仪器分析第三章发射光谱
仪器分析课件 第3章 紫外分光光度法

检流计、数字显示、微机进行仪器自动控制
和结果处理
记录装置
二、分光光度计的类型
(一)单光束分光光度计
光源 单色器
参比 样品
检测器
显示器
• 只有一条光路,通过变换参比池和样品池的位 置,使它们分别置于光路来进行测定
国产751型、752型、721型、722型、UV-1100 型、英国SP-500型
E2a ca E2b
(3) 图计算法----两组分吸收光谱完全重叠--混合样品测定 (3)图中,a,b 吸收光谱双向重迭,互相干扰,在最大波长处互相
吸收。处理方法如下:
解线性方程组 过程:
(三)示差分光光度法(示差法)
普通分光光度法一般只适于测定微量组分,当待测组分含量 较高时,将产生较大的误差。需采用示差法。
第三节 紫外-可见分光光度计
依据朗伯-比尔定律,测定待测液吸光度A的仪器。(选择不同波
长单色光λ、浓度) 分光光度计外观 分光光度原理图:
0.575
光源
单色器
吸收池
检测器 信号处理及显示
信号处理 显示器
单色器
分光光度计外观
吸收池 检测器
光源
721型可见分光光度计
一、主要部件
1. 光源 在整个紫外光区或可见光谱区可以发射连续光
浓度C及液层厚度L的乘积成正比。
注意! 适用范围
①入射光为单色光,适用于可见、红外、紫外光。 ②均匀、无散射溶液、固体、气体。 ③吸光度A具有加和性。Aa+b+c= Aa &光系数
A=k c L
k = A /c L
1、摩尔吸光系数或Em: 在一定λ下,c=1mol/L,L=1cm时的吸光度。单位:L/(mol.cm)
大学《仪器分析》课件:第3章 原子光谱

例:钠原子,一个外层电子, S =1/2;因此: 2S +1 = 2;双重线; 碱土金属:两个外层电子, 自旋方向相同时, S =1/2 + 1/2 =1, M = 3;三重线; 自旋方向相反时, S =1/2 - 1/2 =0, M = 1;单重线;
11
一条谱线是原子的外层电子在两个能级之间的跃迁产生的, 可用两个光谱项符号表示这种跃迁或跃迁谱线:
第3章 原子光谱法基础
原子发射光谱法--依据每种化学元素的 原子或离子在热激发或电激发下,发射 特征的电磁辐射,进行元素定性、定量 分析的方法。 它是光学分析中产生与发展最早的一种 分析方法
1
❖ 原子发射光谱法包括三个主要的过程: 1.由光源提供能量使试样蒸发,形成气态原子,并进一步
使气态原子激发而产生光辐射;
14
四、谱线的自吸与自蚀
❖ 自吸:中心发射的辐射被 边缘的同种基态原子吸收, 使辐射强度降低的现象。
❖ 元素浓度低时,不出现自 吸。随浓度增加,自吸越 严重,当达到一定值时, 谱线中心完全吸收,如同 出现两条线,这种现象称 为自蚀。
❖ 基态原子对共振线的吸收 最严重。
15
第三节 原子发射光谱仪
❖ 光源、分光仪和检测器
的谱线,III表示二次电离离子发射的谱线。
3
二、能级与能级图
➢ 能级:电子在稳定状态所具有的能量称为能级。 ➢ 能级图:把原子系统内所有可能存在的能量为
零,高于基态的所有能量状态为激发态。
➢ 原子的能级通常用光谱项符号表示:n2S+1Lj n:主量子数;M(2S+1):谱线多重性符号; L:总角量子数; j:内量子数
例 钠原子的双重线 Na 588.996nm ; 32S1/ 2 — 32P3/ 2; Na 589.593nm ; 32S1/ 2 — 32P1/ 2;
仪器分析原理3原子荧光光谱与X射线荧光光谱分析

§3.2.3 X射线散射 X射线通过物质时的衰减现象部分是由散射引起的。根据 X射线的能量大小和原子内电子结合能的不同,散射可分 为弹性散射(瑞利散射)和非弹性散射(康普顿散射)。
1. 弹性散射(瑞利散射) 由相对能量较小(波长较长)的X射线与原子中束缚较紧 的电子(原子序数大的内层电子)发生弹性碰撞。
If =φIo A(1 – e–KlN)
括号内展开为级数,并忽略高次项,得到:
If =φIo AKlN
If =kC
在实验条件保持一定时,上式除了N之外,均可视 为常数。而且N和试样中被测元素的浓度C成正比。
此式为原子荧光定量分析的基础。
§3.1.3 量子效率和荧光猝灭
1. 量子效率 处于激发态的原子跃迁回到低能级时,可能发射共振 荧光,也可能发射非共振荧光,或者无辐射弛豫。 量子效率表示这些过程可能性的大小:
L层又产生一空穴。 因此,L→K的回落和Auger电子的逐出,使L层 出现两 空穴,即双重电离。
当出现双重电离时,会出现M→L跃迁,此跃迁放出的hυ 是卫星线。卫星线一般较弱,且随Auger增大而增大。对 重元素来说,卫星线的强度一般很低,因此,在X射线荧 光分析中没有什么重要意义。然而对轻元素来说,卫星线 可能相当强。
直跃荧光:激发态原子直接回到基态或高于基态的亚稳态 阶跃荧光: (1) 正常阶跃荧光为激发态原子先以非辐射方式失去部 分能量降到较低能级的激发态,然后去激发产生荧光。(2) 热助阶 跃荧光为被光照射激发的原子,跃迁至中间能级,又发生热激发
至高能级,然后返回至低能级发射的荧光。
3. 敏化荧光:激发态的原子D*不直接产生荧光,而是通 过碰撞原子A去激发,同时形成激发态A*,然后A*去 激发产生荧光。 D* + A → D + A*
仪器分析习题

第二章一.选择题1、符合吸收定律的稀溶液稀释时,其最大吸收峰波长位置:(C)A、向长波方向移动B、向短波方向移动C、不移动D、不移动,吸收峰值增大2、光学分析中,使用到电磁波谱,其中可见光的波长范围:A、10~400nm ,B、400~750nmC、0.75~2.5mD、0.1~100cm3、指出下列哪个化合物的紫外吸收波长最大:(D)A、CH3CH2CH3B、CH3CH2OHC、CH2=CHCH2CH=CH2D、CH3CH=CH-CH=CHCH34.下面哪一种电子能级跃迁需要的能量最高( A)A、σ→σ *B、n→σ *C、π→π *D、π→σ *6.在下列化合物中,π→π*跃迁所需能量最大的化合物是(B )A. 1,3-丁二烯B. 1,4-戊二烯C. 1,3-环已二烯D. 2,3-二甲基-1,3-丁二烯7.下列基团或分子中,能发生nπ→*跃迁的基团是(BC )A. C=CB. C=OC. C≡ND. CH3OH二、填空题1、分子内部的运动方式有三种,即:电子相对于原子核运动、和原子在其平衡位置的相对振动和分子本身的转动,相应于这三种不同的运动形式,分子具有电子远动能能级、振动能级和转动能级。
2 、R带是由nπ→* 跃迁引起,其特征是波长_较长;K带是由π→π* 跃迁引起,其特征是波长较短。
3、在紫外吸收光谱中,随着溶剂极性增加,R带_蓝移,K带将___红移。
三、名词解释1.σ→σ*:饱和烃类化合物由基态(σ)跃迁到激发态(σ*)。
此类跃迁需要的能量较高,一般吸收波长<150 nm。
2.π→π*:不饱和化合物由基态(π)跃迁到激发态(π*)。
此类跃迁需要的能量降较低,孤立的π→π*吸收波长一般<200 nm;共轭的π→π*吸收波长>200 nm。
共轭体系越长,跃迁所需能量越小,向长波长方向移动的程度越大,吸收强度越强(ε= 103--104)。
3.n→π*:含有杂原子的不饱和化合物由杂原子空轨道(n)跃迁到π反键轨道(π*)。
[精品]生物仪器分析第3讲(原子发射光谱法)
![[精品]生物仪器分析第3讲(原子发射光谱法)](https://img.taocdn.com/s3/m/07c3288765ce0508763213ef.png)
样中含有该元素,否则不含有该元素。
B.标准铁光谱图比较法
• 以铁光谱作为波长标尺 • 标有65种元素的480条特征谱线
Cr
12.3 5
47.3
Li
5
上标:谱线的强度级(1~10级) 下标:原子线(Ⅰ)与离子线(Ⅱ→ +、 Ⅲ→ 2+、Ⅳ→ 3+ ) 底标:波长十位后尾数,12.3→2712.3埃、47.3→ 2747.3埃
Aqp 为原子由q能态向p能态跃迁的概率 Iqp为谱线强度 N0基态原子数 Nq激发态原子数 gq 、g0 —激发态和基态的统计权重(粒子在某 一能级下可能具有的几种不同的状态数) Eq —激发电位 k —Boltzmann常数 T —温度K
谱线强度与激发能的关系:
当N0和T一定时,Eq越低,Nq越多,Apq越大, 谱线强度越强; Ipq与Eq呈反比关系。 每种元素的主共振线激发能最小,是原子中最易 激发的谱线,因此主共振线通常是最强的谱线。 谱线强度与温度的关系:
此即基于内标法原理的以摄谱法进 行光谱定量分析的基本关系式。
E、基体效应的影响
• 试样组份影响弧焰温度,弧焰温度又直接影响待 测元素的谱线强度,由于其它元素共存而影响待测 元素谱线强度的作用称为第三元素的影响或基体效 应,对于成分复杂的样品来说,第三元素的影响往 往是很显著的同并引起较大的分析误差。 • 为了减少试样成分对弧焰温度的影响,稳定弧焰 温度,经常加入一些光谱添加剂(如缓冲剂)。
ΔS = S分 –S内 = γ分logI分– γ内logI内=γlg(I分/I内)
将内标法定量分析的基本公式
logR=log(I分/ I内)= blogC+log K
代入前式(即左下式)得下列右式: ΔS = S分 –S内 ΔS = S分 –S内 = γ logR = γ分logI分– γ内logI内 = γ log(I分/ I内) =γlg(I分/I内) = γ blogC+ γ log K
曾永淮《仪器分析》荧光的激发光谱与发射光谱

荧光光谱表示在所发射的荧光中各种波长组分的相对强 度。绘制发射光谱时,使激发光波长固定在λex处,然后对 发射光谱扫描,测定各种波长下相应的荧光强度,以荧光强 度F对发射波长λ作图,得发射光谱图(即荧光光谱)。
荧光的激发光谱与发射光谱
单击输入您的封面副标题
荧光分子都具有两个特征光谱:
激发光谱和发射光谱(荧光光谱)
(1)荧光的激发光谱
激发光谱:表示不同激发波长下所引起 物质发射某一波长荧光的相对效率。
绘制激发光谱:固定发射波长(选最大 发射波长),然后以不同波长的入射光 激发荧光物质,以荧光强度F对激发波长 λ作图,即为激发光谱。
发射光谱(荧光光谱)的位置?
磷光光谱的位置?
激发光谱与发射光谱的关系
1、Stokes位移
荧光光谱总是位于物质激发光谱的长波一侧 ,即荧光波长大于激发光波 长的现象。
激发光谱与发射光谱之间的波长差值:
振动弛豫、外转换等无辐射跃迁损失了部分能量。
2、荧光光谱的形状与激发波长无关
电子可以跃迁到不同激发态能级,吸收不同波长的能量(如能级图λ1、 λ2) ,产生不同吸收带,但荧光光谱却只有一个发射态,如λ3。
为什么?
3、镜像对称规则 由于电子基态的振动能级分布与激发态相似,故通常荧 光光谱与它的激发光谱成镜像对称关系。
各小峰波长 递减值与振 动能级差有 关,各小峰 的高度与跃 迁几率有关。
基态上的各振动能级分布与第一激发态上的各振 动能级分布类似;
基态上的某振动能级若跃迁到第一激发态的某振 动能级的几率较大的话,相反跃迁也如此。
仪器分析笔记 《原子发射光谱分析》

第三章原子发射光谱分析§3.1 光化学分析法概述3.1.1 光化学分析法概述1、光学分析法的分类光学分析法分为光谱法和非光谱法两类。
✓光谱法:基于物质与辐射能作用时,测量由物质内部发生量子化的能级之间的跃迁而产生的发射、吸收或散射辐射的波长和强度进行分析的方法。
✓非光谱法:不涉及物质内部能级的跃迁,是基于物质与辐射相互作用时,电磁辐射只改变了传播方向、速度或某些物理性质,如折射、散射、干涉、衍射、偏振等变化的分析方法(即测量辐射的这些性质)。
属于这类分析方法的有折射法、偏振法、光散射法、干涉法、衍射法、旋光法和圆二向色性法等。
2、电磁波谱电磁辐射按照波长(或频率、波数、能量)大小的顺序排列就得到电磁波谱。
表3-1-1 各光谱区的光谱分析方法3、各种光分析法简介A、发射光谱法∙γ射线光谱法∙x射线荧光分析法∙ 原子发射光谱分析 ∙ 原子荧光分析法 ∙ 分子荧光分析法 ∙ 分子磷光分析法 ∙ 化学发光分析 B 、吸收光谱法 ∙ 莫斯堡谱法∙ 紫外可见分光光度法 ∙ 原子吸收光谱法 ∙ 红外光谱法∙ 顺磁共振波谱法 ∙ 核磁共振波谱法 C 、散射∙ Roman 散射4、原子发射光谱分析法的特点①可多元素同时检测:各元素同时发射各自的特征光谱;②分析速度快:试样不需处理,同时对几十种元素进行定量分析(光电直读仪); ③选择性高:各元素具有不同的特征光谱;④检出限较低:10~0.1μg ⋅g -1(一般光源);ng ⋅g -1(ICP ) ⑤准确度较高:5%~10% (一般光源); <1% (ICP);⑥ICP-AES 性能优越:线性范围4~6数量级,可测高、中、低不同含量试样; ⑦非金属元素不能检测或灵敏度低。
3.1.2 原子光谱与原子光谱分析法直接相关的原子光谱理论,主要指原子光谱的产生和谱线强度理论,这就是光谱定性、定量分析的理论依据。
1、原子光谱的产生量子力学认为,原子光谱的产生,是原子发生能级跃迁的结果,而跃迁几率的大小则影响谱线的强度,并决定了跃迁规则。
分析化学仪器分析第三版答案

分析化学仪器分析第三版答案【篇一:仪器分析第五版习题及答案】/p> 1、主要区别:(1)化学分析是利用物质的化学性质进行分析;仪器分析是利用物质的物理或物理化学性质进行分析;(2)化学分析不需要特殊的仪器设备;仪器分析需要特殊的仪器设备;(3)化学分析只能用于组分的定量或定性分析;仪器分析还能用于组分的结构分析;(3)化学分析灵敏度低、选择性差,但测量准确度高,适合于常量组分分析;仪器分析灵敏度高、选择性好,但测量准确度稍差,适合于微量、痕量及超痕量组分的分析。
2、共同点:都是进行组分测量的手段,是分析化学的组成部分。
1-5分析仪器与仪器分析的区别:分析仪器是实现仪器分析的一种技术设备,是一种装置;仪器分析是利用仪器设备进行组分分析的一种技术手段。
分析仪器与仪器分析的联系:仪器分析需要分析仪器才能达到量测的目的,分析仪器是仪器分析的工具。
仪器分析与分析仪器的发展相互促进。
1-7因为仪器分析直接测量的是物质的各种物理信号而不是其浓度或质量数,而信号与浓度或质量数之间只有在一定的范围内才某种确定的关系,且这种关系还受仪器、方法及样品基体等的影响。
因此要进行组分的定量分析,并消除仪器、方法及样品基体等对测量的影响,必须首先建立特定测量条件下信号与浓度或质量数之间的关系,即进行定量分析校正。
第二章光谱分析法导论2-1光谱仪的一般组成包括:光源、单色器、样品引入系统、检测器、信号处理与输出装置。
各部件的主要作用为:光源:提供能量使待测组分产生吸收包括激发到高能态;单色器:将复合光分解为单色光并采集特定波长的光入射样品或检测器;样品引入系统:将样品以合适的方式引入光路中并可以充当样品容器的作用;检测器:将光信号转化为可量化输出的信号。
信号处理与输出装置:对信号进行放大、转化、数学处理、滤除噪音,然后以合适的方式输出。
2-2:单色器的组成包括:入射狭缝、透镜、单色元件、聚焦透镜、出射狭缝。
各部件的主要作用为:入射狭缝:采集来自光源或样品池的复合光;透镜:将入射狭缝采集的复合光分解为平行光;单色元件:将复合光色散为单色光(即将光按波长排列)聚焦透镜:将单色元件色散后的具有相同波长的光在单色器的出口曲面上成像;出射狭缝:采集色散后具有特定波长的光入射样品或检测器2-3棱镜的分光原理是光的折射。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
影响谱线强度的因素:
Iij = NiAijhij= N0 gj/g0e (-E / kT)NiAijhij
激发电位和电离电位 谱线强度与激发电位成负指数关
系。在温度一定时,激发电位越高, 处于该能量状态的原子数越少,谱 线强度越小。激发电位最低的共振 线通常是强度最大的线。
可编辑版
17
影响谱线强度的因素:
电离电位:使原子电离所需的最低能量
(离子)激发电位:离子中的外层电子被 激发所需的能量
可编辑版
10
2、发射线的波长
X+h(电,热)X* X*X+h(光能)
X:基态原子,X* :激发态原子
E=E2-E1=h=hc/=hc hc
E
可编辑版
11
2、发射线的波长
原子的外层电子由高能级向低能级 跃迁,能量以电磁辐射的形式发射出去, 这样就得到发射光谱,原子发射光谱是 线状光谱。
可编辑版
24
发射谱线的宽度比吸收谱线的宽度大,所以, 谱线中心的吸收程度要比边缘部分大,因而使谱线 出现“边强中弱”的现象。当自吸现象非常严重时, 谱线中心的辐射将完全被吸收,这种现象称为自蚀。
1 2 3
影响自吸和自蚀的因素 谱线的固有强度 弧层厚度 溶液浓度
设i、j两能级之间的跃迁所产生的谱线强 度Iij表示,则
Iij = NiAijhij A数ij,为Ni、ii为j为j两单发能位射级体谱间积线的内的跃处频迁于率几高。率能,级hi的为原普子朗数克,常
可编辑版
14
3、发射谱线的强度 Ni = N0 gj/g0e (-Ei / kT)
的的计数原原权,子子T重式为数数,中激,,EN发i为i Ng为温i激,0为单度发g单位0。为电位体激位体积发,积内态k内处为和处于玻基于激兹态基发曼的态态常统
可编辑版
8
基态:原子所处的最稳定状态,此时它 的能量最低
激发态:原子获得足够的能量后,外层 电子从低能级跃迁到高能级后所处的状 态
(原子)激发电位:Ej,将原子中的一个 外层电子从基态跃迁到激发态所需的能
量,单位 ev
可编辑版
9
电离:当外界的能量足够大时,可把原 子中的电子激发至无穷远处,也即脱离 原子核的束缚,使原子发生电离成为带 正电的离子的过程
4、原子发射光谱图
元素标准光谱图
可编辑版
20
可编辑版
21
5、谱线的自吸和自蚀
自吸和自蚀
影响自吸和自蚀的因素 谱线的固有强度 弧层厚度 溶液浓度
可编辑版
22
自吸和自蚀
发射光谱是通过物质的蒸发、激发、 迁移和射出弧层而得到的。在一般光 源中,是在弧焰中产生的,弧焰具有 一定的厚度,如下图:
a
定性分析依据:发射线的波长
可编辑版
12
原子发射线的表示
以Na的发射线为例 NaⅠ Na原子激发电位 5895.923A NaⅡ Na原子一次电离后的激发电位 2802.700A 其中Ⅰ:原子发射的谱线
Ⅱ:一次电离离子发射的谱线 Ⅲ:二次电离离子发射的谱线 其他依次类推
可编辑版
13
3、发射谱线的强度
发射光谱的分析过程 发射线的波长 发射谱线的强度 原子发射光谱图 谱线的自吸和自蚀
可编辑版
3
1、发射光谱的分析过程
激发态原子
外 层 电 子 跃
基态原迁子
光电法 摄谱法
原子化
热或电
可编辑版
光电倍增管 感光板
气态分子
气 化
样品分子
4
原子发射光谱示意图
可编辑版
5
一般情况下,原子处于基态, 在激发光源作用下,原子获得能 量,外层电子从基态跃迁到较高 能态变为激发态 ,约经10-8 s, 外层电子就从高能级向较低能级 或基态跃迁,多余的能量的发射 可得到一条光谱线。
第三章 原子发射光谱法
Atomic Emission Spectrometry,AES
可编辑版
1
特点: 优点——灵敏度高、简便快速、可靠性高、
所需原料少 缺点——不能分析有机物及大部分非金属元素,
仪器设备复杂、昂贵。
应用:矿石、金属、合金、半导体等试样中的杂质 分析。
可编辑版
2
一、原子发射光谱分析的基本原理
激发温度 温度升高,谱线强度增大。但温度升高,
电离的原子数目也会增多,而相应的原子数减 少,致使原子谱线强度减弱,离子的谱线强度 增大。 基态原子数
谱线强度与基态原子数成正比。在一定的 条件下,基态原子数与试样中该元素浓度成正 比。因此,在一定的条件下谱线强度与被测元 素浓度成正比,这是光谱定量分析的依据。
可编辑版
18
发射线的强度Biblioteka Iij = NiAijhij
Aij:i、j两能级间的跃迁几率, ij:发射谱线的频率。
试样浓度C Iij正比于Ni。在一定的条件下, C ,Iij 。
激发电位和电离电位Ej
在T一定时, E ,Ni , Iij 振线通常是强度最大的线。
。激发电位最低的共
激发温度T
T , Iij 。但温度升高,原子电离增多,原子数减少, 使原子谱线强度减弱,离子的谱线强度增大。
可编辑版
6
原子中某一外层电子由基态激发 到高能级所需要的能量称为(原子) 激发电位。
原子光谱中每一条谱线的产生各有 其相应的激发电位。由激发态向基态 跃迁所发射的谱线称为共振线。共振 线具有最小的激发电位,因此最容易 被激发,为该元素最强的谱线。
可编辑版
7
当外界的能量足够大时,可 把原子中的电子激发至无穷远处, 也即脱离原子核的束缚,使原子 发生电离成为离子的过程,使原 子电离所需的最低能量叫电离电 位。离子也可能被激发,离子中 的外层电子被激发所需的能量叫 (离子)激发电位。
可编辑版
15
Iij = NiAijhij
影响谱线强度的因素: Ni = N0 gj/g0e (-E / kT) 统计权重
谱线强度与激发态和基态的统计 权重之比成正比。 跃迁几率
谱线强度与跃迁几率成正比。跃 迁几率是一个原子在单位时间内两 个能级之间跃迁的几率,可通过实 验数据计算。
可编辑版
16
b
可编辑版
23
a
b
自吸和自蚀
弧焰中心a的温度最高,边缘b的温度较低。由 弧焰中心发射出来的辐射光,必须通过整个弧焰 才能射出,由于弧层边缘的温度较低,因而这里 处于基态的同类原子较多。这些低能态的同类原 子能吸收高能态原子发射出来的光而产生吸收光 谱。
原子在高温时被激发,发射某一波长的谱线, 而处于低温状态的同类原子又能吸收这一波长 的辐射,这种现象称为自吸现象。