外包钢_混凝土组合梁正截面受弯承载力试验(精)
钢筋混凝土梁正截面受弯性能实验报告

钢筋混凝土梁正截面受弯性能实验报告一、实验记录结果表应变与挠度记录表测点荷载钢筋应变混凝土应变με挠度mm荷载级数荷载值1 2 1 2 3 4 1 2 3 4 5 KN με预载0 -1 1 0 1 0 0 0.0030000.003 4 13 13 21 6 -3 -12 0.0030.1770.007-0.230.017 8 41 41 64 19 -8 -32 -0.060.3630.007-0.06012 98 83 141 46 -10 -59 -0.1530.5570.0070.10.017标准加载14 129 107 190 65 -9 -72 -0.1970.680.0070.20.013 16 162 130 224 89 -5 -83 -0.2370.80.0070.310.023 18 195 156 289 116 -3 -98 -0.2530.920.0070.4270.023 20 232 183 351 144 2 -112 -0.273 1.040.0130.5270.023 22 270 214 417 179 9 -127 -0.283 1.1630.0130.7670.017 24 311 245 497 224 19 -147 -0.31 1.30.090.7870.02 26 349 275 570 263 30 -155 -0.333 1.4370.2170.9730.023 28 386 305 643 300 37 -169 -0.36 1.5570.34 1.0270.017 32 450 368 769 361 51 -198 -0.38 1.820.583 1.270.017 34 487 401 838 395 56 -215 -0.37 1.940.727 1.407-0.007破坏加载38 552 475 964 459 68 -245 -0.38 2.217 1.043 1.68-0.013 42 618 540 1078 524 80 -275 -0.383 2.547 1.327 1.937-0.01 46 685 584 1208 610 96 -306 -0.38 2.783 1.637 2.237-0.007 50 750 655 1386 687 115 -335 -0.38 3.393 1.943 2.543-0.007 54 817 714 1510 776 139 -367 -0.38 3.403 2.273 2.88058 886 783 1645 853 153 -405 -0.38 4.2 2.74 3.413-0.00362 949 864 1781 928 164 -439 -0.39 4.757 3.42 3.973-0.003 66 1011 914 1895 991 172 -475 -0.3979.373 3.913 4.503-0.00370 1180 2487 2113 1133 273 -500 -0.4037.057 4.51 5.230.003二、实验现象描述及裂缝分布图如图,随着荷载的逐渐增大,梁逐渐出现裂缝并变大,且裂缝成斜向分布。
钢筋混凝土受弯构件正截面承载力实验指导书

钢筋混凝土受弯构件正截面承载力实验指导书钢筋混凝土受弯构件正截面承载力实验指导书1、试验目的通过少筋梁、适筋梁和超筋梁的试验,加深对受弯构件正截面三个工作阶段和两种破坏形态(塑性、脆性)的认识,并验证正截面强度计算公式。
2、试验内容和要求观察试件在纯弯区段的裂缝出现和展开过程,并记下抗裂荷载P00cr(Mcr) 量测试件在各级荷载下的跨中挠度值。
绘制梁跨中挠度的M—f图。
量测试件在纯弯区段沿截面高度的平均应变,绘制沿梁高度的应变分布图形。
观察和描绘试件破坏情况和特征,记下破坏荷载P0cr(M0cr)。
验证理论公式,并对试验值和理论值进行比较。
3、试件和试验方法试件试验梁为单筋矩形截面梁,混凝土强度等级为C20,试件尺寸和配筋指导教师指导,学生经设计计算确定。
主筋净保护层25mm。
试验设备 A千斤顶或压力机。
B百分表。
C手持式应变仪。
试验方法这次试验分少筋梁、适筋梁和超筋梁三组进行,每班分三个小组,每组十人左右。
试验梁在静力试验台和试验机上进行试验,加荷采用下面方法:A 用千斤顶和反力架进行二点加荷,或在压力机上用分配梁二点加荷直接读数。
B 用百分表测读挠度。
C 用手持式应变仪沿截面高度的平均应变。
仪表布置在实验教师指导下进行。
试验步骤A 在未加荷载前用百分表及手持式应变仪读初读数,用放大镜检查有无初始干缩裂缝。
B 加第一级荷载后读手持式应变仪,以量测梁未开裂时,沿梁截面高度的平均应变值。
C估计试验梁的抗裂荷载,在梁开裂前分三级加荷,如仍未开裂,再少加些,直至裂缝出现,记下荷载值P0cr(M0cr)。
每次加荷后,持荷五分钟后读百分表,以量测试件支座和跨中位移值。
百D 试验梁出现裂缝后至使用荷载之间分二次加荷,每次加荷五分钟后读百分表,至使用荷载时读应变仪,使用读数放大镜读取最大裂缝宽度。
E 使用荷载理论值Mu之间分三次加荷。
百分表每次都读,至第二次加荷后读应变仪,读后拆除百分表。
如第三次加荷后仍不破坏,再酌量加荷直至破坏。
钢筋混凝土梁受弯构件 正截面承载力实验

有技术、技术秘密、软件、算法及各种新的产品、工程、技术、系统的应用示范等。
第三条本办法所称科技成果转化,是指为提高生产力水平而对科学研究与技术开发所产生的具有实用价值的科技成果所进行的后续试验、开发、应用、推广直至形成新技术、新工艺、新材料、新产品,发展新产业等活动。
第四条科技成果转化应遵守国家法律法规,尊重市场规律,遵循自愿、互利、公平、诚实信用的厚则,依照合同的约定,享受利益,承担风险,不得侵害学校合法权益。
第二章组织与实施第五条学校对科技成果转化实行统一管理。
合同的签订必须是学校或具有独立法人资格的校内研究机构,否则科技成果转化合同的签订均是侵权行为,由行为人承担相应的法律责任。
第六条各学院应高度重视和积极推动科技成果转化工作,并在领导班子中明确分管本单位科技成果转化工作的负责人。
第七条学校科学技术处是学校科技成果转化的归口管理部门,是科技成果的申报登记和认定的管理机构,负责确认成果的权属并报批科技成果转化合同。
第八条学校科技成果可以采用下列方式进行转化:(一)自行投资实施转化;(二)向他人转让;(三)有偿许可他人使用;(四)以该科技成果作为合作条件,与他人共同实施转化;(五)以该科技成果作价投资,折算股份或者出资比例;(六)其它协商确定的方式。
第九条不论以何种方式实施科技成果转化,都应依法签订合同,明确各方享有的权益和各自承担的责任,并在合同中约定在科技成果转化过程中产生的后续改进技术成果的权属。
第十条对重大科研项目所形成的成果,或拟转让的、作价入股企业的、金额达到100万元的科技成果,应先到科学技术处申请、登记备案,并报请学校校长办公会审核、批准、公示后才能进行。
第十一条科技成果转让的定价主要采取协议定价方式,实行协议定价的,学校对科技成果名称、简介、拟交易价格等内容进行公示,公示期15天。
第十二条对于公示期间实名提出的异议,学校科学技术处组织不少于3人的行业专家进行论证,并将论证结果反馈至科技成果完成人和异议提出者,如任何一方仍有异议,则应提交第三方评估机构进行评估,并以评估结论为准。
钢-混凝土组合梁的抗弯承载力分析

使用 阶段主要 对组合 梁进 行截 面抗 弯承 载力 分 析计 算 。试 想 引 入一 种 弹 性模 型 , 即用 弹性 理 论 的基本 假定 , 限状态设 计思 想 , 许应 力表 达 极 允 方式来 设 计计 算 , 以弥 补模 型 建 立 时一 些 假 定 引
起 的较 大误 差 , 这种模 型为 实用计 算模 型 , 分 二 并
维普资讯
第 2 卷第 2期 1 20 0 8年 4月
常 州 工 学 院 学 报
J u n lo a z u I si e o c n l g o r a fCh ng ho n tt fTe h o o y ut
V o . No. I 21 2 Ap . 0 8 r2 0
本原 理 , 即加快 了工程施 工 进度 , 又改善 了纯钢 结
4 认 为 在荷 载 达 到 )
o : E s s 盯 c E c 。 s” : sc
之前 , 型 钢 和 内浇 U
构 的防腐 防火性 能 , 同时降低 了工 程造价 , 资 源 且 消耗 、 生态 环境等综 合效 益 明显提 高 。
钢 一 混 凝 土 组合 梁 的抗 弯 承载 力 分 析
赵 风 华
( 州工 学 院 土 木 工 程 学 院 , 苏 常 州 2 30 ) 常 江 102
摘要 : 结合 某六层钢 结 构工程 实例 , 引入 一种 钢一 混 凝 土组 合 梁 的 实用 计 算模 型 , 出了该 受 提 弯构件 在使 用阶段 正截 面抗 弯承载 力计 算方 法 , 以试验 为基 础进 行对 比分析 。研 究表 明 : 并 该组合 梁强屈 比 大 , 弯承 载 力高 , 工速度 快 , 用在 多层 及 小 高层 民用建 筑结构 中有其 独特 的优越 性 。 抗 施 运 关键 词 : 钢一 混 凝土 组合 梁 ; 弯承 载力 ; 算模 型 抗 计
外包花纹钢-混凝土组合梁弹性受弯性能

外包花纹钢-混凝土组合梁弹性受弯性能陈丽华;陈雷飞;屈创;徐如楠【摘要】A type of pattern steel encased concrete composite beam with profiled steel sheet was proposed ,and in order to study its elastic flexural performance under the influence of slip ,the static load test of six full size steel encased concrete composite beams was carried out .The load‐slip curves and the load‐deflection curves of the specimens were analyzed ,and the development law of deformation for composite beams with differentde‐gree of shear connection was inves tigated .Relevant calculation methods of elastic bearing capacity were estab‐lished according to whether consideration was given to slip effect or not .The test results showed that with the decrease of the shear connection degree , the flexural bearing cap acity and ductility of specimens also de‐creased .When the slip effect was ignored ,the average of the ratio of test value to the theoretical value was 0 .92 which had large error and the calculation results were unsafe .And when the slip effect was taken into consideration ,the average of the ratio of test value to the theoretical value was 1 .02 ,the calculation results were safe and in good agreement with the test results .%文章提出了一种外包花纹钢‐混凝土压型钢板组合梁,为研究其滑移影响下的弹性受弯性能,进行了6根足尺外包钢‐混凝土简支组合梁的静力加载试验。
外包钢_混凝土组合梁正截面受弯承载力试验(精)

第26卷第5期2005年9月江苏大学学报(自然科学版)JournalofJiangsuUniversity(NaturalScienceEdition) Vol.26No.5Sep.2005外包钢-混凝土组合梁正截面受弯承载力试验胡吉,石启印,李爱群112(1.江苏大学理学院,江苏镇江212013;2.东南大学混凝土与预应力混凝土结构教育部重点实验室,江苏南京210096)摘要:针对普通钢-混凝土组合梁存在的跨度不大、混凝土与型钢之间滑移、横向稳定性差等问题,提出一种新型的组合梁———外包钢-混凝土组合梁.为研究其抗剪性能,进行了三根足尺简支梁的试验,通过对构件静载试验结果的分析,认为外包钢-混凝土组合梁比同跨度普通组合梁具有更大跨高比及抗剪能力.基于组合梁弹性理论和简化塑性理论,提出新型组合梁的正截面承载力的建议计算公式,计算值与试验结果吻合良好.根据试验结果,提出适于外包钢-些工程构造措施.关键词:钢-混凝土组合梁;组合抗剪性能;;中图分类号:TU398;TU31711文献标识码:)05-0457-04entngcapacityofnormalcross2sectioninsteel2encasedconcretecompositebeamsHUJi,SHIQi2yin,LIAi2Quntion,SoutheastUniversity,Nanjing,Jiangsu210096,China)112(1.FacultyofScience,Jiangs uUniversity,Zhenjiang,Jiangsu212013,China;2.KeyLabofRCandPCStructureofMinistry ofEduca2Abstract:Aimingatsomeexistedproblemsofcommonsteel2concretebeam,anewtypeofcom positebeam,steel2encasedcompositebeam,isproposed.Tostudyitsanti2shearcapacity,expe rimentshavebeendoneonthreefullsizesimplesupportedsamples.Byanalyzingtheexperimen talresultsunderstaticloaditisfoundthatthiskindofbeamhaslargerspan2heightrateandbettera nti2shearperformance.Basedonthetheoryofcompositeelasticbeamandthesimplifiedplastic theory,atheoreticalformulaisproposedforthebearingcapacityofnormalsectionofthisnewty pebeam,whichprovestobeingoodagreementwiththeexperimentalresults.Accordingtothee xperimentalresults,somesuitableconstruc2tionmeasuresareproposedtofacilitateitsapplicat ioninrealengineering.Keywords:steel2encasedconcretecompositebeam;compositeanti2shearcapacity;bendingc apacity;plastictheory在钢结构和钢筋混凝土结构基础上发展起来的钢-混凝土组合梁,它兼有钢结构的受拉性能较好和混凝土结构的受压性能较好的优点,形成强度高、刚度大、延性好的结构形式,广泛地应用于楼盖体系中.但实践表明,该种形式的组合梁存在以下问题[1]得很大,一般不超过316m;②混凝土与型钢之间的连接没有得到很好的解决,两者之间的滑移和掀起不容忽视;③截面的横向稳定性差,型钢腹板在支座处容易发生失稳.针对钢-混凝土组合梁上述缺点,作者提出外包钢-混凝土组合梁形式.该种结构形式的组合梁:①受压型钢板跨度的影响,梁的跨度不宜做收稿日期:2005-02-28基金项目:江苏省自然科学基金资助项目(BK2004064);江苏省建设厅基金资助项目(JS200321)作者简介:胡吉(1966-),女,上海人,工程师(huji@),主要从事土木工程实验与测试研究.石启印(1964-),男,陕西渭南人,副教授(shiqiyin@),主要从事工程结构抗风抗震研究.458江苏大学学报(自然科学版)第26卷与传统组合梁的区别在于:以较厚钢板做底板,腹板采用较薄的冷弯薄壁型钢,两者通过焊缝连接形成U形截面,然后在U形截面内浇注混凝土,作为T形组合梁的肋部,翼缘为现浇板,钢与混凝土通过可靠的剪力连接件共同工作.这种结构形式的优点在于:钢梁可以在工厂装配,根据需要截面可做成各种形状,如Z型、U型、L型等.填充混凝土及布置的拉结钢筋加强了梁的整体性和稳定性,提高了梁的刚度,对于抵抗板与梁交界面处的纵向剪力起到了一定的作用,在北京银泰中心大楼楼盖体系方案设计中被采用.1试验111试件制作试验共设计外包钢-混凝土足尺简支梁3根,详细情况见表1和图1,材性试验见表2. 表1试件设计参数Tab.1Designedparametersofthesample编号SBD-1SBD-2SBD-3fck/MPa311729172618抗剪措施翼缘栓钉<18@360,底板栓钉<18@350,抗剪钢筋<8@250翼缘栓钉<18@350,底板栓钉<18@440,抗剪钢筋<8@250翼缘栓钉<18@350,底板栓钉<18@440,抗剪钢筋<8@250其他措施翼缘外翻80mm,配<18@450的拉条翼缘外翻80mm,配<18@500的拉条翼缘外翻80配<18@500的拉条表2Tab.2Mechanical试件厚度/mm41418试件宽度/mm30计算面积/300254254/410360365340400380/MPa500450595515585580伸长率/%30.027.016154.023.022.0弯曲试验(180°2a)合格合格合格为一个加载等级.11212测点布置量测应变的电阻应变片贴在梁跨中截面的型钢底板、腹部、钢筋、混凝土表面,以便了解外包钢-混凝土组合梁构件型钢、钢筋、混凝土的受力状态.型钢应变片、钢筋应变片标距为3mm×5mm,混凝土表面应变片标距为5mm×100mm.在加载过程中,应变片数据采用应变箱自动采集仪联机获取.另在支座、加载点和跨中位置布置百分表测量加载过程中构件的变形,试验装置见图2.应变片布置在跨中部位,截面厚度、混凝土板宽度以及型钢底板宽度的方向.图1构件截面示意图Fig.1Cross2sectionofcompositepart设计说明:混凝土强度等级均为C30,翼缘板内双向温度钢筋为<8@200,底部钢板的型号为Q345,腹板的型号为Q235,拉条和抗剪螺栓型号为HRB335,横向钢筋为<8@200.112试验方案11211加载方式与装置试验采用人工加载,加载装置使用量程为500kN的油压千斤顶(已使用压力机标定).在加载位置安放反力架并固定于地槽,千斤顶位于反力架和组合梁之间,通过分配钢梁将荷载传递到梁顶,见图2.试验过程中,采用同步加载,在组合梁底部钢板屈服前,以10kN为一个加载等级,屈服后改为5kN图2试验装置图Fig.2Experimentsetting113试验现象(1)SBD-1梁第5期胡吉等:外包钢-混凝土组合梁正截面受弯承载力试验459加载至165kN(P/Pu=01569,PU为极限荷载)时,梁端部混凝土与外包钢之间出现细小竖向粘结滑移裂缝.加载至235kN(P/Pu=0181)时,混凝土翼缘板的侧面出现细小纵向裂缝.加载至290kN时(P/Pu=110),梁一侧靠近加载点附近的纯弯段内混凝土翼缘板被压碎.直至破坏,底部钢板与混凝土之间没有出现剪切滑移,但梁的挠度较大.(2)SBD-2梁加载至255kN(P/Pu=01879)时,梁端部填充混凝土和底部钢板之间出现粘结滑移裂缝,跨中钢梁腹板与混凝土翼缘板之间出现纵向细小裂缝.继续加载,裂缝开展不大.加载至290kN时(P/Pu=110),混凝土翼缘板被压碎,整个加载过程中组合梁的端部粘结滑移裂缝都不明显.(3)SBD-3梁加载至130kN(P/Pu=01464),.载至140kN(P/Pu)时加载至215kN(P/Pu=01768)时,梁一端端部填充混凝土与底部钢板之间出现横向粘结滑移裂缝,加载至235kN(P/Pu=01839)时,梁的另一端端部填充混凝土与底部钢板之间出现细微的横向粘结滑移裂缝.加载至280kN(P/Pu=110)时,混凝土翼缘板被压碎.三根梁的破坏形式均为正截面受弯破坏.114试验结果及分析11411荷载-挠度从图3可以看出,在底部钢板屈服之前,挠度基有明显的屈服台阶,构件的屈强比较小.图4跨中梁底部钢板荷载-应变Fig.4Load2strainrelationshiponbottomsteelplateatmiddlespan11413荷载沿截面高度变化从图5可以看出,组合梁截面的应变基本符合平截面假定.本上随着荷载的增加呈线性增大;在屈服荷载以后,荷载-挠度曲线的斜率逐渐变小,构件的刚度逐步下降,破坏时,梁的挠度较大,构件表现出良好的延性性能.图5跨中应变沿截面高度分布Fig.5Distributionofstrainalongheightofcrosssectionatmiddlespan2理论分析图3跨中截面荷载-位移曲线Fig.3Load2displacementrelationshiponcross2sectionatmiddlespan211假定(1)平面应变符合平截面假定[2];(2)混凝土板与钢梁间有可靠的连接,可忽略11412荷载-应变从图4可以看出,三根梁破坏时钢梁底部均早已屈服,钢材的塑性性能发挥充分,承载能力都较大,说明梁能很好地共同工作.SBD-1、SBD-2梁滑移的影响;(3)不计受拉区混凝土的作用[3];(4)材料的应力-应变关系采用现行设计规范公式,式中混凝土峰值应变ε0=01002,混凝土极限460江苏大学学报(自然科学版)第26卷应变εcu=010033,钢材屈服应变εy根据试验结果取值,钢材极限应变εsu=01025,已考虑钢材的塑性变形的发展.212计算公式(1)中和轴在U型钢截面内.屈服荷载、极限荷载进行计算,并将计算值与相应的试验值进行了对比,由表3可见,两者吻合良好.表3理论计算值与试验值对比Tab.3Comparisonofcalculatedandexperimentalresults屈服荷载极限荷载试件计算值试验值计算值/计算值试验值计算值/My/My/试验值Mu/Mu/试验值M/M(kN・m)(kN・m)m)Mu/Muyy(kN・m)(kN・SBD-1444123921845011416144031043013110670197511050611175901161413638106381061610019590192301997SBD-2SBD-3由图6可知混凝土及钢截面纤维的应变分别为εc=φ(yc-y)εs=φ(y′-yc)式中φ为截面曲率,yc为中和轴到混凝土翼缘板顶部的距离,εc为距离混凝土板顶部距离为y处的混凝土应变,εs为距离混凝土板顶部距离为y′处的钢材应变.混凝土的应力-应变方程为εεccσc=fcε-,c≤ε0σc=fc,0εc式中fc由式(1)、(2)可得到:混凝土所受压力C1=C2=Asc(1)3结论,可以得到-,延.(2)梁截面应变符合平截面假定.在完全剪切连接情况下,抗弯承载力可以根据弹塑性理论计算,并可忽略滑移的影响.参考文献(References)[1]范旭红,石启印,马波.钢-混凝土组合梁的研究()σdA,钢材所受压力∫σdA,钢材所受拉力T=σdA,式中A∫∫AccsASSssc为受压的钢材的面积,ASS为受拉的钢材的面积,σc为距离混凝土板顶部距离为y处的混凝土应力,σs为距离混凝土板顶部距离为y′处的钢材应力.由X方向平衡方程σcd A+Ac与展望[J].江苏大学学报(自然科学版),2004,25(1):89-92.FANXu2hong,SHIQi2yin,MABo.Developmentandperspectiveofsteel2concretecomposit ebeams[J].Jour2nalofJiangsuUniversity(NaturalScienceEdition),6X=0,C1+C2=T,即ASS∫cAsc∫σsdA=∫σsdA(3)2004,25(1):89-92.(inChinese)[2]张耀春,毛小勇,曹宝珠.轻钢-混凝土组合梁的试验计算出yc.对混凝土和钢截面分别取矩得到M=Ac研究及非线性有限元分析[J].建筑结构学报,2003,σ(y∫c-y)dA+σs(y-yc)dAAs∫(4)24(1):26-33.ZHANGYao2chun,MAOXiao2yong,CAOBao2zhu.Ex2perimentalstudyandnonlinearfin iteelementanalysisoflightweightsteel2concretecompositebeam[J].JournalofBuildingStru ctures,2003,24(1):26-33.(inChi2nese)[3]林于东,宗周红.帽型截面钢-混凝土组合梁受弯强度[J].工业建筑,2002,32(9):11-13,59.图6截面尺寸及应变分布Fig.6Dimensionofcross2sectionanddistributionofstrain (neutralaxisinsteelbeam)LINYu2dong,ZONGZhou2hong.Bendingstrengthofcap2stylesectionofsteel2concreteco mpositebeam[J].IndustrialConstruction,2002,32(9):11-13,59.(in(2)中和轴在混凝土板内.与(1)类似,可推导出相应的设计计算公式.213理论计算值与试验值比较应用上文推导的理论计算公式,对三根试件的Chinese)(责任编辑陈持平)。
钢筋混凝土简支梁的正截面受弯承载力试验报告

5.随着试验的进行注意仪表及加荷装置的 粘贴好手持式应变仪的脚标,装好百分表
在标准荷载作用下持续时间不宜小于30min
在达到标准荷载以前,每级加载值不宜 大于标准荷载值的20%;超过标准荷载 值后,每级加载值不宜大于标准荷载值 的10%。
加载到达开裂荷载计算值的90%以后, 每级加载值不宜大于标准荷载值的5%。
加载到达破坏荷载计算值的90%以后, 每级加载值不宜大于标准荷载值的5%。
每级荷载的持续时间不应小于10min 在标准荷载作用下持续时间不宜小于
混凝土表面应变测点:纯弯段混凝土表面电阻 应变片测点为每侧四点(压区顶面一点,受拉 主筋处一点,中间两点),并在应变片测点处 对应地布置手持应变仪测点。
挠度测点布置:在跨中一点,支座各一点及分 配梁加载点各一点安装百分表。
进行1~3级预载,测读数据,观察试件、 装置和仪表工作是否正常并及时排除故 障。预加载值不宜超过试件开裂荷载计 算值的70%
将标准荷载下应变及挠度的计算值与实 测值进行比较
对梁的破坏形态和特征做出评定
六、虚拟演示
1、变形图(正视图) 2、变形图(轴测图) 3、位移图(正视图) 4、位移图(轴测图) 5、SZ应力图(正视图) 6、SZ应力图(轴测图) 7、MISE应力图(正视图) 8、 MISE应力图(轴测图)
试件材料的力学性能:钢筋和混凝土的 实测强度,钢筋和混凝土的弹性模量
根据实测截面尺寸和材料力学性能算出 梁的开裂荷载和破坏荷载,以及标准荷 载下的应变和挠度值
外包钢—混凝土组合梁正截面优化研究

通 过编制相 应的程序 进行 求解 , 进而对组合梁进行 了优化设计 , 并证 明了该优化方法 的正确性 、 有效性。 关键词 : 外包钢一混凝土组合梁 , 优化设计 , T A MA L B
中 图分 类 号 :U 9 T 38 文献 标 识 码 : A
0 引言
外包钢一混凝土 U形组 合梁是 在 由薄壁 冷弯型 钢与厚 钢板
中的常用形式 , 建立冷弯型钢上翼缘 内翻梁进行 优化设计 。设 控
制外 包钢一混凝土整个 截面变化 的设计 变量为 ( =12 3 … , i ,,, 1)写成矢量形式为 : 2 ,
=
3 m,。 5m h 表示 的是 自纵 向受拉钢筋 的合力点 到混凝 土受压 边缘
的距 离 。
设计 方案达到 最佳 的设 计 目标 , 主动 的 、 是 有规 律 的搜 索 过程 。 大体 可分为三个具 体步骤 : 1 建立数学模 型 ; ) 2 根据优化 目标 ; )
卜兰 卜兰
3 借助相关 的编程软 件 , 某种优 化理 论迭代 运算 , 到优 ) 按 达
化 目的 。
数据 , 提出 了外包钢一混凝土组合梁截面初步设 计时 需要注意 的
问题 。
1 优 化 数学模 型 的建立
目前 , 大多数的结构 设计 过程是先 假定 截 面尺寸 , 对其 进 再
行结构 内力分析 和构件 截 面验 算 , 如不满 足则 需要重新 设 计 , 此 过程 较为被动 。然 而结构 优化设 计则 是按 照某一优 化 的方法使
外 包 钢一 混 凝 土 组 合 梁 正 截 面 优 化 研 究
吴 文 慧
( 山西 省 交通 科 学研 究 院 , 山西 太原 00 0 30 6)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第26卷第5期2005年9月江苏大学学报(自然科学版)JournalofJiangsuUniversity(NaturalScienceEdition) Vol.26No.5Sep.2005外包钢-混凝土组合梁正截面受弯承载力试验胡吉,石启印,李爱群112(1.江苏大学理学院,江苏镇江212013;2.东南大学混凝土与预应力混凝土结构教育部重点实验室,江苏南京210096)摘要:针对普通钢-混凝土组合梁存在的跨度不大、混凝土与型钢之间滑移、横向稳定性差等问题,提出一种新型的组合梁———外包钢-混凝土组合梁.为研究其抗剪性能,进行了三根足尺简支梁的试验,通过对构件静载试验结果的分析,认为外包钢-混凝土组合梁比同跨度普通组合梁具有更大跨高比及抗剪能力.基于组合梁弹性理论和简化塑性理论,提出新型组合梁的正截面承载力的建议计算公式,计算值与试验结果吻合良好.根据试验结果,提出适于外包钢-些工程构造措施.关键词:钢-混凝土组合梁;组合抗剪性能;;中图分类号:TU398;TU31711文献标识码:)05-0457-04entngcapacityofnormalcross2sectioninsteel2encasedconcretecompositebeamsHUJi,SHIQi2yin,LIAi2Quntion,SoutheastUniversity,Nanjing,Jiangsu210096,China)112(1.FacultyofScience,Jiangs uUniversity,Zhenjiang,Jiangsu212013,China;2.KeyLabofRCandPCStructureofMinistry ofEduca2Abstract:Aimingatsomeexistedproblemsofcommonsteel2concretebeam,anewtypeofcom positebeam,steel2encasedcompositebeam,isproposed.Tostudyitsanti2shearcapacity,expe rimentshavebeendoneonthreefullsizesimplesupportedsamples.Byanalyzingtheexperimen talresultsunderstaticloaditisfoundthatthiskindofbeamhaslargerspan2heightrateandbettera nti2shearperformance.Basedonthetheoryofcompositeelasticbeamandthesimplifiedplastic theory,atheoreticalformulaisproposedforthebearingcapacityofnormalsectionofthisnewty pebeam,whichprovestobeingoodagreementwiththeexperimentalresults.Accordingtothee xperimentalresults,somesuitableconstruc2tionmeasuresareproposedtofacilitateitsapplicat ioninrealengineering.Keywords:steel2encasedconcretecompositebeam;compositeanti2shearcapacity;bendingc apacity;plastictheory在钢结构和钢筋混凝土结构基础上发展起来的钢-混凝土组合梁,它兼有钢结构的受拉性能较好和混凝土结构的受压性能较好的优点,形成强度高、刚度大、延性好的结构形式,广泛地应用于楼盖体系中.但实践表明,该种形式的组合梁存在以下问题[1]得很大,一般不超过316m;②混凝土与型钢之间的连接没有得到很好的解决,两者之间的滑移和掀起不容忽视;③截面的横向稳定性差,型钢腹板在支座处容易发生失稳.针对钢-混凝土组合梁上述缺点,作者提出外包钢-混凝土组合梁形式.该种结构形式的组合梁:①受压型钢板跨度的影响,梁的跨度不宜做收稿日期:2005-02-28基金项目:江苏省自然科学基金资助项目(BK2004064);江苏省建设厅基金资助项目(JS200321)作者简介:胡吉(1966-),女,上海人,工程师(huji@),主要从事土木工程实验与测试研究.石启印(1964-),男,陕西渭南人,副教授(shiqiyin@),主要从事工程结构抗风抗震研究.458江苏大学学报(自然科学版)第26卷与传统组合梁的区别在于:以较厚钢板做底板,腹板采用较薄的冷弯薄壁型钢,两者通过焊缝连接形成U形截面,然后在U形截面内浇注混凝土,作为T形组合梁的肋部,翼缘为现浇板,钢与混凝土通过可靠的剪力连接件共同工作.这种结构形式的优点在于:钢梁可以在工厂装配,根据需要截面可做成各种形状,如Z型、U型、L型等.填充混凝土及布置的拉结钢筋加强了梁的整体性和稳定性,提高了梁的刚度,对于抵抗板与梁交界面处的纵向剪力起到了一定的作用,在北京银泰中心大楼楼盖体系方案设计中被采用.1试验111试件制作试验共设计外包钢-混凝土足尺简支梁3根,详细情况见表1和图1,材性试验见表2. 表1试件设计参数Tab.1Designedparametersofthesample编号SBD-1SBD-2SBD-3fck/MPa311729172618抗剪措施翼缘栓钉<18@360,底板栓钉<18@350,抗剪钢筋<8@250翼缘栓钉<18@350,底板栓钉<18@440,抗剪钢筋<8@250翼缘栓钉<18@350,底板栓钉<18@440,抗剪钢筋<8@250其他措施翼缘外翻80mm,配<18@450的拉条翼缘外翻80mm,配<18@500的拉条翼缘外翻80配<18@500的拉条表2Tab.2Mechanical试件厚度/mm41418试件宽度/mm30计算面积/300254254/410360365340400380/MPa500450595515585580伸长率/%30.027.016154.023.022.0弯曲试验(180°2a)合格合格合格为一个加载等级.11212测点布置量测应变的电阻应变片贴在梁跨中截面的型钢底板、腹部、钢筋、混凝土表面,以便了解外包钢-混凝土组合梁构件型钢、钢筋、混凝土的受力状态.型钢应变片、钢筋应变片标距为3mm×5mm,混凝土表面应变片标距为5mm×100mm.在加载过程中,应变片数据采用应变箱自动采集仪联机获取.另在支座、加载点和跨中位置布置百分表测量加载过程中构件的变形,试验装置见图2.应变片布置在跨中部位,截面厚度、混凝土板宽度以及型钢底板宽度的方向.图1构件截面示意图Fig.1Cross2sectionofcompositepart设计说明:混凝土强度等级均为C30,翼缘板内双向温度钢筋为<8@200,底部钢板的型号为Q345,腹板的型号为Q235,拉条和抗剪螺栓型号为HRB335,横向钢筋为<8@200.112试验方案11211加载方式与装置试验采用人工加载,加载装置使用量程为500kN的油压千斤顶(已使用压力机标定).在加载位置安放反力架并固定于地槽,千斤顶位于反力架和组合梁之间,通过分配钢梁将荷载传递到梁顶,见图2.试验过程中,采用同步加载,在组合梁底部钢板屈服前,以10kN为一个加载等级,屈服后改为5kN图2试验装置图Fig.2Experimentsetting113试验现象(1)SBD-1梁第5期胡吉等:外包钢-混凝土组合梁正截面受弯承载力试验459加载至165kN(P/Pu=01569,PU为极限荷载)时,梁端部混凝土与外包钢之间出现细小竖向粘结滑移裂缝.加载至235kN(P/Pu=0181)时,混凝土翼缘板的侧面出现细小纵向裂缝.加载至290kN时(P/Pu=110),梁一侧靠近加载点附近的纯弯段内混凝土翼缘板被压碎.直至破坏,底部钢板与混凝土之间没有出现剪切滑移,但梁的挠度较大.(2)SBD-2梁加载至255kN(P/Pu=01879)时,梁端部填充混凝土和底部钢板之间出现粘结滑移裂缝,跨中钢梁腹板与混凝土翼缘板之间出现纵向细小裂缝.继续加载,裂缝开展不大.加载至290kN时(P/Pu=110),混凝土翼缘板被压碎,整个加载过程中组合梁的端部粘结滑移裂缝都不明显.(3)SBD-3梁加载至130kN(P/Pu=01464),.载至140kN(P/Pu)时加载至215kN(P/Pu=01768)时,梁一端端部填充混凝土与底部钢板之间出现横向粘结滑移裂缝,加载至235kN(P/Pu=01839)时,梁的另一端端部填充混凝土与底部钢板之间出现细微的横向粘结滑移裂缝.加载至280kN(P/Pu=110)时,混凝土翼缘板被压碎.三根梁的破坏形式均为正截面受弯破坏.114试验结果及分析11411荷载-挠度从图3可以看出,在底部钢板屈服之前,挠度基有明显的屈服台阶,构件的屈强比较小.图4跨中梁底部钢板荷载-应变Fig.4Load2strainrelationshiponbottomsteelplateatmiddlespan11413荷载沿截面高度变化从图5可以看出,组合梁截面的应变基本符合平截面假定.本上随着荷载的增加呈线性增大;在屈服荷载以后,荷载-挠度曲线的斜率逐渐变小,构件的刚度逐步下降,破坏时,梁的挠度较大,构件表现出良好的延性性能.图5跨中应变沿截面高度分布Fig.5Distributionofstrainalongheightofcrosssectionatmiddlespan2理论分析图3跨中截面荷载-位移曲线Fig.3Load2displacementrelationshiponcross2sectionatmiddlespan211假定(1)平面应变符合平截面假定[2];(2)混凝土板与钢梁间有可靠的连接,可忽略11412荷载-应变从图4可以看出,三根梁破坏时钢梁底部均早已屈服,钢材的塑性性能发挥充分,承载能力都较大,说明梁能很好地共同工作.SBD-1、SBD-2梁滑移的影响;(3)不计受拉区混凝土的作用[3];(4)材料的应力-应变关系采用现行设计规范公式,式中混凝土峰值应变ε0=01002,混凝土极限460江苏大学学报(自然科学版)第26卷应变εcu=010033,钢材屈服应变εy根据试验结果取值,钢材极限应变εsu=01025,已考虑钢材的塑性变形的发展.212计算公式(1)中和轴在U型钢截面内.屈服荷载、极限荷载进行计算,并将计算值与相应的试验值进行了对比,由表3可见,两者吻合良好.表3理论计算值与试验值对比Tab.3Comparisonofcalculatedandexperimentalresults屈服荷载极限荷载试件计算值试验值计算值/计算值试验值计算值/My/My/试验值Mu/Mu/试验值M/M(kN・m)(kN・m)m)Mu/Muyy(kN・m)(kN・SBD-1444123921845011416144031043013110670197511050611175901161413638106381061610019590192301997SBD-2SBD-3由图6可知混凝土及钢截面纤维的应变分别为εc=φ(yc-y)εs=φ(y′-yc)式中φ为截面曲率,yc为中和轴到混凝土翼缘板顶部的距离,εc为距离混凝土板顶部距离为y处的混凝土应变,εs为距离混凝土板顶部距离为y′处的钢材应变.混凝土的应力-应变方程为εεccσc=fcε-,c≤ε0σc=fc,0εc式中fc由式(1)、(2)可得到:混凝土所受压力C1=C2=Asc(1)3结论,可以得到-,延.(2)梁截面应变符合平截面假定.在完全剪切连接情况下,抗弯承载力可以根据弹塑性理论计算,并可忽略滑移的影响.参考文献(References)[1]范旭红,石启印,马波.钢-混凝土组合梁的研究()σdA,钢材所受压力∫σdA,钢材所受拉力T=σdA,式中A∫∫AccsASSssc为受压的钢材的面积,ASS为受拉的钢材的面积,σc为距离混凝土板顶部距离为y处的混凝土应力,σs为距离混凝土板顶部距离为y′处的钢材应力.由X方向平衡方程σcd A+Ac与展望[J].江苏大学学报(自然科学版),2004,25(1):89-92.FANXu2hong,SHIQi2yin,MABo.Developmentandperspectiveofsteel2concretecomposit ebeams[J].Jour2nalofJiangsuUniversity(NaturalScienceEdition),6X=0,C1+C2=T,即ASS∫cAsc∫σsdA=∫σsdA(3)2004,25(1):89-92.(inChinese)[2]张耀春,毛小勇,曹宝珠.轻钢-混凝土组合梁的试验计算出yc.对混凝土和钢截面分别取矩得到M=Ac研究及非线性有限元分析[J].建筑结构学报,2003,σ(y∫c-y)dA+σs(y-yc)dAAs∫(4)24(1):26-33.ZHANGYao2chun,MAOXiao2yong,CAOBao2zhu.Ex2perimentalstudyandnonlinearfin iteelementanalysisoflightweightsteel2concretecompositebeam[J].JournalofBuildingStru ctures,2003,24(1):26-33.(inChi2nese)[3]林于东,宗周红.帽型截面钢-混凝土组合梁受弯强度[J].工业建筑,2002,32(9):11-13,59.图6截面尺寸及应变分布Fig.6Dimensionofcross2sectionanddistributionofstrain (neutralaxisinsteelbeam)LINYu2dong,ZONGZhou2hong.Bendingstrengthofcap2stylesectionofsteel2concreteco mpositebeam[J].IndustrialConstruction,2002,32(9):11-13,59.(in(2)中和轴在混凝土板内.与(1)类似,可推导出相应的设计计算公式.213理论计算值与试验值比较应用上文推导的理论计算公式,对三根试件的Chinese)(责任编辑陈持平)。