汽车构造之驱动桥
汽车构造第18章驱动桥

行星齿轮的 背面与差速器壳 的相应位置的内 表面,均做成球 形,保证行星齿 轮对正中心,以 有利于两个半轴 正确啮合。
差速器靠主 减速器壳体中的 润滑油润滑。
哈尔滨工业大学(威海)
第17页
主动锥齿轮与轴制成一体,采 用悬臂式支承。一般双级主减 速器中,主动锥齿轮轴多用悬 臂式支承的原因有两点:一是 第一级齿轮传动比较小,相应 的从动锥齿轮直径较小,因而 在主动锥齿轮的外端要在加一 个支承,布置上很困难;二是 因传动比较小,主动锥齿轮即 轴颈尺寸有可能作的较大,同 时尽可能将两轴承的距离加大, 同样可得到足够的支承刚度。
哈尔滨工业大学(威海)
第31页
16.04.2021
差速器中各元件的运动关系——差速原理
当行星齿轮只是随同行星架绕差速器旋转轴线公转时,显然,处在
同一半径r上的A、B、C三点的圆周速度都相等,其值为 w0r。于是,w1w2w0
即差速器不起差速作用,而半轴角速度等于差速器壳3的角速度。
当行星齿轮4除公转外,还绕本身的轴5以角速度 w4自转时,啮合点
A的圆周速度为 w 1rw 0rw 4r4 啮合点B的圆周速度为 w 2rw 0rw 4r4 于是 w 1 r w 2 r ( w 0 r w 4 r 4 ) ( w 0 r w 4 r 4 )
即 w1w22w0
若角速度以每分钟转速n表示,则 n1n22n0
(18-1)
式(18-1)为两半轴齿轮直径相等的对称式锥齿轮差速器的运动特征方
▪ 图18-14为某国产32t自卸 车驱动桥的轮边减速器
汽车构造 驱动桥

2020/4/3
图14-15 蜗轮传动的贯通式中桥主减速器(蜗杆下置式)
2、双级贯通式主减速器
对于中、重型多桥驱动的汽车
来说,由于主减速比较大,多采用
双级贯通式主减速器,它是由一对
圆柱齿轮和一对螺旋锥齿轮或双曲
面齿轮组成,根据这两对齿轮组合
时前后次序的不同,它又分为锥齿
轮—圆柱齿轮式和圆柱齿轮—锥齿
图14-7 主减速器锥齿轮的比较 a)曲线齿锥齿轮传动,轴线相交;b)准双曲面齿轮传动,轴线偏移
2020/4/3
准双曲面齿轮副布置上,分为上偏移和下偏移,如图14-8所示,上、下偏移 是这样判定的:从大齿轮锥顶看ꎬ并把小齿轮置于右侧,如果小齿轮轴线位于大 齿轮中心线之下为下偏移(图14-8a,b),如果小齿轮轴线位于大齿轮中心线之上为 上偏移(图14-8c、d)。
字轴;25-螺栓
ቤተ መጻሕፍቲ ባይዱ
图14-5为东风EQ1090E型汽车驱动桥主减速器及差速器零件分解图。
图14-5 东风EQ1090E型汽车驱动桥主减速器及差速器零件分解图 1-槽形扁螺母;2-垫圈;3-主动锥齿轮叉形凸缘;4-油封座;5-油封座衬垫;6-主动锥齿轮外油封;7-油封导向 环;8-主动锥齿轮内油封;9-止推垫圈;10-主动锥齿轮前轴承;11-轴承调整垫片;12-隔套;13-前轴承座; 14-主动锥齿轮;15-主动锥齿轮后轴承;16-主动锥齿轮调整垫片;17-螺塞;18-主减速器壳;19-从动锥齿轮 支承套总成;20-支承套;21-支承螺柱;22-锁片;23-螺母;24-主减速器壳垫片;25-垫圈;26-差速器左壳; 27/30-锁止垫片;28-差速器轴承;29-轴承调整螺母;31-轴承盖锁片;32-垫片;33-主减速器轴承盖;34-垫圈 ;35-螺栓;36-半轴齿轮垫片;37-半轴齿轮;38-行星齿轮轴(十字轴);39-行星齿轮;40-行星齿轮垫片;41差速器右壳;42-差速器壳连接螺栓;43-从动锥齿轮;44-从动锥齿轮连接螺栓
汽车构造第十二章驱动桥

差 速 器
差速器壳
二、双级主减速器
用于中重型货车、越野车和大客车上。
结构形式有多种方案:一是第一级为螺旋锥齿轮,第二 级为圆柱齿轮。二是第一级为螺旋锥齿轮,第二级为行星齿 轮。
圆柱齿轮 差 速 器
差速器壳
圆锥齿轮
n1+αn2-(1+α)n3=0
单排行星齿轮机构的工作原理
(1)太阳轮1为主动件,行星架3为从动件,
1-差速器壳;2-牙嵌;3-半轴;
三、摩擦片 自锁差速器
增大差 速器的锁紧 系数,可较 好地利用左 右车轮上的 附着力。
第三节 半轴与桥壳 一、半轴
半轴用以在差速器和驱动桥之间传递动力。
半轴根据车轮 端的支承方式不 同,分全浮式和 半浮式两种。
1、全浮式: 半 轴只承受转矩, 而两端均不承受 任何反力和弯矩。
n1=n2=n3 由上可见,单排行星齿轮机构可以获得4种不
同的传动比。
三、双速主减速器
第二节 差速器
作用:用来在 两输出轴间分配转矩, 并保证两输出轴有可 能以不同角速度转动。
差速器包括轮 间差速器、轴间差速 器、防滑差速器。
差速器的差速 传动机构,在一般情 况下多用行星齿轮式。
一、齿轮式差速器
目前,汽车上广泛使用对称式锥齿轮差速器。
1、结构: 由十字轴、圆锥行星齿轮、圆锥半轴齿轮、差速 器壳等组成。
2、差速原理
3、转矩分配原理
二、强制锁止式差速器 强制锁止式差速器是在对称式锥齿轮差速器上设置差速
锁,当一侧车轮处于附着力较小路面时,操纵差速锁将差速 器壳与半轴锁紧在一起,使差速器不起差速作用。
2、半浮式 半轴内上的重力传到车轮并将作用
在车轮上的牵引力、制动力、侧向力传给悬架、车架。 驱动桥壳分整体式和分段式两种。
汽车构造驱动桥实习报告

一、实习目的与意义本次实习旨在通过实际操作,深入了解汽车驱动桥的结构、工作原理以及拆装方法。
通过实习,使学生对汽车驱动桥有一个全面的了解,提高学生的动手能力,为今后从事汽车维修、制造等相关工作打下坚实基础。
二、实习内容1. 驱动桥概述实习开始,首先对驱动桥进行概述,介绍驱动桥的组成、分类、作用等基本知识。
驱动桥是汽车传动系统的重要组成部分,负责将发动机的动力传递到车轮,实现汽车的行驶。
2. 驱动桥结构分析实习过程中,对驱动桥的结构进行详细分析。
驱动桥主要由主减速器、差速器、半轴和桥壳等部件组成。
主减速器用于降低发动机转速,增加扭矩;差速器用于分配左右车轮的扭矩;半轴连接差速器和车轮,传递动力;桥壳用于支撑驱动桥各部件。
3. 驱动桥拆装方法实习重点讲解了驱动桥的拆装方法。
首先,拆下车轮和轮胎;其次,拆下半轴;然后,拆下差速器;接着,拆下主减速器;最后,拆下桥壳。
在拆装过程中,注意以下事项:(1)拆装顺序:按照一定的顺序进行拆装,避免损坏零件。
(2)使用专用工具:使用合适的工具进行拆装,确保安全。
(3)注意防护:拆装过程中,注意保护自己和他人的安全。
4. 驱动桥故障诊断与维修实习还介绍了驱动桥的故障诊断与维修方法。
首先,根据故障现象判断故障原因;其次,进行故障排除;最后,对维修后的驱动桥进行检测,确保其性能符合要求。
三、实习过程1. 实习准备实习前,学生需了解实习内容,熟悉实习设备,准备好实习所需的工具和材料。
2. 实习操作实习过程中,学生按照实习指导教师的安排,分组进行驱动桥的拆装。
在拆装过程中,学生认真观察,积极参与,互相学习,共同完成实习任务。
3. 实习总结实习结束后,学生对实习过程进行总结,分析实习中的优点和不足,提出改进措施。
四、实习收获通过本次实习,学生收获如下:1. 深入了解了汽车驱动桥的结构、工作原理以及拆装方法。
2. 提高了动手能力,掌握了汽车维修的基本技能。
3. 培养了团队合作精神,学会了与他人共同解决问题。
汽车构造课件驱动桥

1、对称式锥齿轮差速器 (1)组成
对称式锥齿轮差速器零件分解图
2018/11/2
17
AUTOMOBILE STRUCTURE
差速器
(2)工作原理
差速器工作原理示意图
1,2-半轴齿轮; 3-差速器壳; 4-行星齿轮;
5-行星齿轮轴; 6-主减速器从动齿轮
差速器
汽车差速器的结构
1-主减速器主动齿轮轴;2-差速器壳; 3-行星齿轮;4-半轴齿轮
2018/11/2
20
AUTOMOBILE STRUCTURE
差速器
2、防滑差速器 为了提高汽车在坏路面上的通过能力,可以采用各种防滑差速器。 防滑差速器可以在一侧驱动轮打滑空转的同时,将大部分或全部转矩 传给不打滑的驱动轮,以利用这一驱动轮的附着力产生较大的驱动力 矩使汽车行驶。 常用的防滑差速器有强制锁止式和自锁式两大类。
托森差速器结构示意图
2018/11/2
25
AUTOMOBILE STRUCTURE
16.4 半轴与驱动桥壳
1、半轴 是差速器与驱动轮之间传递转矩的实心轴。 根据其支承形式不同,半轴可分为全浮式半轴和半浮式半轴。 (1)全浮式半轴 只传递转矩,不承受任何外力与弯矩。
1 2 3 4 5 半轴套管 调整螺母 锁紧螺母 半轴 轮毂
2018/11/2
24
AUTOMOBILE STRUCTURE
差速器
(b)托森差速器 利用蜗轮蜗杆传动的不可逆性原理和齿面高摩擦
条件,使差速器根据其内部内摩擦力矩大小而自动锁死或松开。
1 2 3 4 5 6 差速器齿轮轴 空心轴 差速器外壳 驱动轴 后轴蜗杆 直齿圆柱齿轮
汽车构造-驱动桥

一.功用及组成
1.功用:
(1)实现降速、增大转矩。 (2)改变转矩的传递方向。 (3)实现两侧车轮差速作用,保证内、
外侧车轮以不同转速转向。
2.组成:
如图18-1 由主减速
器、差速 器、半轴 和驱动桥 壳组成。
二.类型
非断开式驱动桥(整体式)—非独立悬架采用 断开式驱动桥——独立悬架采用。
样不致于发生较大变形,影响正常啮合。
(2)有必要的啮合调整装置。
三.单级主减速器 以EQ1090E为例
1. 结构
思考:大端相对应行不行?
1)主动小齿轮
主动小齿轮 与轴制成一 体.
前端有两个小 端相对应的圆 锥滚子轴承, 后端支承在圆 柱滚子轴承上。
2)从动锥齿轮
连接在差速器 壳上,差速器 壳通过轴承支 承在主减速器 壳的座孔中。
相应的主减速器壳固 定在车架上,驱动桥 壳制成分段并通过铰 链连接。
§18.1主减速器
一.功用、组成及类型 1.功用:
(1)降速增扭; (2) 改变转矩旋转方向(发动机纵置)。
2.组成:
主动小齿轮和从动大齿轮
3.主减速器类型:
1)按减速齿轮副数 目分
(1)单级
特点:结构简单,体积
小,重量轻和传动效率 高。 目前,轿车和一般中、 轻型货车采用单级主减 速器。
锁紧系数:
K =(M2-M1)/M0=Mr/M0, K=0.05~0.15 转矩比:
Kb=M2/M1=(1+K)/(1K)≈1.1~1.4
结论:
实际上可以认为左右驱动轮转速不管 是否相等而转矩总是平均分配的M1≒M2。
3.分析:
差速不差力; 当车辆在好路行驶时,很理想; 当在坏路行驶时,如当一侧轮
汽车构造与拆装 任务3.5 驱动桥认知与拆装

• 多用在绝大多数载货汽车和部分轿车
的后桥上
驱动桥概述
驱动桥概述
2)断开式驱动桥:桥壳分段以铰链连接,与独立悬架配用。
• 驱动桥制成分段,并用
铰链连接
减振器
弹性元件
• 车身不会随车轮的跳动
主减速器
半轴
而跳动
摆臂
车轮
摆臂轴
整体式驱动桥和断开式驱动桥的对比
整体式驱动桥:
• 主减速器和半轴装在整体的桥壳内
A.n1+n2=n0
B.n1+n2=2n0
C.n1+n2=1/2n0
D.n1=n2=n0
)。
差速器
工作特性
3.转矩特性
由于对称式锥齿轮差速器内摩擦力矩很小,可以认为无论左
右驱动轮转速是否相等,其转矩基本是平均分配的。
M1
M0 Mr
2
M2
M0 - Mr
2
M1 M 2
M0
2
总结:差速不差力
另一侧半轴齿轮即以相同转速反向转动。
差速器
弊端
在坏路面行驶时,汽车的通过性差。
思考练习
9.汽车四轮驱动系统主要由(
等组成。
A、分动器
B、轴间差速器
C、轮间差速器
D、左右车轮
)、前后传动轴和前后驱动桥
差速器
防滑差速器
是一种能根据路面情况自动改变或控制驱动轮间转矩分配的差速器。
(1)摩擦片自锁式差速器
特点:结构简单,广泛用于各类轿车。
半轴
2.半浮式
• 半轴除传递转矩外,还要承受车轮传来的垂直力、纵向力和
侧向力所引起的弯矩。
• 特点:受载状态好、易于拆装,但结构较复杂,广泛用于各
《汽车底盘构造与维修》PPT课件-理论课--10驱动桥

图2-122 断开式驱动桥
• 二、主减速器
• 主减速器的功用是改变旋转轴线方向、降低转速、增大转 矩、以保证汽车在良好的道路上具有够的牵引力和适当的 速度。
图2-120 驱动桥结构组成
• (三)驱动桥的类型
• 1、整体式驱动桥整 体式驱动桥采用非独 立悬架。其驱动桥壳 为一刚性的整体,驱 动桥两端通过悬架与 车架连接,左右半轴 始终在一条直线上, 即左右驱动轮不能相 互独立地跳动,如图2121所示。
图2-121 整体式驱动桥
• 2、断开式驱 动桥
• 构造及工作情况:万 向传动装置传来的动力 由叉形凸缘经花键传给 主动齿轮、从动齿轮, 减速变向后,通过螺栓 传给差速器壳,由差速 器传给两侧半轴驱动齿 轮。一般应用在轿车和 一般轻、中型货车上。 特点是结构简单、体积 小、重量轻、传动效率 高,如图2-123所示。
图2-123 单级主减速器
• 3、主减速器主要零件的检修 • (1)主减速器壳的检修 • 主减速器壳应无裂纹,壳体上各螺纹的损伤不应超过2牙。用内径千分尺或量
图2-132 分段式桥壳
•六、驱动桥的磨合试验
•驱动桥磨合试验的目的:在于改善零件相互配合表面的接触状况和检查修理装配的质 量。
•驱动桥的修理和装配质量可从三个方面进行检验:齿轮的啮合噪声、轴承区的温度和 渗漏现象。
•驱动桥装合后,应按规定加注润滑油进行磨合实验。试验时,加注规定的润滑油进行 运转,试验主轴转速一般为1400~1500r/min,在此转速下,进行正、反转、无负荷 及有负荷试验,各项运转试验不少于10min。试验过程中,各轴承区的温升不应大于 25℃,用手摸外壳各轴承处,不应有过热的感觉。运转无异响,各结合部位无漏油现 象。运转总时间应不少于1.5h,有负荷运转时间不少于15min,实验后应进行清洗并换 装规定的润滑油。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五节 半轴与桥壳
1 半轴(图)
1.1 功用
将主减速器输出的动力传递给驱动轮
1.2 类型
全浮式半轴 半浮式半轴
2 桥壳
2 桥壳
2.1 功用
A 支承并保护主减速器、差速器和半轴,使左右驱动车轮的 轴向相对位置固定 B 与从动桥一起支承车架及其上各总成的质量 C 行驶时,承受由车轮传来的路面反作用力和力矩
效果图
图 全浮
Hale Waihona Puke 图半浮式半轴图 整体式桥壳
特点: 具有较大的强度和刚度,且便于主减速器的装配、调整和维修
图 分段式桥壳
特点:易于铸造,加工简便,但装车后不便于 驱动桥的维修。
图 变速驱动桥
图 四轮驱动
图 全时四驱
奥迪A6全时四驱
图分动器操纵机构
2 对称式锥齿轮差速器
2.1 结构(图)
行星锥齿轮 + (十字形)行星锥齿轮轴 + 两半轴锥齿轮 + 差速器壳 + 垫片
2.2 差速原理(图)
直线行驶时 转向行驶时
1 = 2 = 0 1 > 2
1 + 2 = 20 1 + 2 = 20
A、两半轴齿轮的转速之和等于差速器壳转速的两倍,与行星齿轮的自转无关
B 对于从动锥齿轮
调整从动锥齿轮的调整螺母
C 正确啮合(图)
第三节 差速器
1 概述
1.1 无差速器时,车轮运行情况(图)
1.2 差速器的作用
(1)将动力传给左右半轴
(2)使左右半轴在必要时,可以以不同转速旋转
1.3 类型
轮间差速器
普通差速器
轴间差速器
防滑差速器
2 对称式锥齿轮差速器 3 强制锁止式差速器 4 摩擦片自锁差速器
准双曲面锥齿轮 特点是主从动锥齿轮轴线垂直但不相交,有轴 线偏移。
图 双级效果图
图 单级主减速器
图 悬臂与跨置
图 从动齿轮支承
图啮合调整
图 正确啮合
正、反转印迹位于齿高的中间偏小端,并占齿面 宽度的60%
图 差速说明
图 差速器
两行星齿轮
图 差速器2
图 差速器运动分析
直行时,差速器运动分析 转向时,差速器运动分析
提高支承刚度的措施
A 对于主动锥齿轮
采用跨置式:两端均有轴承,提高了支承刚度,使轴荷减 小,齿轮啮合条件改善(图)
B 对于从锥动齿轮
通过在背面加装支承螺栓,限制从动齿轮过度变形而影响齿 轮的正常工作(图)
啮合调整装置(图)
A 对于主动锥齿轮
调整主减速器壳与轴承座之间的调整垫片厚度 具体操作:增加垫片厚度可以使主动齿轮上升,减少垫片厚 度可以使主动锥齿轮上下降
3 类型
非断开式驱动桥
非独立悬架配用
断开式驱动桥
独立悬架配用
第二节 主减速器
1 功用
(1) 实现减速增扭 (2) 改变旋转方向
2 类型
3 单级主减速器
2 类型
按齿轮副数目 按传动比档数
单级式主减速器(图) 双级式主减速器(图)
单速式主减速器 双速式主减速器(图)
按齿轮副结构 按安装位置
圆柱齿轮式(图) 双曲面齿轮和准双曲面齿轮式(图) 中央主减速器 轮边主减速器(图)
(3) 锁紧系数K和转矩比Kb
K = (M2 - M1)/ M0
Kb = M2/ M1
3 强制锁止式差速器
3.1 工作原理(图)
在正常情况下,内、外接合器分离
差速器起差速作用
当行驶在坏路面时,启动气动装置使内、外接合器接合 左半轴与差速
器壳固接 差速器不起差速作用
当一侧驱动轮滑转而无驱动力时,
从主减速器传来的转矩将全部分配到另一侧驱动轮上,产生较大的驱动力
2.2 要求
应有足够的刚度,质量小,并便于主减速器的拆装和调整,便 于制造
2.3 类型
A 整体式 B 分段式
图 驱动桥
图 改变旋转方向
图非断开式驱动桥
实物图
图断开式驱动
实物图
图 非断开式实物图
图断开式驱动实物
图 单级主减速器
图 双级
效果图
图 双速
图 圆柱式
图 轮边减速器
左视图
图 准双曲面
3.2 优点
结构简单,易于制造
3.3 缺点
需人工判断、操作,一般需在停车时进行,而且,过早接合或过晚摘下, 对汽车都有不利
4 摩擦自锁式差速器
4.1 组成(图)
普通差速器 + 主、从动摩擦片组 + 压盘
4.2 主减速器转矩的传递路线
A 由行星齿轮传到半轴齿轮(大部分) B 由差速器壳 主、从动摩擦片 推力压盘
半轴
4.3 工作原理
当一侧车轮打滑转 两侧车轮转速差增大 由于V型斜面的 设计,使得轴向力存在 主、从动摩擦片将产生摩擦力矩,并
经压盘传给两半轴 此力矩与快转半轴的旋向相反,与慢转半 轴的旋向相同 实现两轴转矩的按需分配
第四节 变速驱动桥
1 组成(图)
变速器 + 驱动桥
2 特点
A 省去了传动轴,缩短了传动路线,提高了传动系统中的 机械效率 B 变速驱动桥同时完成变速、差速和驱动车轮等功能 C 结构紧凑,大大减轻了传动系统的质量,有利于汽车底 盘的轻量化
3 单级主减速器
3.1 结构(图)
主动锥齿轮 + 从动锥齿轮 + 轴承 + 支承机构 + 调整机构
3.2 要求
(1)主、从动齿轮必须有足够的支承刚度,以避免在传动过 程中发生较大变形而影响正常啮合
(2)必须有啮合调整装置
3.3 圆锥滚子轴承预紧度调整 3.4 特点
优点: 结构简单、体积小、质量轻、传动效率高 缺点: 传动比较小
B、任何一侧半轴齿轮的转速为0时,另一侧半轴齿轮的转速为主减速器转速的 两倍
C、当差速器壳转速为0时,若一侧半轴齿轮受外力矩而转动,则另一侧半轴齿轮 以相同转速反转
2.3 转矩分配
2.3 转矩分配(图)
(1) 无自转时
M1 = M2 = M0/2
(2) 有自转时
M1=(M0 - Mr)/2
M2=(M0 + Mr)/2
第十八章 驱动桥
第一节 概述 第二节 主减速器 第三节 差速器 第四节 变速驱动桥 第五节 半轴与桥壳
第一节 概述
1 结构(图)
主减速器 + 差速器 + 半轴 + 桥壳
2 功用
(1) 实现减速增扭
(2) 改变旋转方向(图)
(3) 实现两侧车轮的差速作用
(4) 通过桥壳体和车轮实现承载及传力作用
图 直行分析
图 转向分析
图 转矩分析
图 强制锁止式差速器
图 摩擦自锁式差速器
局部放 大图
图局部放 大图
图 半轴
图全浮式半轴
特点
A 半轴只承 受扭矩,不 承受弯矩
B 半轴易于 拆装
C 对桥壳的 刚度要求高
效果图
图半浮式半轴
特点
A 半轴既承 受扭矩,又 承受弯矩
B 半轴易断 裂,寿命短 且不易拆装 C 结构简单