用下而发生的疲劳破坏;II类,预腐蚀疲劳。
即结构在腐蚀一段时间后再受到疲劳荷载作用而发生的疲劳破坏。
钢在不同介质条件下的应力幅(S)-寿命(N)曲线如图1所示。
图1 钢在不同介质条件下的S-N曲线腐蚀疲劳中存在两种基本的损伤形式:一是循环应力引起的疲劳损伤;二是由环境介质引起的腐蚀损伤,两种损伤不是简单叠加,而是存在明显的交互作用。
腐蚀疲劳裂纹萌生机理主要与材料的类型和所处的环境有关,材料相同,环境不同,裂纹萌生机理不同;环境相同,材料不同,裂纹萌生机理也不同。
国内外学者对点蚀疲劳裂纹萌生机理进行了系统研究,认为点蚀疲劳损伤过程经历了7个阶段:蚀坑形成、蚀坑增长、蚀坑转变为短裂纹、短裂纹增长、短裂纹转变为长裂纹、长裂纹扩展和断裂。
当蚀坑等效表面裂纹的应力强度因子达到了疲劳裂纹扩展应力强度因子门槛值,点蚀扩展速率小于腐蚀疲劳裂纹扩展速率时,点蚀向腐蚀疲劳裂纹转变。
既有研究表明:腐蚀深度、点蚀的深径比、局部应力和材料的疲劳裂纹扩展特性是促进裂纹萌生和扩展的关键因素。
一般说来,腐蚀坑并不总是形成裂纹的地方,而是有助于裂纹的形成,因为疲劳裂纹总是在最大应力集中的地方形成,腐蚀坑的存在会导致疲劳强度的降低。
腐蚀疲劳裂纹扩展机理主要有:阳极溶解和氢致开裂。
阳极溶解指的是交变应力加速内部活化区金属的溶解而导致的断裂,阳极溶解一方面由于腐蚀产物导致裂纹闭合,另一方面使裂纹不断向前扩展,常见于低碳钢、不锈钢等低强度的材料。
氢致开裂指的是金属在氢和力的共同作用下裂纹的萌生、扩展和断裂,常见于高强度钢,而对于中等强度的钢,以上两种原因都有可能。
根据(da/dN)CF 与应力强度因子幅ΔK的关系,把腐蚀疲劳分为3种类型,如图2所示。
图中,(da/dN)CF为腐蚀疲劳裂纹扩展速率;(da/dN)F为疲劳裂纹扩展速率。
图2 腐蚀疲劳类型图2中,A类型(图2a)类似于纯疲劳,适用于不产生应力腐蚀的材料体系,应力腐蚀裂纹扩展应力强度因子界限值大于断裂韧性;B类型(图2b)类似于应力腐蚀疲劳,出现水平台阶,断裂韧性大于应力腐蚀裂纹扩展应力强度因子门槛值KISSCC(1-R);C类型(图2c)是A和B的混合类型。
腐蚀疲劳裂纹扩展模型主要分为3种:叠加模型、竞争模型和乘积模型。
Wei等提出了线性叠加模型,当裂纹扩展应力强度因子大于应力腐蚀应力强度因子门槛值时,腐蚀疲劳裂纹扩展速率等于疲劳裂纹扩展速率加上应力腐蚀疲劳裂纹扩展速率,表达式为:式中:(da/dN)SCC为应力腐蚀裂纹扩展速率。
Austen等提出了竞争模型,指出腐蚀疲劳裂纹扩展速率是疲劳和应力腐蚀之间竞争的结果,表达式如下:乘积模型通过试验数据对疲劳裂纹扩展速率进行修正,该系数考虑了加载频率、应力比、介质浓度等因素的影响,表达形式如下:式中:D、m为常数。
考虑裂纹闭合和加载频率影响的腐蚀疲劳裂纹扩展速率公式:式中:ΔKeff为等效应力幅;fH(λ)为加载频率修正函数;λ为加载频率。
3 焊接节点腐蚀疲劳寿命评估国内外学者对腐蚀疲劳现象进行了大量的研究和探索,提出了两种主要的腐蚀疲劳寿命预测方法:一种基于S-N曲线和Miner线性累积损伤理论;另一种是基于裂纹扩展速率公式(da/dN)-ΔK曲线的断裂力学理论。
Albrecht等完成A588耐候钢十字形焊接接头腐蚀疲劳对照试验,腐蚀疲劳寿命和纯疲劳寿命相比分别平均降低了40%~50%,暴露面对疲劳寿命的影响不是很显著。
Albrecht等提出了确定腐蚀钢梁剩余疲劳强度的方法,该方法考虑了截面面积的损失、水环境和锈蚀坑的应力集中系数。
影响腐蚀梁疲劳寿命的因素:1)厚度减小导致截面模量的降低,名义应力增大;2)腐蚀坑附近的应力集中;3)腐蚀环境中的裂纹增长率增加。
腐蚀疲劳强度降低系数由以下3个系数决定:截面系数Kc,水环境系数Ke和应力集中系数Kp,表达式为:截面系数指的是由于腐蚀导致截面面积减小而导致的强度降低系数,表达式为:式中:fr,c为腐蚀疲劳强度;fr为空气中疲劳强度。
水环境系数指的是由于水环境而导致的强度降低系数:式中:(da/dN)aq为腐蚀疲劳裂纹扩展速率;(da/dN)air为空气中疲劳裂纹扩展速率。
应力集中系数指的是锈蚀坑的应力集中导致的强度降低系数:李言涛等通过对海上平台用钢板在空气中、海水中和海水中有阴极保护3种条件下的腐蚀疲劳进行研究,结果表明:焊接接头的海水自由腐蚀疲劳寿命为空气中的1/3~1/2,随应力水平的降低差异增大。
战昂通过总结腐蚀疲劳相关的文献,借鉴疲劳剩余寿命评估的研究成果,分析腐蚀损伤对疲劳裂纹萌生和扩展的影响,基于断裂力学对疲劳寿命进行评估。
Albrecht等完成了A588耐候钢制造的39根焊接梁和12根盖板梁的疲劳试验。
试验结果表明:受点蚀影响,经历62~72个月的暴露试验腐蚀后,所有梁的疲劳强度由B级降低到E级。
Coca等指出腐蚀和疲劳是引起桥梁性能退化的重要原因,桥梁在遭受腐蚀环境影响的同时,还受到各种不同荷载的作用,认为耦合腐蚀疲劳的寿命比不耦合腐蚀疲劳的寿命小30%。
Rahgozar等从3个腐蚀钢梁的腹板和翼缘获得76个标准试件,采用液压伺服疲劳试验机对每个试件进行疲劳试验,通过腐蚀坑深度建立了点蚀和剩余疲劳寿命的定量关系。
Garbatov等分析小规模腐蚀钢焊接试件的疲劳强度,对11个腐蚀试件的表面进行分析,采用BS 7910规范中失效评估图将腐蚀坑等效为疲劳裂纹,结果表明:疲劳强度由非腐蚀试件的86 MPa降低到腐蚀试件的65 MPa,非腐蚀试件的疲劳失效是沿着焊趾,而腐蚀试件的疲劳失效均起源于腐蚀坑处。