基本初等函数部分典型例题

基本初等函数部分典型例题
基本初等函数部分典型例题

基本初等函数

指数与指数函数

1,图象

2

,复合函数定义域和值域

3,复合函数单调性

4,比较大小

5,换元法

典例题型:

1运算:

2概念

3.图像性质

Cbdd

B组

对数与对数函数:

5.

典型例题:

B组:

幂函数

1.定义

2.图象和性质

最新基本初等函数经典总结

第十二讲 基本初等函数 一:教学目标 1、掌握基本初等函数(指数函数、对数函数、幂函数)的基本性质; 2、理解基本初等函数的性质; 3、掌握基本初等函数的应用,特别是指数函数与对数函数 二:教学重难点 教学重点:基本初等函数基本性质的理解及应用; 教学难点:基本初等函数基本性质的应用 三:知识呈现 1.指数与指数函数 1).指数运算法则:(1)r s r s a a a +=; (2)()s r rs a a =; (3)()r r r ab a b =; (4)m n m n a a =; (5)m n n m a a -= (6),||,n n a n a a n ?=??奇偶 2). 指数函数:形如(01)x y a a a =>≠且 2.1)对数的运算: 1、互化:N b N a a b log =?= 2、恒等:N a N a =log 3、换底: a b b c c a log log log = 指数函数 01 图 象 表达式 x y a = 定义域 R 值 域 (0,)+∞ 过定点 (0,1) 单调性 单调递减 单调递增

推论1 a b b a log 1log = 推论2 log log log a b a b c c ?= 推论3 log log m n a a n b b m =)0(≠m 4、N M MN a a a log log log += log log log a a a M M N N =- 5、M n M a n a log log ?= 2)对数函数: 3.幂函数 一般地,形如 a y x =(a R ∈)的函数叫做幂函数,其中 a 是常数 1)性质: (1) 所有的幂函数在(0,+∞)都有定义,并且图象都通过点(1, 1); 对数函 数 01 图 象 表达式 log a y x = 定义域 (0,)+∞ 值 域 R 过定点 (1,0) 单调性 单调递减 单调递增

二次函数知识点总结及典型例题和练习(极好)

二次函数知识点总结及典型例题和练习(极好) 知识点一:二次函数的概念和图像 1、二次函数的概念 一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,特别注意a不为零,那么y叫做x 的二次函数。)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。 2、二次函数的图像 二次函数的图像是一条关于a b x 2-=对称的曲线,这条曲线叫抛物线。 抛物线的主要特征: ①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法--------五点作图法: (1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2与坐标轴的交点: 当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C,再找到点C 的对称点D。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。 当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D。由C 、M 、D 三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A 、B,然后顺次连接五点,画出二次函数的图像。 【例1】 已知函数y=x 2-2x-3, (1)写出函数图象的顶点、图象与坐标轴的交点,以及图象与 y 轴的交点关于图象对称轴的对称点。然后画出函数图象的草图; (2)求图象与坐标轴交点构成的三角形的面积: (3)根据第(1)题的图象草图,说 出 x 取哪些值时,① y=0;② y <0;③ y>0

知识点二:二次函数的解析式 二次函数的解析式有三种形式: (1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数, (2) 交点式:当抛物线c bx ax y ++=2与x 轴有交点时,即对应的一元二次方程 02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。如果 没有交点,则不能这样表示。 (3)顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数, 当题目中告诉我们抛物线的顶点时,我们最好设顶点式,这样最简洁。 【例1】 抛物线c bx ax y ++=2与x 轴交于A (1,0),B(3,0)两点,且过(-1,16),求抛物线的解析式。 【例2】 如图,抛物线c bx ax y ++=2与x 轴的一个交点A 在点(-2,0)和(-1,0)之间(包括这两点),顶点C 是矩形DEFG 上(包括边界和内部)的一个动点,则: (1)abc 0 (>或<或=) (2)a 的取值范围是 ? 【例3】 下列二次函数中,图象以直线x = 2为对称轴,且经过点(0,1)的是 ( ) A.y = (x ? 2)2 + 1 B .y = (x + 2)2 + 1 C .y = (x ? 2)2 ? 3 D.y = (x + 2)2 – 3

人教版高中数学知识与巩固·函数及其表示方法(基础)

人教版高中数学知识与巩固·函数及其表示方法(基础) 【学习目标】 (1)会用集合与对应的语言刻画函数,会求一些简单函数的定义域和值域,初步掌握换元法的简单运用. (2)能正确认识和使用函数的三种表示法:解析法,列表法和图象法.了解每种方法的优点.在实际情境中,会根据不同的需要选择恰当的方法表示函数. (3)求简单分段函数的解析式;了解分段函数及其简单应用. 【要点梳理】 要点一、函数的概念 1.函数的定义 设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数. 记作:y=f(x),x∈A. 其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域. 要点诠释: (1)A、B集合的非空性;(2)对应关系的存在性、唯一性、确定性;(3)A中元素的无剩余性;(4)B中元素的可剩余性。 2.构成函数的三要素:定义域、对应关系和值域 ①构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全—致,即称这两个函数相等(或为同一函数); ②两个函数相等当且仅当它们的定义域和对应关系完全—致,而与表示自变量和函数值的字母无关. 3.区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间; (2)无穷区间; (3)区间的数轴表示. 区间表示: <<= {x|a≤x≤b}=[a,b]; x a x b a b {|}(,); (] {|}, ≤<=; x a x b a b {|}, x a x b a b <≤=;[) (][) ≤=∞≤=+∞. x x b b x a x a {|}-,; {|}, 要点二、函数的表示法 1.函数的三种表示方法: 解析法:用数学表达式表示两个变量之间的对应关系.优点:简明,给自变量求函数值. 图象法:用图象表示两个变量之间的对应关系.优点:直观形象,反应变化趋势. 列表法:列出表格来表示两个变量之间的对应关系.优点:不需计算就可看出函数值. 2.分段函数: 分段函数的解析式不能写成几个不同的方程,而应写函数几种不同的表达式并用个左大括号括起来,并分别注明各部分的自变量的取值情况. 要点三、映射与函数 1.映射定义: 设A、B是两个非空集合,如果按照某个对应法则f,对于集合A中的任何一个元素,在集合B中都有唯一的元素和它对应,这样的对应叫做从A到B的映射;记为f:A→B. 象与原象:如果给定一个从集合A到集合B的映射,那么A中的元素a对应的B中的元素b叫做a的象,a叫做b的原象. 要点诠释: (1)A中的每一个元素都有象,且唯一;

初二函数知识点及经典例题.

第十八章 函数 一次函数 (一)函数 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。 *判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式 6、函数的图像 一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. 7、描点法画函数图形的一般步骤 第一步:列表(表中给出一些自变量的值及其对应的函数值); 第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。 8、函数的表示方法 列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。 解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。 图象法:形象直观,但只能近似地表达两个变量之间的函数关系。 (二)一次函数 1、一次函数的定义 一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。当0b =时,一次函数y kx =,又叫做正比例函数。 ⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式. ⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数. ⑷正比例函数是一次函数的特例,一次函数包括正比例函数.

基本初等函数专项训练经典题

一、简答题 1、设. (1)判断函数的奇偶性; (2)求函数的定义域和值域. 2、设函数 (Ⅰ)讨论的单调性; (Ⅱ)求在区间的最大值和最小值. 3、已知函数f(x)=x2+2ax+1(a∈R),f′(x)是f(x)的导函数. (1)若x∈[-2,-1],不等式f(x)≤f′(x)恒成立,求a的取值范围; (2)解关于x的方程f(x)=|f′(x)|; (3)设函数g(x)=,求g(x)在x∈[2,4]时的最小值. 4、经市场调查,某旅游城市在过去的一个月内(以30天计),旅游人数f(t)(万人)与时间t(天)的函数关系近似满足f(t)=4+,人均消费g(t)(元)与时间t(天)的函数关系近似满足g(t)=115-|t-15|. (1)求该城市的旅游日收益w(t)(万元)与时间t(1≤t≤30,t∈N*)的函数关系式; (2)求该城市旅游日收益的最小值(万元). 5、某商场对A品牌的商品进行了市场调查,预计2012年从1月起前x个月顾客对A品牌的商品的需求总量P(x)件与月份x的近似关系是: P(x)=x(x+1)(41-2x)(x≤12且x∈N*)

(1)写出第x月的需求量f(x)的表达式; (2)若第x月的销售量g(x)= (单位:件),每件利润q(x)元与月份x的近似关系为:q(x)=,问:该商场销售A品牌商品,预计第几月的月利润达到最大值?月利润最大值是多少?(e6≈403) 6、已知函数f(x)=x2-(1+2a)x+a ln x(a为常数). (1)当a=-1时,求曲线y=f(x)在x=1处切线的方程; (2)当a>0时,讨论函数y=f(x)在区间(0,1)上的单调性,并写出相应的单调区间. 7、某创业投资公司拟投资开发某种新能源产品,估计能获得10万元到1 000万元的投资收益.现准备制定一个对科研课题组的奖励方案:资金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%. (1)若建立函数y=f(x)模型制定奖励方案,试用数学语言表述该公司对奖励函数f(x)模型的基本要求,并分析函数y=+2是否符合公司要求的奖励函数模型,并说明原因; (2)若该公司采用模型函数y=作为奖励函数模型,试确定最小的正整数a的值. 8、已知函数图象上一点P(2,f(2))处的切线方程为. (Ⅰ)求的值; (Ⅱ)若方程在内有两个不等实根,求的取值范围(其中为自然对数的底,); (Ⅲ)令,如果图象与轴交于,AB中点为,求 证:. 9、已知命题p:函数y=log a(1-2x)在定义域上单调递增;命题q:不等式(a-2)x2+2(a-2)x-4<0对任意实数x 恒成立.若p∨q是真命题,求实数a的取值范围.

(完整版)高中数学必修4第一章知识点总结及典型例题,推荐文档

高中数学必修四 第一章 知识点归纳 第一:任意角的三角函数 一:角的概念:角的定义,角的三要素,角的分类(正角、负角、零角和象限角),正确理解角,与角终边 相同的角的集合 } {|2,k k z ββπα=+∈ , 弧度制,弧度与角度的换算, 弧长l r α=、扇形面积2112 2 s lr r α==, 二:任意角的三角函数定义:任意角α的终边上任意取一点p 的坐标是(x ,y ),它与原点的距离是22 r x y =+(r>0),那么角α的正弦r y a =sin 、余弦r x a =cos 、正切x y a =tan ,它们都是以角为自变量,以比值为函数值的函数。 三:同角三角函数的关系式与诱导公式: 1.平方关系: 22sin cos 1 αα+= 2. 商数关系: sin tan cos α αα = 3.诱导公式——口诀:奇变偶不变,符号看象限。 正弦 余弦 正切 第二、三角函数图象和性质 基础知识:1、三角函数图像和性质 1-1 y=sinx -3π2 -5π2 -7π2 7π2 5π2 3π2 π2 -π2 -4π-3π -2π4π 3π 2π π -π o y x 1-1y=cosx -3π2 -5π2 -7π 2 7π2 5π2 3π2 π2 -π2 -4π-3π -2π 4π 3π 2π π -π o y x

2、熟练求函数sin()y A x ω?=+的值域,最值,周期,单调区间,对称轴、对称中心等 ,会用五点法作 sin()y A x ω?=+简图:五点分别为: 、 、 、 、 。 3、图象的基本变换:相位变换:sin sin()y x y x ?=?=+

中考攻略:初中数学函数知识点大全+典型例题

初中数学函数知识点大全+典型例题 知识点一、二次函数的概念和图像 1、二次函数的概念 一般地,如果特)0,,(2≠++=a c b a c bx ax y 是常数,,特别注意a 不为零 那么y 叫做x 的二次函数。 )0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。 2、二次函数的图像 二次函数的图像是一条关于a b x 2- =对称的曲线,这条曲线叫抛物线。 抛物线的主要特征: ①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法 五点法: (1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2与坐标轴的交点: 当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。 当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。由C 、M 、D 三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称

点A 、B ,然后顺次连接五点,画出二次函数的图像。 知识点二、二次函数的解析式 二次函数的解析式有三种形式:口诀----- 一般 两根 三顶点 (1)一般 一般式:)0,,(2≠++=a c b a c bx ax y 是常数, (2)两根 当抛物线c bx ax y ++=2与x 轴有交点时,即对应二次好方程02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。如果没有交点,则不能这样表示。 a 的绝对值越大,抛物线的开口越小。 (3)三顶点 顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数, 知识点三、二次函数的最值 如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当 a b x 2-=时,a b a c y 442-=最值。 如果自变量的取值范围是21x x x ≤≤,那么,首先要看a b 2-是否在自变量取值范围21x x x ≤≤内,若在此范围内,则当x=a b 2-时,a b a c y 442-=最值;若不在此范围内,则需要考虑函数在21x x x ≤≤范围内的增减性,如果在此范围内,y 随x 的增大而增大,则当2x x =时, c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小;如果在此范围内,y 随x 的增大而减 小,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=222 最小。 知识点四、二次函数的性质 1、二次函数的性质

(全面突破)高考数学最新一轮复习 必考题型巩固提升 2.1函数及其表示学案

2.1函数及其表示 考情分析 1.主要考查函数的定义域、值域、解析式的求法. 2.考查分段函数的简单应用. 3.由于函数的基础性强,渗透面广,所以会与其他知识结合考查.基础知识 1.函数的基本概念 1.符号:f A B →表示集合A到集合B的一个映射,它有以下特点: (1)对应法则有方向性, :f A B →与:f B A →不同; (2)集合A中任何一个元素,在 f下在集合B中都有唯一的元素与对应; (3)象不一定有原象,象集C与B间关系是C B ?. 2.函数是特殊的映射,它特殊在要求集合A和B都是非空数集. 函数三要素是指定义域、值域、对应法则. 同一函数必须满足:定义域相同、对应法则相同. 3.分段函数是指函数由n个不同部分组成,但是一个函数. 4.函数解析式求法: (1)已知函数类型,可设参,用待定系数法;(2)已知复合函数 [(()] f g x的表达式,求() f x可 用换元法;(3)配凑法与方程组法. 注意事项 1.求复合函数y=f(t),t=q(x)的定义域的方法: ①若y=f(t)的定义域为(a,b),则解不等式得a<q(x)<b即可求出y=f(q(x))的定义域; ②若y=f(g(x))的定义域为(a,b),则求出g(x)的值域即为f(t)的定义域. 2.。(1)解决函数问题,必须优先考虑函数的定义域. (2)用换元法解题时,应注意换元前后的等价性. 3.。函数的三要素是:定义域、值域和对应关系.值域是由函数的定义域和对应关系所确定的.两个函数的定义域和对应关系完全一致时,则认为两个函数相等.函数是特殊的映射,映射f:A→B的三要素是两个集合A、B和对应关系f. 典型例题 题型一求函数的定义域 【例1】?求下列函数的定义域: (1)f(x)=|x-2|-1 log2x-1 ;

基本初等函数经典复习题+问题详解

()) 1,,,0(.4*>∈>=n N n m a a a n m n m x N N a a x =?=log 必修1基本初等函数 复习题 1、幂的运算性质 (1)s r s r a a a +=?),(R s r ∈; (2)rs s r a a =)(;),(R s r ∈ (3)()r r r ab b a =?)(R r ∈ 2、对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ○ 1()N M N M a a a log log log +=?; ○2 N M N M a a a log log log -=; ○ 3()R n M n M a n a ∈=,log log . ④1log ,01log ==a a a 换底公式:a b b c c a log log log = (0>a ,且1≠a ;0>c ,且1≠c ;0>b ) (1)b m n b a n a m log log = ;(2)a b b a log 1log =. 求函数的定义域时列不等式组的主要依据是: (1)偶次方根的被开方数不小于零; (2)对数式的真数必须大于零; (3)分式的分母不等于零;(4)指数、对数式的底必须大于零且不等于1. 4、函数单调区间与单调性的判定方法 (A) 定义法:○1 任取x 1,x 2∈D ,且x 1

函数概念典型例题

函数概念及其表示---典例分析 例1.下列各组函数中,表示同一函数的是( C ). 选题理由:函数三要素。 A. 1,x y y x == B. 11,y x y = += C. ,y x y == D. 2||,y x y == 点评:有利于理解函数概念,强化函数的三要素。 变式: 1.函数f (x )= 2(1)x x x ??+? ,0,0x x ≥< ,则(2)f -=( ). A. 1 B .2 C. 3 D. 4 例2.集合{}22M x x =-≤≤,{}02N y y =≤≤,给出下列四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是( B ). 选题理由:更好的帮助学生理解函数概念,同时也体现函数的重要表示法图像法,图形法是数形结合思想应用的前提。 变式: 1.下列四个图象中,不是函数图象的是(B ). 2.设集合A ={x |0≤x ≤6},B ={y |0≤y ≤2},从A 到B 的对应法则f 不是映射的是( ). A. f :x →y = 1 2x B. f :x →y = 1 3x C. f :x →y =1 4x D. f :x →y =1 6 x A. B. C. D.

函数的表达式及定义域—典例分析 【例1】 求下列函数的定义域: (1)1 21 y x = +-;(2 )y = . 选题理由:考查函数三要素,定义域是函数的灵魂。 解:(1)由210x +-≠,解得1x ≠-且3x ≠-, 所以原函数定义域为(,3)(3,1)(1,)-∞----+∞. (2 )由30 20 x -≥??≠,解得3x ≥且9x ≠, 所以原函数定义域为[3,9)(9,)+∞. 选题理由:函数的重要表示法,解析式法。 变式: 1 .函数y =的定义域为( ). A. (,1]-∞ B. (,2]-∞ C. 11(,)(,1]22-∞-- D. 1 1(,) (,1]2 2 -∞-- 2.已知函数()f x 的定义域为[1,2)-,则(1)f x -的定义域为( ). A .[1,2)- B .[0,2)- C .[0,3)- D .[2,1)- 【例2】已知函数1( )1x f x x -=+. 求: (1)(2)f 的值; (2)()f x 的表达式 解:(1)由121x x -=+,解得13x =-,所以1 (2)3f =-. (2)设11x t x -=+,解得11t x t -= +,所以1()1t f t t -=+,即1()1x f x x -=+. 点评:此题解法中突出了换元法的思想. 这类问题的函数式没有直接给出,称为抽象函数的研究,常常需要结合换元法、特值代入、方程思想等. 变式: 1.已知()f x =2x +x +1,则f =______;f [(2)f ]=______. 2.已知2(21)2f x x x +=-,则(3)f = . 【例 2】 已知f (x )=33x x -+?? (,1) (1,)x x ∈-∞∈+∞,求f [f (0)]的值. 选题理由:分段函数生活重要函数,是考察重点。 解:∵ 0(,1)∈-∞ , ∴ f 又 ∵ >1, ∴ f )3)-3=2+ 12=52,即f [f (0)]=5 2 . 点评:体现了分类讨论思想。 2.某同学从家里到学校,为了不迟到,先跑,跑累了再走余下的路,设在途中花的时间为 t ,离开家里的路程为d ,下面图形中,能反映该同学的行程的是( ).

函数的单调性知识点汇总及典型例题(高一必备)

第二讲:函数的单调性 一、定义: 1.设函数)(x f y =的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量的值21,x x ,当21x x <时,都有),()(21x f x f <那么就说)(x f 在区间D 上是增函数.区间D 叫)(x f y =的单调增区间. 注意:增函数的等价式子:0) ()(0)]()()[(2 1212121>--?>--x x x f x f x f x f x x ; 难点突破:(1)所有函数都具有单调性吗? (2)函数单调性的定义中有三个核心①21x x <②)()(21x f x f <③ 函数)(x f 为增函数,那么①②③中任意两个作为条件,能不能推出第三个? 2. 设函数)(x f y =的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量的值21,x x ,当21x x <时,都有),()(21x f x f >那么就说)(x f 在区间D 上是减函数.区间D 叫)(x f y =的单调减区间. 注意:(1)减函数的等价式子:0) ()(0)]()()[(21212121<--? <--x x x f x f x f x f x x ; (2)若函数)(x f 为增函数,且)()(,2121x f x f x x <<则. 题型一:函数单调性的判断与证明 例 1.已知函数)(x f 的定义域为R ,如果对于属于定义域内某个区间I 上的任意两个不同的自变量21,x x 都有 .0) ()(2 121>--x x x f x f 则( ) A.)(x f 在这个区间上为增函数 B.)(x f 在这个区间上为减函数 C.)(x f 在这个区间上的增减性不变 D.)(x f 在这个区间上为常函数

最新函数三要素经典习题(含答案)

函数的三要素练习题 (一)定义域 1 、函数()f x = ) A 、[2,2]- B 、(2,2)- C 、(,2)(2,)-∞-+∞ D 、{2,2}- 2 _ _ _; 定义域为________; [1,1]-; [4,9] 3、若函数(1)f x + (21)f x -的定义域是 ;函数 1(2)f x +的定义域为 。1][,)2 +∞ 4、知函数()f x 的定义域为[]1,1-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。11m -≤≤ 5、求下列函数的定义域 (1)2|1|)43(43 2-+--=x x x y 解:(1)???-≠≠?≠-+≥-≤?≥--3 102|1|410432x x x x x x x 且或 ∴x ≥4或x ≤-1且x ≠-3,即函数的定义域为 (-∞,-3 )∪(-3,-1)∪[4,+∞] (2)y = {|0}x x ≥ (3)0 1(21)1 11y x x = +-++(二)解析式 1. 设X={x|0≤x ≤2},Y={y|0≤y ≤1},则从X 到Y 可建立映射的对应法则是( ) (A )x y 32= (B )2)2(-=x y (C )24 1x y = (D )1-=x y 2. 设),(y x 在映射f 下的象是)2 ,2(y x y x -+,则)14,6(--在f 下的原象是( ) (A ))4,10(- (B ))7,3(-- (C ))4,6(-- (D ))2 7,23(-- 3. 下列各组函数中表示同一函数的是 (A )x x f =)(与2)()(x x g = (B )||)(x x x f =与?????-=22)(x x x g )0()0(<>x x (C )||)(x x f =与33 )(x x g = (D )1 1)(2--=x x x f 与)1(1)(≠+=t t x g 4. 已知函数y f x =+()1定义域是[]-23,,则y f x =-()21的定义域是( )

二次函数知识点总结及典型例题

二次函数知识点总结及典型例题 一、二次函数的概念和图像 1、二次函数的概念 一般地,如果)0,,(2 ≠++=a c b a c bx ax y 是常数,,那么y 叫做x 的二次函数。 )0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。 2、二次函数的图像 二次函数的图像是一条关于a b x 2-=对称的曲线,这条曲线叫抛物线。 抛物线的主要特征: ①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法---五点法: 二、二次函数的解析式 二次函数的解析式有三种形式: (1)一般式:)0,,(2 ≠++=a c b a c bx ax y 是常数, (2)顶点式:)0,,()(2 ≠+-=a k h a k h x a y 是常数, (3)当抛物线c bx ax y ++=2 与x 轴有交点时,即对应二次好方程0 2=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212 x x x x a c bx ax --=++,二次函数c bx ax y ++=2 可转化为两根式))((21x x x x a y --=。如果没有交点,则不能这 样表示。 三、抛物线c bx ax y ++=2 中,c b a ,,的作用 (1)a 决定开口方向及开口大小,这与2 ax y =中的a 完全一样. (2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2 的对称轴是直线 a b x 2- =,故:①0=b 时,对称轴为y 轴所在直线;②0>a b (即a 、b 同号)时,对称轴在y 轴左侧;③0

高一数学教案:函数及其表示

第一课时: 1.2.1 函数的概念(一) 教学要求:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素;能够正确使用“区间”的符号表示某些集合。 教学重点、难点:理解函数的模型化思想,用集合与对应的语言来刻画函数。 教学过程: 一、复习准备: 1. 讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系? 2 .回顾初中函数的定义:在一个变化过程中,有两个变量x 和y ,对于x 的每一个确定的值,y 都有唯一的值与之对应,此时y 是x 的函数,x 是自变量,y 是因变量. 表示方法有:解析法、列表法、图象法. 二、讲授新课: 1.教学函数模型思想及函数概念: ①给出三个实例: A .一枚炮弹发射,经26秒后落地击中目标,射高为845米,且炮弹距地面高度h (米)与时间t (秒)的变化规律是21305h t t =-. B .近几十年,大气层中臭氧迅速减少,因而出现臭氧层空洞问题,图中曲线是南极上空臭氧层空洞面积的变化情况.(见书P16页图) C .国际上常用恩格尔系数(食物支出金额÷总支出金额)反映一个国家人民生活质量的高低。“八五”计划以来我们城镇居民的恩格尔系数如下表. (见书P17页表) ②讨论:以上三个实例存在哪些变量?变量的变化范围分别是什么?两个变量之间存在着这样的对应关系? 三个实例有什么共同点? 归纳:三个实例变量之间的关系都可以描述为,对于数集A 中的每一个x ,按照某种对应关系f ,在数集B 中都与唯一确定的y 和它对应,记作::f A B → ③定义:设A 、B 是非空数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么称:f A B →为从集合A 到集合B 的一个函数(function ),记作:(),y f x x A =∈.

高中数学 函数知识点总结与经典例题与解析

函数知识点总结 知识点一、平面直角坐标系 1、平面直角坐标系 在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。 其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。 为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。 注意:x 轴和y 轴上的点,不属于任何象限。 2、点的坐标的概念 点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。 知识点二、不同位置的点的坐标的特征 1、各象限内点的坐标的特征 点P(x,y)在第一象限0,0>>?y x 点P(x,y)在第二象限0,0>?y x 2、坐标轴上的点的特征 点P(x,y)在x 轴上0=?y ,x 为任意实数 点P(x,y)在y 轴上0=?x ,y 为任意实数 点P(x,y)既在x 轴上,又在y 轴上?x ,y 同时为零,即点P 坐标为(0,0) 3、两条坐标轴夹角平分线上点的坐标的特征 点P(x,y)在第一、三象限夹角平分线上?x 与y 相等 点P(x,y)在第二、四象限夹角平分线上?x 与y 互为相反数 4、和坐标轴平行的直线上点的坐标的特征 位于平行于x 轴的直线上的各点的纵坐标相同。 位于平行于y 轴的直线上的各点的横坐标相同。5、关于x 轴、y 轴或远点对称的点的坐标的特征 点P 与点p ’关于x 轴对称?横坐标相等,纵坐标互为相反数 点P 与点p ’关于y 轴对称?纵坐标相等,横坐标互为相反数

高中数学函数及其表示典型经典例题精讲精练

函数及其表示 考点一 求定义域的几种情况 ①若f(x)是整式,则函数的定义域是实数集R; ②若f(x)是分式,则函数的定义域是使分母不等于0的实数集; ③若f (x)是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合; ④若f(x)是对数函数,真数应大于零。 ⑤.因为零的零次幂没有意义,所以底数和指数不能同时为零。 ⑥若f(x)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合; ⑦若f(x )是由实际问题抽象出来的函数,则函数的定义域应符合实际问题 考点二 映射个数公式 C ard(A)=m ,card(B)=n, m,n ∈N * ,则从A 到B 的映射个数为 n m 。简单说成“前指后底”。 方法技巧清单 方法一 函数定义域的求法 2.(2009江西卷理)函数 2 34 y x x = --+的定义域为? ?? ( ) A.(4,1)-- B .(4,1)- C.(1,1)- D.(1,1]- 解析 由2 10 1 1141 340x x x x x x +>>-????-<??.故选C 5.求下列函数的定义域。①y= 22+?-x x .②y= () x x x -+12 .③y= x x -+-11 6.已知函数f(x)的定义域为(),51,求函数F (x)=f(3x-1)-f(3x+1)的定义域。 1. 下列各组函数中表示同一函数的是( )A.y=5 5 x 和 x y 2 = B .y =ln e x 和 e x y ln = C. ()()() ()3131+=-+-= x y x x x y 和 D. x x y y 0 1 = = 和 2.函数y=f(x)的图像与直线x =2的公共点个数为 A. 0个B. 1个 C. 0个或1个 D. 不能确定 3.已知函数y= 22 -x 定义域为{}2,1.0,1-,则其值域为 方法三 分段函数的考察 ⅰ 求分段函数的定义域和值域 2x+2 x []0,1-∈ 1求函数f(x)= x 2 1- x()2,0∈ 的定义域和值域 3 x [)+∞∈ ,2

基本初等函数经典复习题+答案

必修1基本初等函数复习题 换底公式:log a b = logc b ( a 0,且 a=1 ; c 0,且 c = 1 ; b 0) log c a n 1 (1 ) log a m b n log a b ; ( 2) log a b ——. m log b a 3、定义域:能使函数式有意义的实数 x 的集合称为函数的定义域。 求函数的定义域时列不等式组的主要依据是: (1)偶次方根的被开方数不小于零; (2)对数式的真数必须大于零; (3)分式的分母不等于零;(4)指数、对数式的底必须大于零且不等于 1. 4、函数单调区间与单调性的判定方法 1、 幂的运算性质 (1 ) a r ala r s (r,s R); (3) a r b r =(ab J (^ R) 2、 对数的运算性质 如果 a 0,且 a=1 , M 0 , (Dog a M N = log a M log a N ; ?og a M n 二 n log a M , n R . r s rs (2) (a ) =a ; (r,s R) m (4)a n =Q a m (a >0, m, n ^ N *,n >1) a * 二 N := log a N 二 N 0,那么: M D log a log a M - log a N ; N ④ log 0, log 1

C 、 01的值域是( 3、若 M 二{y | y 二 2x }, P 二{y I y — x -1},贝y MAP ( 4、对数式b=loga/5-a)中,实数a 的取值范围是( ) A.a>5,或 a<2 B.2

一次函数知识点及典型例题复习

一次函数知识点 考点一:变量、常量及函数定义 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值, y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为是x 的函数。 ※判断A 是否为B 的函数,只要看B 取值确定的时候,A 是否有唯一确定的值与之对应 1、下列函数关系式中不是函数关系式的是( ) A. 21y x =+ B. 21y x =+ C. 1y x x =+ D. 22y x = 2、下列各图中表示y 是x 的函数图像的是 ( ) 考点二、自变量取值围:一般的,一个函数的自变量允许取值的围。 确定函数自变量取值围的方法: (1)必须使关系式成立。 ①当关系式为整式时,自变量取值围为全体实数; ②当关系式含有分式时,自变量取值围要使分式的分母的值不等于零; ③关系式含有二次根式时,自变量取值围必须使被开方的式子不小于零; ④当关系式中含有指数为零或负数的式子时,自变量取值围要使底数不等于零; (2)当函数关系表示实际问题时,自变量的取值围还要符合实际情况,使之有意义。 (3)当函数关系表示一个图形的变化关系时,自变量的取值围必须使图形存在。 1、函数31-= x y 的自变量x 的取值围是 2、函数3-=x y 的自变量x 的取值围是 3、函数()220x y x -=++的自变量x 的取值围是 4、小强在劳动技术课中要制作一个周长为10cm 的等腰三角形.请你写出底边长y (cm )与一腰长x (cm )的函数关系式,并写出自变量的取值围. 考点三、函数的图像与解析式的关系 1、函数的表示方法 (1 )列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数A B D

函数及其表示 精品教案

1.2 函数及其表示 [课标、大纲、考纲内容]: 函数的表示是本节的主要内容之一,学生在学习用集合与对应的语言刻画函数之前,比较习惯的是用解析式表示函数,但这是对函数很不全面的认识,教材从引进函数概念开始就比较注重函数的不同表示方法。函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念,结合信息技术的使用,使学生通过函数的学习更好地体会数形结合的思想方法。 1、重点:使学生在已有认识的基础上,学会用集合与对应的语言刻画函数概念,认识到函数是描述客观世界中变量间依赖关系的重要数学模型。 2、难点:对函数概念的整体性认识,对函数符号的理解。

第1课时 1.2.函数及其表示 【学习目标】 1、通过丰富的实例,使学生进一步体会函数是描述变量之间的依赖关系的重要数学模型 2、学习用集合语言刻画函数 3、理解构成函数的要素,会求一些简单函数的定义域并能够正确使用“区间”的符号表示某些函数的定义域。 4、使学生懂得一切事物都是在不断变化、相互联系和相互制约的辩证唯物主义观点。 【教学重难点】 1. 教学重点:体会函数是描述变量之间的依赖关系的重要数学模型,正确理解函数的概念 2. 教学难点:函数的概念及符号y=f(x)的理解 【教学过程设计】 (一)、复习初中所学函数的概念,强调函数的模型化思想; (二)、教学过程 一、情境引入:函数是数学中最主要的概念之一,而函数概念贯穿整个中学数学,如:数、式、方程、函数、排列组合、数列极限等都是以函数为中心的代数。加强函数教学可帮助学生学好其他的数学内容。而掌握好函数的概念是学好函数的基石。阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想: (1)炮弹的射高与时间的变化关系问题; (2)南极臭氧空洞面积与时间的变化关系问题; (3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题通过多教材上三个例子的研究,进一步体会函数是描述变量之间的依赖关系的重要数学模型。 二、合作交流 1.用集合语言刻画函数关键词语有哪些? 2.明确函数的三要素:定义域、值域、解析式 注意:因为以新的观点认识函数概念及函数符号与运用时,更重要的是必须给学生讲清楚概念及注意事项,并通过师生的共同讨论来帮助学生深刻理解,这样才能使函数的概念及符号的运用在学生的思

相关文档
最新文档