井筒气柱压力计算

合集下载

利用气井环空气柱压力计算井底压力新方法的研究与应用

利用气井环空气柱压力计算井底压力新方法的研究与应用

=×10 - 2 pavgγg L (1. 8 tavg + 491. 67) Z
(8)
在用计算机法求解式 (8) 时 ,需解决天然气偏差
系数的数学解析计算方法 。实践中 , 无论是采用
Gopai V . N . 在文献〔2〕中提出的 Standing - Katz 关
系曲线拟合法 ,或由 Yarboronghl 和 Hall K. R. 以及
排水采气工艺的设计中最具实用意义和推广价值 ,
因为大多数气举装置 ,都是用随井深深度增加而增
加的环空气柱压力而进行设计的 。
将式 (7) 代入式 (1) ,并当 L = L i 时令气井的井 底压力为 pbbf ,我们就可得到利用气井套管环空气 柱压力精确计算井底压力的数学模型为 :
pbbf = pts + pg @L
环空气柱压力精确求解气井井底压力的数学模型 。
在以往类似数学模型求解时 ,常以邻井的气井井底
压力资料或不考虑温度变化与天然气压缩性影响 ,
令 Z = 1 为计算 pbbf赋初值 ,且求解程序繁琐 ,计算 工作量大 ,显得不尽合理 ,特别是对无邻井压力资料
的井的求解带来一定困难 。为此 ,本文在近似求解
模型 。如某气井 ,已知其井深尺寸为 L = L i = 1 524 m , pavg = 6. 55 M Pa , tavg = 50 ℃,γg = 0. 65 ,在 pavg 、 tavg条件下的天然气偏差系数 Z = 0. 9 ,代已知系数
入式 (7) ,则可求得此时套管环空气柱对井底形成的
压力为 :
tavg 、℃表示的法定单位 ,则有 :
pg
@L i
=
1. 875 ×10 - 2 ×3. 280 8 pavgγg L i (1. 8 tavg + 491. 67) Z

一种气井井筒压力的计算方法

一种气井井筒压力的计算方法

油管直径

0.062 0/m
油管绝粗糙度

1.524×10- 5
1.3 拟单相流的井筒压力数值计算过程简介 将式( 3) 与式( 2) 比较可知, 被积函数分母有所
不同, WG 为复合气体的质量流量, MG 为复合气体的 分子量, fW 为水的摩阻系数。文献[1]和文献[2]介绍 了有关油折算成气 , 以 及 气 水 摩 阻 系 fm 的 求 取 方





0.213 23
注: 文献[1]仅提供了终点井底压力
法。式( 3) 在形式上与式( 2) 一致, 只是被积函数不 同, 其井筒压力的求解方法与式( 2) 相同。
2 计算结果对比
2.1 单相流( 气体) 井筒压力计算结果对比 文献[1]提供的单相流气井数据见表 1, 井 筒 压
力计算结果见表 2。 2.2 拟单相流井筒压力计算结果对比
cs=I(Ptf+ΔP)- I(Ptf)≈I(Ptf)ΔP
( 6)
由( 4) 式和( 6) 式可知
cs=I(Ptf)ΔP=s
( 7)
根据牛顿拉裴森(Newton- Raphson)迭代算法, 则有
f(ΔP)=I(Ptf)ΔP- s=0
( 8)
收稿日期: 2007- 04- 23 作者简介: 刘玉娟(1962- ),女,四川荣县人,实验师,主要从事石油天然气开采工程实验教学和石油开然气井现场开采方案设计。

Pwf
ZT
dP
! &" $ % $’ Ptf
P ZT
2+7.651×10-
16
fm d5
WG MG

Fw
=0.031 45γgH

第四部分井筒流体

第四部分井筒流体

第四部分 井筒流体力学1单相(气体)流体力学-静止气柱1.1 平均温度和平均气体偏差系数计算方法(4--1)03415.0exp(TZ Hp p g ts ws γ=式中 — 按静止气柱公式计算的井底压力。

关井时为地层压力,开井时为井底流动压力,M Pa ;ws p—静止气柱的井口压力。

关井时为井口最大关井压力,开井时为不流动气柱的井口压力,Mts p Pa ;— 气体相对密度;g γ— 井口到气层中部深度,m;H — 井筒内气体平均绝对温度,K ;T=T 2/)(ws ts T T +,— 静止气柱井口,井底绝对温度,K;ts T ws T — 井筒气体平均压力,M Pa;p=p 2/)(ts ws p p +— 井筒气体平均偏差系数,由两种计算方法Z= 或 =Z ),(T p f Z 2/)(ws ts Z Z +,— 静止气柱井口,井底条件下的气体偏差系数。

ts Z ws Z 已知,计算的步骤如下;ts p ws p (1)首先对赋初值,建议ws p12192)(H p p p ts ts o ws+=(2)根据,和,求p T g γZ(3)代入式(4--1)计算。

如与之差符合规定的精度要求,则即为所求。

Z )1(wsp )1(wsp )(o wsp )1(wsp 反之,继续迭代到符合规定的精度。

如用计算机计算,有多种算法: 可取Z=1为初值;或=取为初值;或规定迭代次数,一)(o wsp ts p 般迭代5次即可满足工程要求。

1.2 Cullender 和Smith 计算方法1.2.1 按井深H 计算(一步法)(4--2)⎰=wstsp p g Idp H γ03415.0(4--3)pZTI =由数值积分(一步梯形法)得:(4--4)H g γ03415.02))((ts ws ts ws I I p p +-≈式中ts tsts ts p T Z I =wsws ws ws p T Z I =其余符号同前。

试油气中若干计算问题

试油气中若干计算问题

试油气中若干计算问题一.纯气井在已知井口压力时井筒各点压力的计算公式:T ΓT T W M =P i =P 井口。

e 1.251x10-6 Li其中:P 井口: 井口压力P i :任意点压力ρ :天然气密度L i :任意点井深二.套管最大掏空深度根据目前的套管强度和固井情况,如果排液超过一定的深度,提高就可能被压力挤毁,所以需根据油套封固情况,来确定套管许最大掏空深度(如图1所示)ρ当P 外—P ≥S.S 套时套管就会被挤毁油套封固压力主要来自管外泥浆柱,地层压力以及岩石侧压力 ①管外泥浆柱压力水泥封固时由于套管偏心,泥浆性质及顶替效率的影响会使泥浆未顶替出,它会对套管产生挤压力。

②地层压力由于异常高压存在,对于地层压力一般比较难于确定,通常采用钻井时该井段的管外泥浆压力作为地层压力③岩石侧压力两种情况,对于非可塑地层岩侧压力来源上覆岩层压力此时仍可以把管外泥浆柱压力作为套管挤压力,对于可塑性地层(岩盐和钾碱条带分布区)由于岩层的蠕动,套管将承受这些塑性流动的力,需加岩石的侧压系数K注:对于生产井还应考虑注水压力的影响所以计算套管许掏空深度分非可塑地层和可塑地层1非可塑性地层(本计算方法已考虑套管抗挤安全系数)P外=ρ1gh P =ρ2g(h-l)P外-P≤P r/k c——————⑴若采用国际单位P外=ρ1gh=hρ1/101.97mpa(g=9.807)ρ1单位g/cm3h单位 mP=(h-l)ρ2/101.97(同上)其中:P r——抗挤压强度P——抗内压强度代入(1)式可以推出:L≤101.97/ ρ2-h(ρ1-ρ2)取最大值:l=101.97 P r/ k cρ2- h(ρ1-ρ2)/ ρ2其中:h---新确定的套管抗挤薄弱点深度P r---查表可知k c———一般性质1.05-1.10《钻井测试手册》《试油技术规范》取:1.105但是应根据固井,套管磨损程度来确定2可塑性地层将P外=ρ1h/101.97P外= k hρ3/101.97= KG0 h/1000mpa 其中:k—侧压系数一般岩石侧压系数取0.42-0.8之间岩盐层和钾碱层几乎接近于1ρ3——岩石密度G0—上覆岩层压力⒊h值的取值:h一般根据套管下深,异常高压层,岩盐层和钾碱层深度来确定⒋当井内为天然气时,油本部分内容可以算出的最低套压P=Pе 1.251×10-4ρh根据:P外-P h≤P r/ k c可以求出最低套压P=1/е 1.251×10-4ρh(hρ1/101.97-P r/ k c)三.套管最高关井压力由于井筒内流体介质不同,流体压力计算公式不同,故分为两种情况:⒈井内为天然气时,井筒存在两处薄弱环节:①井口裸露段和升高短节②套管抗内压最薄弱段,所以应考虑分别计算取其最小值:①井口部分:P wmax1= P b1/n1②最薄弱段: P wmax2= 1/е 1.251×10-4ρ((根据P外-P h≤P b2/ h2推出)P wmax=min [P wmax1 ×P wmax2]其中:P b1,P b2:分别为井口和套管抗内压强度n1 , n2 : 根据《钻井测试手册》n1=1.5n2=1.05⒉井筒内为液柱(ρ4)时根据:hρ4/101.97+P套-hρ1/101.97≤P b2/n2推出:P套=P b2/n2+h/101.97(ρ1-ρ4)------⑵四.天然气井二项式方程式求无阻流量和计算产量的方法⒈在只知道一个流压P下的气产量Q地层压力P e的情况下可以解决的问题:①根据的推导公式求绝对无阻流量Q ab=②根据无阻流量和二项式方程式求出:P2e-P2=AQ1+BQ21P2e-P2ab=AQ ab+BQ2abB=[(P2e-P2ab)/Q ab-(P2e-P2)/Q1]/(Q ab-Q g)=P2e-P2/Q-BQ1③根据A、B、P e值可以折算压力下的产量,验证某一井口下产量是否对⒉在可知两个流压P P和两个产量Q Q及P的情况下①可以求出 A B值②可以求出无阻流量③根据A B P e可以折算压力下的产量验证某一井口压力下产量是否对。

含水气井井筒压力计算方法

含水气井井筒压力计算方法

气体偏差系 数; f g ) ) ) 干气摩 阻系数; qsc ) ) ) 产气 量, m3Pd; d ) ) ) 油 管 内 径, m; Cg ) ) ) 气 体 相对 密
度; p wf ) ) ) 井 底流动 压力, MPa; p tf ) ) ) 井口 油管
流动压力, M Pa。
对含水气井, ( 1) 式改写为
dp Qgw
+
g dH +
f
u2
gw gw
2g
dH
=
0
( 3)
式中: Qgw ) ) ) 气 ) 水两相井流密度, kgPm3 ; f gw ) ) )
气 ) 水井流的摩阻系数; ugw ) ) ) 气 ) 水井流体积流
速, mPs。
[ 作者简介] 杨志伦, 男, 工程师, 1969 年出生, 长期从事气田生产和管理工作。
p sc ZT T sc p
2
F w dH =
0
( 12)
从( 12) 式分离变量积分, 可得到计算高气水比
井井筒压力的公式, 即
p
Qwf p tf
p TZ
dp
p TZ
2
+
1. 324 @
10- 18
2
f gw q sc
5
d
H
Q = 0. 03418 Cg dH 0
Fw
( 13)
从( 13) 式可看出, 如不含水, Fw = 1, 则( 13) 式
g ) ) ) 重 力 加 速 度, mPs2; H ) ) ) 井 深, m; f ) ) )
Moody 摩阻系数; u ) ) ) 气体流速, mPs。
这是一个在任何状态( p , T ) 下都 成立的能量

井筒压力计算报告

井筒压力计算报告
第四章 软件编写.................................................... 20 4.1 编写工具的选取 .............................................20 4.2 BCB 软件简介 ...............................................20 4.3 软件主界面 .................................................20 4.4 物性参数子程序 .............................................21
本次设计选择按照压力增量迭代的方式来计算。
3
开始
调用已知数据
确定起始点及该点深度、压力、温度、 油井或气井产量和生产气油比等
选取迭代压力增量 ∆h
估计对应于∆h的管长增量 ∆P1
计算∆h间隔内流体的平均温 度、平均压力及对应工况的物性参
根据 Hasan-Kabir 计算该段的压力梯度(������������/������������)������
1
开始
调用已知数据
确定起始点及该点深度、压力、温度、 油井或气井产量和生产气油比等
选取迭代压力增量 ∆������
估计对应于∆������的管长增量 ∆������0
计算∆������0段内流体的平均温 度、平均压力及对应工况的物性参

根据 Hasan-Kabir 计算该段的压力梯度(������������/������������)������
物性参数,比如溶解气油比、原油体积系数、原油黏度、气体密度、气体黏度、
混合物黏度及表面张力等。

井下作业常用计算公式

井下作业常用计算公式

井下作业常用计算公式井下作业公司试油二十七队张新峰一、注水泥塞施工:1、水泥浆体积计算公式:①、()()001.0k 14h 2d -D 2⨯+=π液V 式中:V ——应配水泥浆的体积;LD ——套管外径:mmd ——套管壁厚:mmh ——设计水泥塞厚度:mk ——附加系数(0.3—1.0)②、()⨯-=210H H V 液V KV ——应配水泥浆的体积;LV 0——每米套管内容积;LH 1——注水泥塞时管柱尾深;mH 2——反洗井深度;mK ——取1.5③V=G )(211ρρρρρ--V ——配水泥浆的体积;LG ——所用干水泥用量;Kg1ρ——干水泥密度; 3.15L g K2ρ—— 水泥浆密度;1.853cm gρ——水的密度;13cm g2、干水泥用量:ρρρρρ--=121V GG ——所用干水泥用量;KgV ——配水泥浆的体积;L1ρ——干水泥密度; 3.15L g K2ρ—— 水泥浆密度;1.853cm gρ——水的密度;13cm g3、清水用量:1GV Q ρ-= Q —— 清水用量:LV ——应配水泥浆的体积;LG ——所用干水泥用量;Kg1ρ——干水泥密度; 3.15L gK4、顶替量:附液V V V V H 0111+⨯⎪⎭⎫⎝⎛-=V液V —— 顶替量;LH 1——注水泥塞时管柱尾深;mV ——应配水泥浆的体积;L11V ——套管容积减去油管体积的每米容积;L0v ——油管每米容积;m L二、 垫圈流量计测气U 型管测气计算公式:HG 1T 293178.0Q d 2⋅⋅⋅=式中:Q —— 天然气产量 m 3d —— 垫圈孔直径 mmT —— 热力学温度 (293-摄氏温度)G —— 天然气相对密度 0.62H —— U 型管液柱压差 mm三、压井液密度: )1(102k H p +⨯=ρ式中:ρ=压井液密度;P=地层中部压力;H=地层中部深度;K=附加系数(15%-30%);四、卡点的计算公式:P ⋅K =λL式中:L ——卡点深度 mλ——油管平均伸长 cmP ——油管平均拉伸拉力,KNK ——计算系数,(Φ73mm 油管2450Φ73mm 钻杆3800 Φ89mm 油管3750)系数的计算:K =2.1 X 1 04 X 4π(D 2—d 2)L :卡点深度(m )、K :系数(Φ73mm 油管2450 Φ73mm 钻杆3800 Φ89mm 油管3750)λ:平均伸长量(cm )、 P :平均拉力(KN )。

排液

排液

替喷:
是用密度较小的液体置换井筒内密度较大的液体,
通常称为替喷, 具有自喷能力的井经过替喷后, 即能
自喷油( 气) 或水进入分离器, 求产; 替喷工作液用量 V=2πr2h(1+k) 式中 V———替喷工作液用量,m3; r———套管内径半径,m; h———压井深度,m; k———附加量,取 0-15%。
1、抽汲工具: 1)抽子: 最常用的是水力式抽子。 2) 加重杆:在抽子以上连接2~4m 长的加重杆, 加重杆是直径32~40mm 钢管, 内根据加重的 需要灌铅; 3) 绳帽: 抽汲钢丝绳插入绳帽用灌铅的方法实 现两者的连接, 后来又发明了枣核式绳帽, 使 钢丝绳与绳帽实现可靠的连接。 4) 抽汲绳: 目前使用的抽汲绳大多数是直径 16mm 钢丝绳。
二次替喷
二是对不能自喷
的井, 通过提捞、抽
汲、气举、泵排等方
式将井筒的液体排出,
以降低液柱压力, 使 地层流体流向井筒后 再举到地面, 通常称 为排液。下面介绍几 P地层 P液柱
种常用的排液方式。
一、抽汲提捞排液: (一)、抽汲: 抽汲就是用一种专用工具将井内液体抽出 来, 达到降低井筒内液面、排出井内液体的目 的, 这种工具就是油管抽子。它接在钢丝绳上, 用通井机做动力, 通过地滑车、井架天车、防 喷盒、防喷管, 再下入油管中, 在油管中上下 运动。
6).起下作业时,必须记清滚筒上钢丝绳的层 数、圈数,且缠紧排齐。下至最大深度时,滚 筒余绳不能少于25圈并且作好记号; 7).抽汲前必须试下空抽子(无胶皮)或无球 (取出凡尔球)抽子,抽子下深至少要等于设 计抽汲之最大深度; 8).准确丈量下井钢丝绳、记清抽子下入深度, 并做好记号,不得随意估计
6) 抽子进入液面后下入的抽汲绳长度称为抽子的沉没 度, 抽子最大的沉没度一般不应超过500m。抽汲过程中 应做到慢下快起, 下放速度不应超过2m/ s , 起抽子速 度不小于3m/ s。若采用抽汲求产, 应用定抽汲深度、 定时间间隔、定起抽速度的“ 三定” 方法抽汲。 7)抽汲防喷盒应保证密封, 及时填加密封原料;装有液 压防喷盒的井要及时卸压, 防止防喷盒胶件的磨损或加 液压以提高密封效果; 装有气动防喷盒的井要及时卸压 和充气, 保证其密封性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档