悬架用减振器设计指南

合集下载

悬架设计指南

悬架设计指南

设计指南(弹簧、稳定杆)不管悬架的类型如何演变,从结构功能而言,它都是有弹性元件、减振装置和导向机构三部分组成。

一 弹性元件弹性元件主要作用是传递车轮或车桥与车架或车身之间的垂直载荷,并依靠其变形来吸收能量,达到缓冲的目的。

在现用的弹性元件中主要有三种;(1)钢板弹簧,(2)扭杆弹簧,(3)螺旋弹簧。

钢板弹簧设计板弹簧具有结构简单,制造、维修方便;除作为弹性元件外,还兼起导向和传递侧向、纵向力和力矩的作用;在车架或车身上两点支承,受力合理;可实现变刚度,应用广泛。

(一) 钢板弹簧布置方案1.1钢板弹簧在整车上布置(1) 横置;这种布置方式必须设置附加的导向传力装置,使结构复杂,质量加大,只在少数轻、微车上应用。

(2) 纵置;这种布置方式的钢板弹簧能传递各种力和力矩,结构简单,在汽车上得到广泛应用。

1.2 纵置钢板弹簧布置(1) 对称式;钢板弹簧中部在车轴(车桥)上的固定中心至钢板弹簧两端卷耳中心之间的距离相等,多数汽车上采用对称式钢板弹簧。

(2) 非对称式;由于整车布置原因,或者钢板弹簧在汽车上的安装位置不动,又要改变轴距或通过变化轴荷分配的目的时,采用非对称式钢板弹簧。

(二)钢板弹簧主要参数确定初始条件:1G ~满载静止时汽车前轴(桥)负荷2G ~满载静止时汽车后轴(桥)负荷1U G ~前簧下部分荷重2U G ~后簧下部分荷重1W F =(G 1-G 1U )/2 ~前单个钢板弹簧载荷2W F =(G 2-G 2U )/2 ~后单个钢板弹簧载荷c f ~悬架的静挠度;d f -悬架的动挠度1L ~汽车轴距;1、 满载弧高a f满载弧高指钢板弹簧装在车轴(车桥)上,汽车满载时钢板弹簧主片上表面与两端(不包括卷耳孔半径)连线间的最大高度差。

a f 用来保证汽车具有给定的高度。

当a f =0时,钢板弹簧在对称位置上工作。

为在车架高度已确定时得到足够的动挠度,常取a f = 10~20mm 。

2、 钢板弹簧长度L 的确定L —指弹簧伸直后两卷耳中心间的距离(1)钢板弹簧长度对整车影响当L 增加时:能显著降低弹簧应力,提高使用寿命;降低弹簧刚度,改善汽车平顺性;在垂直刚度C 给定的条件下,明显增加钢板弹簧纵向角刚度;减少车轮扭转力矩所引起的弹簧变形;原则上在总布置可能的条件下,尽可能将钢板弹簧取长些。

汽车悬置系统设计指南(二)2024

汽车悬置系统设计指南(二)2024

汽车悬置系统设计指南(二)引言概述:汽车悬置系统设计是汽车工程领域中非常重要的一个方面。

本文旨在为汽车设计师提供关于汽车悬置系统设计的指南,以帮助他们在设计过程中考虑到各种因素,以确保悬置系统的有效性和可靠性。

正文:一、悬置系统的类型和原理1.1 独立悬置系统的优势1.2 铰接式悬置系统的设计考虑1.3 多连杆悬置系统的运动特点1.4 气垫悬置系统的工作原理1.5 承载悬置系统的功能要求二、悬置系统的减震调节2.1 减震器的类型和工作原理2.2 减震调节器的功能和调节方法2.3 减震器的选型和安装位置2.4 减震调节器的维护和保养2.5 减震系统的调试和优化三、悬置系统的悬架调节3.1 弹簧的选择和设计要点3.2 悬挂点的位置和几何参数的优化3.3 悬架系统的调节方法3.4 悬挂弹簧的安装和维护3.5 悬架系统的整体调试和优化四、悬置系统的动力学特性4.1 悬架系统的悬挂刚度和阻尼常数4.2 车辆的悬架减震参数的测量和计算4.3 车辆行驶时的悬架系统动力学分析4.4 加速度和姿态控制对悬架系统的影响4.5 悬架系统的动力学性能评估和改进五、悬置系统的材料和制造工艺5.1 悬置系统材料的选择和性能要求5.2 悬置系统零部件的制造工艺5.3 悬置系统的装配和调试要点5.4 悬置系统的质量控制和检测方法5.5 悬置系统的寿命评估和更新策略总结:本文系统地介绍了汽车悬置系统的设计指南,包括悬置系统类型和原理、减震调节、悬架调节、动力学特性以及材料和制造工艺。

通过对这些方面的详细讨论,汽车设计师将能够更好地理解和应用汽车悬置系统的设计原则,以提高汽车的悬挂性能、安全性和驾驶舒适度。

螺旋弹簧横向稳定杆减振器设计指南

螺旋弹簧横向稳定杆减振器设计指南
求出缸径后,参照 JB1459 标准,选择合适的标准工作缸径。
减振器储油缸直径 Dc = (1.35 ~ 1.57)D ,工作缸与储油缸壁厚一般取 1.5~2.0 mm 。
选择减振器尺寸时主要考虑一下两点:在工作速度范围内油液压力适当,能够得到稳定的阻力值,
8
容易保证油封的可靠性;减振器具有足够的散热面积,防止因温度过高引起阻力衰减或减振器早期失效。 作缸径的确定:
可根据减振器最大拉伸阻力和最大允许压力近似求出工作缸径。
( ) D = 4Fmax (mm) πp 1 − λ2 式中: D -作缸径, mm ; p -工作缸允许最大压力,一般为 3~4 N / mm2 ; F max -减振器最大拉伸阻力, N ; λ -减振器杆直径与工作缸之比,双筒减振器为 0.4~0.5,单筒减振器为 0.3~0.35。
Cϕb
=
1 2

P f
L2
=
3 EIL2
(6)
l l 2⎢⎣⎡
3 − a3 + L (a + b)2 + 4
1
2
2 2
(b
+
c
)⎥⎦⎤
当角钢度给定时,可求得所需要的稳定杆直径 d 为
l l d
=
4
128 3π

Cϕb L2 E
⎡ ⎢⎣
3 − a3 + 1 (a + b)2 + 4
1
2
2 2
(b
+
c
)⎥⎦⎤
(7) 按弹簧指数 C = Dm / d 及 K ' 的表达式(见式 24 下的说明求得 K ' ,运用式(24)求出载荷 P1 ,

汽车悬置系统设计指南(一)2024

汽车悬置系统设计指南(一)2024

汽车悬置系统设计指南(一)引言概述:汽车悬置系统是汽车底盘系统的重要组成部分,对于汽车的驾驶稳定性和乘坐舒适性至关重要。

本文旨在提供汽车悬置系统设计的指南,帮助读者了解悬置系统的基本原理和设计要点,从而优化汽车悬置系统的性能与驾驶舒适。

正文内容:一、悬置系统基本原理1. 悬置系统的定义和作用2. 悬置系统的基本组成部分3. 悬置系统的工作原理4. 悬置系统与驾驶稳定性的关系5. 悬置系统与乘坐舒适性的关系二、悬置系统设计要点1. 悬置系统弹簧的选取和设计2. 悬置系统减震器的选择和调整3. 悬置系统阻尼的调节和优化4. 悬置系统材料的选择与优化5. 悬置系统与车体结构的匹配设计三、悬置系统振动控制1. 悬置系统振动类型与特性2. 悬置系统振动控制的方法3. 悬置系统调频器的设计与优化4. 悬置系统振动控制与驾驶稳定性的关系5. 悬置系统振动控制与乘坐舒适性的关系四、悬置系统磨损与维护1. 悬置系统磨损的原因与表现2. 悬置系统磨损程度的检测方法3. 悬置系统磨损的预防与延长寿命的方法4. 悬置系统维护的注意事项5. 悬置系统维护对驾驶稳定性和乘坐舒适性的影响五、悬置系统创新与发展趋势1. 悬置系统新材料的应用2. 悬置系统主动控制技术的发展3. 悬置系统电子化的趋势4. 悬置系统智能化的发展5. 悬置系统可持续发展的方向结论:通过本文的介绍,读者可以更好地理解汽车悬置系统的设计原理和要点,并在实际应用中引导悬置系统的优化与改进。

汽车悬置系统的设计不仅影响驾驶稳定性和乘坐舒适性,也与汽车的安全性和性能密切相关。

因此,合理设计和维护汽车悬置系统对于提高整车的操控性和乘坐舒适性至关重要。

未来,随着汽车技术的飞速发展,悬置系统将面临更多的创新与发展机遇,我们期待悬置系统能够更好地满足人们对于汽车驾驶体验和乘坐舒适性的需求。

(整理)减震器设计说明书.

(整理)减震器设计说明书.

密级:摘要汽车已成为人们日常生活必备的交通工具,汽车减震器在汽车零部件中占有极其重要地位。

减震器是汽车悬架系统中的关键部件,减震器的性能就决定了悬挂系统的许多性能参数。

而且减震器的好坏直接决定了汽车的乘坐舒适性和行驶的平顺性。

随着计算机在软、硬件上的快速发展,虚拟设计无论是在理论,还是在计算技术方面都已取得巨大的进步。

虚拟设计是较先进的现代设计方法。

虚拟设计不仅可以大大降低开发成本,还缩短了开发周期,提高了企业的竞争力。

所以,虚拟化设计越来越受到企业的欢迎。

本文主要讲述了利用CAD软件UG对减震器各个零部件进行实体建模,然后着重分析了减震器的制造生产工艺,最后在UG软件的制图模块获得了完整的工程图纸。

根据实践情况,利用通用有限元软件ANSYS对减震器的阀片进行有限元建模、计算、应力分析、应变分析,根据分析结果对减震器的阀片受力变形情况进行了解。

关键词:汽车减震器,建模,产品设计AbstractAutomobile has become an indispensable transportation means of our daily life , and the shock absorber is an important part of the car. Shock absorber is play as an important role in the automobile suspension system, because it decide automobile suspension system performance. And it also decide the Vehicle Ride Comfort and Vehicle Ride Comfort.With the computer in software and hardware on the rapid development of virtual design, whether in theory or in the calculation of the virtual design have made tremendous progress. Virtual design is a modern design method. Virtual design can help us to reduce development costs and shorten the development cycle,so it is more and more popular by the enterprise.This article introduces the modeling of the shock absorber by CAD software, study on the production of the shock absorber and get the engineering drawing in UG software. At last, according to practice, use the general-purpose finite element software ANSYS to finite element modeling, calculation, stress analysis, strain analysis, based on an analysis of the results of the valves of the shock absorber deformation understanding of the situation.Keywords:shock absorber three-dimensional modeling product design目录摘要 (I)Abstract .......................................................................................................................... I I 绪论.. (1)1.1选题的依据及意义 (1)1.2减震器的结构及原理 (2)1.2.1减震器的结构及分类 (2)1.2.2双向作用筒式减震器的工作原理 (3)1.3国内外减震器产品的发展状况及趋势 (5)1.3.1 国内汽车减震器产品的发展 (5)1.3.2国外汽车减震器产品的发展 (6)1.4本课题研究内容 (7)第二章减震器零部件的三维建模 (8)2.1UG软件介绍 (8)2.2减震器各零部件的建模 (9)2.2.1减震器各零部件的结构分析 (9)2.2.2减震器油封组件的三维建模 (9)2.2.3减震器导向器组件的三维建模 (10)2.2.4减震器储油缸组件的三维建模 (10)2.2.5减震器工作缸的三维建模 (11)2.2.6减震器活塞连杆组件的三维建模 (11)2.2.7减震器底阀组件的三维建模 (15)2.2.8减震器防尘盖组件的三维建模 (17)2.2.9减震器弹簧盘的三维建模 (17)2.2.9减震器实体模型的总装配 (18)2.3本章小结 (19)第三章汽车减震器的设计与工艺 (20)3.1 零件的设计与工程制图 (20)3.1.1 零件的设计与工艺 (20)3.1.2 工程制图 (20)3.2在UG的Drafting模块下制作制图模板 (21)3.3汽车减震器中连杆的设计与工艺分析 (22)3.3.1连杆的设计 (23)3.3.2连杆的工艺分析 (23)3.4汽车减震器中工作缸的设计与工艺分析 (25)3.4.1工作缸的设计 (25)3.4.2工作缸的工艺分析 (25)3.5汽车减震器中活塞的设计与工艺分析 (27)3.5.1活塞的设计 (27)3.5.2活塞的工艺分析 (27)3.6本章小结 (29)第四章减震器的有限元分析 (30)4.1有限元分析软件ANSYS的介绍 (30)4.2伸张阀和压缩阀阀片的有限元分析 (31)4.2.1阀片有限元模型的建立 (31)4.2.2网格的划分 (32)4.2.3接触对的创建 (33)4.2.4添加载荷和约束 (34)4.2.5计算并分析结果 (35)4.3本章小结 (37)总结和展望 (39)5.1全文总结 (39)5.2 展望 (39)参考文献(References) (40)致谢 (40)绪论1.1选题的依据及意义近年来,随着我国经济的不断发展,人们的生活水平也不断提高。

汽车减震器的设计

汽车减震器的设计

汽车减震器的设计汽车减震器的设计1 绪论 (1)1.1 本课题设计的目的 (3)1.2 设计的主要研究内容 (5)2 减震器阻尼值计算和机械结构设计 (5)2.1 相对阻尼系数和阻尼系数的确定 (5)2.1.1 悬架弹性特性的选择 (5)2.1.2 相对阻尼系数ψ的选择 (6)2.1.3 减震器阻尼系数δ的确定 (7)F的确定 (7)2.2 最大卸荷力02.3 缸筒的设计计算 (8)2.4 活塞杆的设计计算 (8)2.5 小结 (8)3 减震器其他部件的设计 (8)3.1 固定连接的结构形式 (8)3.2 减震器油封设计 (10)3.3 O型橡胶密封圈 (10)3.5 弹簧片和减震器油的选择 (11)3.5.1 弹簧片的选择 (11)3.5.2 减震器油的选择 (11)3.6 小结 (12)4 活塞杆的强度校核 (12)4.1 强度校核 (12)4.2 稳定性的校核 (12)5 全文总结及展望 (13)参考文献 (13)谢辞................................................... 错误!未定义书签。

1 绪论社会不断在进步,人们对出行的要求也越来越高。

汽车作为越来越普及的出行方式受到了人们的关注。

于是人们对包括对汽车平顺性,舒适性的要求也是不断在加大,而减震器则是提供舒适性的一个很关键的部位。

减震器是汽车悬挂系统的重要组成部件。

如果把发动机比喻为汽车的“心脏”,变速器为汽车的“中枢神经”,那么底盘及悬挂系统就是汽车的“骨骼骨架”。

悬挂系统不仅决定了一辆汽车的舒适性与操控性同时对车辆的安全性起到很大的决定作用,从而成为衡量汽车质量及档次的重要指标之一。

设计师们一直不断对汽车的各种性能进行优化为了提供更好的驾驶体验。

一个好的减震器可以使驾驶员感觉到更加舒服,可以提供更好的驾驶体验。

世界上第一个有记载、比较简单的减震器是1897由两个姓吉明的人发明的。

他们把橡胶减震块与叶片弹簧的端部相连,当悬架杯完全压缩时,橡胶减震块就碰到连接在汽车大梁上的一个螺栓,产生止动。

汽车悬架系统中橡胶减振元件的设计要求分析

汽车悬架系统中橡胶减振元件的设计要求分析

Top Mount Bushing 1 图纸要求Bushing 2液压衬套的特性液压衬套的动态特性应用:减少上摆臂衬套的刚度减少车内噪声减小刚度,隔离控制臂500Hz的振动。

(以前为橡胶衬套,现在改用液压衬套)两个液室均为工作液室!!2. Applications of Hydro Bushings8. Technical product Development ExpertiseHydraulically Damping Subframe MountsThe dynamic characteristics of hydrobushing depend on their applications.front lower control arm系统的结构图:问题:发动机在2000~2300rpm (100Hz~115Hz 时,驾驶室内出现很大的Booming声,其中108Hz加动力吸振器和液压衬套以后,传动轴的振动减小。

吸振器和液压衬套以后,传动轴和地板的传递到驾驶室的振动由图可见,轴管的振动加速度和位置有关。

第一点的振动最大,要从这点想办法。

系统的结构。

支撑件的承载:300N。

传统的橡胶隔振器,可见系统的振动下降17~以后,将一个峰值削减成为两个峰值,可以下降新设计液压衬套的动态特性Strut mountSpring SeatJounce BumperShieldShock absorberSteering knuckleCoil springJounce bumperStrut mountBearing 2013-03-15AB CD EF G Houter path, which has a considerably higher level of rigidity.2013-03-15利用橡胶作为隔振的减振器上端支撑,由于兼顾其疲劳特性,其静刚度不可能很低。

此时,在减振器上端支撑中可以采用液压支撑元件。

车辆悬架最佳阻尼匹配减振器设计_周长城

车辆悬架最佳阻尼匹配减振器设计_周长城
[ 7]
( 1)
式中 : ξ 为悬架最佳阻尼比 ; f 0 为悬架固有频率 。
, 大都是利
( 2)
用《机械设计手册》 所提供的阀片最大挠度计 算公 式 , 对阀系参数进行近似设计 , 参数设计值不可靠 , 因此 , 目前传统的减振器阀系参数设计方法 , 不能满 足汽车减振器设计和生产的需要 。 本文对车辆悬架系统最佳阻尼匹配减振器速度 特性进行研究 , 建立了车辆悬架最佳阻尼匹配减振 器速度特性数学模型 , 对减振器阀系参数进行优化 设计 , 并对设计减振器进行了特性试验与整车振动 特性验证 。
将式10代入式14可得f2ymuki15设压缩行程二次开阀阻尼系数为c2y且二次开阀速度v2y等于复原行程的二次开阀速度v2f压缩二次开阀阻尼力可表示为f2yc2yv2yc2yv2f16将式14代入式16可得减振器压缩行程二次开阀时的阻尼系数c2y17可知压缩行程二次开阀阻尼系数仅为复原行因此利用减振器复原行程速度特性及减振器复原行程二次开阀阻尼力与压缩行程二次开阀阻尼力的比值可确定减振器压缩行程首次开阀后的速度特性
图 1 减振器结构原理 Fig . 1 S tru ct ure princi pium of shock abso rber
根据阻尼力与阻尼系数和速度之间的关系 , 可 ( 5)
式中 : V 1 、V 2 分别为减振器首次开阀速度和二次开 阀速度 ; F 1 和 F 2 分别为减振器在首次和二次开阀 时的阻尼力 。 将式( 4) 代入式( 5) ,得 C2 = 1 V1 C1 +C1 1 η V2 η ( 6)
第 8 卷 第 3 期 2008 年 6 月
交 通 运 输 工 程 学 报
Journal of T raffic and T ransportation Engineering
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

悬架用减振器设计指南一、功用、结构:1、功用减振器是产生阻尼力的主要元件,其作用是迅速衰减汽车的振动,改善汽车的行驶平顺性,增强车轮和地面的附着力.另外,减振器能够降低车身部分的动载荷,延长汽车的使用寿命.目前在汽车上广泛使用的减振器主要是筒式液力减振器,其结构可分为双筒式,单筒充气式和双筒充气式三种. 导向机构的作用是传递力和力矩,同时兼起导向作用.在汽车的行驶过程当中,能够控制车轮的运动轨迹。

汽车悬架系统中弹性元件的作用是使车辆在行驶时由于不平路面产生的振动得到缓冲,减少车身的加速度从而减少有关零件的动负荷和动应力。

如果只有弹性元件,则汽车在受到一次冲击后振动会持续下去。

但汽车是在连续不平的路面上行驶的,由于连续不平产生的连续冲击必然使汽车振动加剧,甚至发生共振,反而使车身的动负荷增加。

所以悬架中的阻尼必须与弹性元件特性相匹配。

2、产品结构定义①减振器总成一般由:防尘罩、油封、导向座、阀系、储油缸筒、工作缸筒、活塞杆构成。

②奇瑞现有的减振器总成形式:二、设计目的及要求:1、相关术语*减振器利用液体在流经阻尼孔时孔壁与油液间的摩擦和液体分子间的摩擦形成对振动的阻尼力,将振动能量转化为热能,进而达到衰减汽车振动,改善汽车行驶平顺性,提高汽车的操纵性和稳定性的一种装置。

*阻尼特性减振器在规定的行程和试验频率下,作相对简谐运动,其阻力(F)与位移(S)的关系为阻尼特性。

在多种速度下所构成的曲线(F-S)称示功图。

*速度特性减振器在规定的行程和试验频率下,作相对简谐运动,其阻力(F)与速度(V)的关系为速度特性。

在多种速度下所构成的曲线(F-V)称速度特性图。

*温度特性减振器在规定速度下,并在多种温度的条件下,所测得的阻力(F)随温度(t)的变化关系为温度特性。

其所构成的曲线(F-t)称温度特性图。

*耐久特性减振器在规定的工况下,在规定的运转次数后,其特性的变化称为耐久特性。

*气体反弹力对于充气减振器,活塞杆从最大极限长度位置下压到减振器行程中心时,气体作用于活塞杆上的力为气体反弹力。

*摩擦力减振器以0.005m/s的速度运行时存在的阻力,定义为摩擦力。

*空程由于减振器油里面有较大的汽泡导致的,在减振器运动中出现的阻尼力偏小或没有阻尼力的某段行程。

*减振器行程减振器最大长度与最小长度之差称为减振器行程。

2、系统要求①在悬架压缩行程内,减振器阻尼应较小;②在悬架伸张行程内,减振器阻尼应较大;③当车桥(或车轮)与车架(或车身)的相对速度过大时,减振器阻尼力应保持在一定的限度之内;三、设计注意事项:a、通过计算只能得到减振器的大致阻力范围。

如何使减振器与弹性元件得到一个准确的最佳匹配值,则是一个很复杂的问题,要考虑到汽车使用条件、整车参数、悬架形式、各件之间的摩擦,减振器的速度特性等因素,在计算后,进行实验修正。

b、如果减振器示功试验时阻力相差15﹪,有经验的评分员已可在道路试验时感觉出来。

一般人员也能分辨出阻力相差30﹪。

由于目前一般整车中的减振器阻力是不能在行驶时调整的,所以减振器是不可能同时满足各种路况及载重要求的。

例如满足汽车重载要求时,空载时就显得太硬;在沥青路面行驶时觉得合适,在坏路行驶时必然摇晃不停。

因此选择减振器时只能采用折衷办法,满足一种主要的工况而略为“照顾”一下其它工况。

例如:吉普车减振器阻力应选规则得比满载坏路行驶时的最佳值略小一些,在好路上行驶时只得让减振器显得硬一些。

相反,小客车减振器阻力应选择得比好路高速行驶时最佳值略大一些,而在坏路行驶时只能让车身略有摇晃。

c、选择的阻力是示功试验时的阻力,而减振器在整车中的实际工作阻力要大于其5~10倍。

四、设计流程:1、正向设计:2、逆向设计:五、计算和验证:5.1、正向设计:5.1.1、减振器阻尼力特性的确定油液经过节流阀产生的阻尼力为节流阀两侧压力差与承压面积的乘积,压力P 为: Q a C Q P d αρ+=2222 2/mm N 式中:ρ-油液密度,3/mm kg ;Q -通过阀的流量,s mm /3;a -节流孔面积,2mm ;d C -流量系数;α-节流孔形状和油液粘度有关的系数;5.1.2、振器相对阻尼系数的确定减振器装车后的基本参数,一般用相对阻尼系数表示,相对阻尼系数φ为: KM 2γφ=式中:φ-相对阻尼系数;γ-减振器阻尼系数(阻尼特性的导数);K -悬架刚度,mm N /;M -簧上质量,kg ;当相对阻尼系数1≥φ时,产生非周期域运动,φ很大时虽然能在共振区很快衰减振动,但在非共振区内激振增大。

当1≥φ时,产生周期运动,φ很小时振动衰减很慢,共振振幅过大。

一般相对阻尼系数φ值在0.3~0.5范围内,对于无阻尼的弹性元件去上限,弹性元件和悬架导向机构中存在阻尼时取下限。

为迅速衰减汽车振动又不把大的路面冲击传递到车身上,一般把减振器拉伸和压缩阻力按8:2~6:4的比例分配。

选择减振器阻尼力系数γ时,应考虑悬架导向杆的杠杆比和减振器的安装角度的影响,下图所示减震器阻尼力系数γ应为:αφωγ22cos 2i m = mm s N /⋅ 式中:i -杠杆比,a ni =α-减振器轴线与垂直线的夹角;ω-簧上质量固有频率。

5.1.3、减振器主要尺寸的确定选择减振器尺寸时主要考虑一下两点:在工作速度范围内油液压力适当,能够得到稳定的阻力值,容易保证油封的可靠性;减振器具有足够的散热面积,防止因温度过高引起阻力衰减或减振器早期失效。

作缸径的确定:可根据减振器最大拉伸阻力和最大允许压力近似求出工作缸径。

()2max 14λπ-=p F D ()mm式中:D -作缸径,mm ;p -工作缸允许最大压力,一般为3~42/mm N ; max F -减振器最大拉伸阻力,N ;λ-减振器杆直径与工作缸之比,双筒减振器为0.4~0.5,单筒减振器为0.3~0.35。

求出缸径后,参照JB1459标准,选择合适的标准工作缸径。

减振器储油缸直径()D D c 57.1~35.1=,工作缸与储油缸壁厚一般取 1.5~2.0mm 。

5.1.4、减振器行程的选择减振器总行程S 由上行程S1,下行程S2两部分组成,即:S= S1+ S2a 、上行程:S1=L-LminL 为汽车满载时减振器两吊耳处中心距。

S1应略大于悬架系统满载上行程(假设缓冲块脱落)。

b 、下行程:S2=Lmax-L由于减振器可承受一部分反跳拉力,所以S2只要略大于弹簧的静挠度。

S1、 S2选择不当必然使减振器工作不正常,因而产生拉脱压毁、撞坏或安装支架断裂等现象。

5.2、有参考车的设计(逆向设计)5.2.1输入项:基准车与开发车的车辆状态量:a 、Design Load 时的前轮Sprung Weigh (单侧轮)Wfb 、Design Load 时的后轮Sprung Weigh (单侧轮)Wrc 、前轮端的Spring Rate (单侧轮)Kfd 、后轮端的Spring Rate (单侧轮)Kre 、前S/ABS 的Lever Ratio-- rff 、后S/ABS 的Lever Ratio-- rr5.2.2、检测基准车前后S/ABS 的单件零件阻尼力特性:按0.05、0.1、0.3、0.6、1.0m/s 五组速度测减振器拉伸、压缩时的阻尼力特性。

5.2.3、计算出基准车以及新开发车的前后轮临界阻尼力系数Ccf 、Ccr :W :Design Load 时的单侧轮的Sprung WeighKWC c ⨯⨯=8.92K :轮端的Spring Rate5.2.4、计算基准车前后轮端的阻尼力系数Cf 、Cr :5.2.5、计算HA 车轮端的阻尼力系数比C/CC由于设计思想为H13前后轮轮端的阻尼力特性和参考车HA 车相同,因此,两车的C/CC 一致,则得出H13车轮端阻尼力系数为:5.2.6、计算新开发车的S/ABS 单个零件的阻尼力特性:单个减振器速度=轮端速度×r综上得:这样我们就得到一组阻尼力-速度特性值,可以大致做出阻力-速度特性曲线:六、主要试验项目和方法:6.1阻力特性试验试验零件总数量:≥2支。

a 、程序或标准:(1)、减振器要垂直放在试验台上;(2)、试验温度是20 ± 2 °C,试验前试件在恒温箱中保存至少6h 以上;(3)、试验的开始位置在减振器行程的中点;(4)、试验行程100mm ,试验行程中点与减震器的行程中点一致; 单个零件速度单个零件阻尼力=2r C ⨯1313CH CAA H C C C C ⨯=213/13H r C ABS S H 单个零件速度=单个零件的阻尼力车⨯(5)、速度分别为:0.05、0.10、0.30、0.60、1.00m/s。

b、接受标准:0.05m/s速度时的特性仅做参考,其余速度下的压缩和伸张力要满足设计要求(阻尼值按图纸要求或等匹配完成后确定)。

c、目标要求:在各种速度下的压缩和伸张力满足设计要求(阻尼值见批量生产图纸)。

6.2、示功试验试验样件数量:≥2支a、程序或标准:(1)、减振器要垂直放在试验台上;(2)、试验温度是20 ±2 °C,试验前试件在恒温箱中保存至少6h以上(3)、试验的开始位置在减振器行程的中点;(4)、试验行程100mm,试验行程中点与减震器的行程中点一致;(5)、速度分别为:0.05、0.10、0.30、0.60、1.00m/s;(6)、做示功图。

b、接受标准:(1)、示功图应丰满,圆滑,不得有空程,畸形等,阻力随速度的变化曲线应该是连续无畸变的;(2)、示功试验中,不得有漏油现象,不得有明显的噪声。

c、目标要求:(1)、示功图应丰满,圆滑,不得有空程,畸形等,阻力随速度的变化曲线应该是连续无畸变的;(2)、示功试验中,不得有漏油现象,不得有明显的噪声。

6.3、耐久性试验试验样件数量:≥2支a、程序或标准:(1)、双动耐久性试验台;(2)、强制风冷或水冷,温度为60-80°C;(3)、振动方式:上下两端同时沿垂直方向振动;(4)、上端振动频率:1Hz;(5)、下端振动频率:12Hz;(6)、试验次数:100万次(上端);(7)、记录速度为0.3m/s时的阻力变化;(8)、试验时,应模拟实车受力,在活塞杆导向座处施加适当的侧向力。

b、接受标准:耐久试验后阻力变化最大为±15%,漏油不应干扰减振器运行。

c、目标要求:耐久试验后阻力变化最大为±15%;在试验开始和结束时称重,测量漏油量,质量损失≤10%;6.4、高低温试验试验样件数量:≥2支验证减振器的高低温特性,做出温度特性P-t曲线并计算热衰减率。

a、程序或标准:(1)、每种温度条件下的试件都要放到恒温箱当中在该温度下至少存放6h以上;(2)、测量基准温度为-30℃±3℃和80℃±3℃,试验温度依次为:20℃、-30℃、80℃、20℃;温差均为±3℃。

相关文档
最新文档