植物细胞跨膜离子运输(PPT)

合集下载

细胞生物学 第五章 物质的跨膜运输

细胞生物学 第五章  物质的跨膜运输
离子流,产生电信号。 编辑ppt
离子通道的三种类型
编辑ppt
电压门控离子通道:铰链细胞失水 原理:含羞草的叶柄基部和复叶基部,都有一个膨大部分,叫作 叶枕。叶枕细胞 (铰链细胞)受刺激时,其膜钙离子门控通 道打开,钙内流,产生AP,致使铰链细胞的液泡快速失水而 失去膨压,从而叶枕就变得瘫软,小羽片失去叶枕的支持,依次 地合拢起来。
编辑ppt
应力激活的离子通道:2X1013N,0.04nm
编辑ppt
❖ 2、通道蛋白 ❖ 离子通道的特征: ❖ (1)具有极高的转运速率 ❖ 比载体转运速率高1000倍以上;带电离子
的跨膜转运动力来自跨膜电化学梯度。 ❖ (2)离子通道没有饱和值 ❖ 离子浓度增大,通过率也随之增大。 ❖ (3)离子通道是门控的,并非连续开放 ❖ 离子通道的开与闭编辑p受pt 控于适当的细胞信号。
❖ Couple uphill transport to the hydrolysis of ATP.
❖ Mainly in bacteria, couple uphill transport to an input of
energy from light.
编辑ppt
第二节 离子泵和协同转运 ❖ ATP 驱动泵分类:
编辑ppt
水分子 通过水孔蛋白
编辑ppt
第一节 膜转动蛋白与物质的跨膜运输
❖ 二、物质的跨膜运输 ❖ (一)被动运输 ❖ 2、协助扩散 ❖ 各种极性分子和无机离子,以及细
胞代谢产物等顺其浓度梯度或电化学 梯度跨膜转运,无需细胞提供能量, 但需膜转运蛋白“协助”。
编辑ppt
葡萄糖载体蛋白家族
❖ 人类基因组编码12种与糖转运相关的载体 蛋白GLUT1~GLUT12,构成GLUT。

植物细胞跨膜离子运输机制

植物细胞跨膜离子运输机制

离子的选择性:
K+ channel、Ca2+ channel、Cl- channel, etc.
运输离子方向:K+inward、K+outward,etc.
离子通道开放与关闭的调控机制: 电压门控通道(voltage-gated ion channel)、 调节因子调控的通道等。 AKT1
P
AKT1: 6个跨膜区,一个通道孔部区域; S4区为电压敏感区; C端为磷酸化调控区。
Whole-cell recording of K+ currents in akt1-1 root protoplasts. Inward currents were absent but outward currents were the same as in wild-type root protoplasts
4.关闭膜内侧蛋白质空口的同时打开膜外侧的蛋白质空口
而将M+释放出去,并将结合的Pi水解释放回膜的内侧。 5. ATP酶又恢复至原先的构象,开始下一个循环。
由于这种转运造成了膜内外正、负电荷的不 一致,所以形成了跨膜的电位差,故这种现象称 为致电(electrogenesis)。
因为这种转运是逆电化学势梯度而进行的主 动转运,所以也将ATP酶称为一种致电泵 (electrogenic pump)。 H+是最主要的通过这种方式转运的离子,所以 可以将转运H+的ATP酶称为H+-ATPase或H+ 泵。
Three families Shaker family 9 members
TPK family (Tandem-Pore K+ channel) 5 members
Kir-like family (K+ inward rectifier)

植物生理学B植物细胞跨膜离子运输

植物生理学B植物细胞跨膜离子运输
植物生理学B - 植物细胞跨膜离
子运输
汇报人:可编辑
20ห้องสมุดไป่ตู้4-01-11
目录
• 植物细胞跨膜离子运输概述 • 植物细胞跨膜离子运输机制 • 植物细胞跨膜离子运输的影响因素 • 植物细胞跨膜离子运输与植物生长和发育 • 植物细胞跨膜离子运输的研究方法 • 未来展望与研究方向
01
植物细胞跨膜离子运输概述
长发育和环境适应过程。
植物对环境的适应性
03
植物通过调节离子运输来适应环境变化,如盐碱、干旱等。
02
植物细胞跨膜离子运输机制
主动运
主动运输是指细胞通过消耗能量,逆浓度梯度 或电位梯度跨膜运输物质的过程。
主动运输涉及载体蛋白的参与,载体蛋白在膜 上形成特定的通道,通过与被运输物质结合, 实现逆浓度或电位梯度的物质转运。
被动运输
顺浓度梯度进行,不需要消耗能量。包括简单扩 散和协助扩散。
3
载体蛋白
协助物质跨膜运输的膜蛋白,具有专一性。
植物细胞跨膜离子运输的重要性
维持细胞内外的渗透平衡
01
离子平衡是植物细胞正常代谢的基础,通过跨膜运输维持细胞
内外离子浓度的相对稳定。
参与信号转导
02
植物细胞内的离子浓度变化可以作为信号分子,参与植物的生
生长素
生长素可以促进植物细胞跨膜离子运输,尤其对钾离子的吸 收有显著促进作用。它通过调节离子通道的活性来影响离子 运输。
脱落酸
脱落酸可以抑制植物细胞跨膜离子运输,尤其是在缺水或盐 分过高的环境中,脱落酸的作用更加明显。它通过调节离子 泵的活性来影响离子运输。
04
植物细胞跨膜离子运输与植物生长和发育
主动运输对于维持细胞内稳态和正常生理功能 具有重要意义,如维持细胞液的渗透压、pH值 等。

(新高考)2023版高考生物二轮总复习 专题1 细胞的物质基础和结构基础 第3讲 物质的跨膜运输课件

(新高考)2023版高考生物二轮总复习 专题1 细胞的物质基础和结构基础 第3讲 物质的跨膜运输课件

2.理解质壁分离发生的条件 (1)从细胞角度分析。 ①死细胞、动物细胞及未成熟的植物细胞(如根尖分生区细胞)不发 生质壁分离及复原现象。 ②具有中央大液泡的成熟植物活细胞可发生质壁分离及复原现象。
(2)从溶液角度分析。 ①在一定浓度(溶质不能透过膜)的溶液中只会发生质壁分离现象, 不能发生自动复原现象(用清水或低渗溶液处理方可复原)。 ②在一定浓度(溶质可透过膜)的溶液(如KNO3、甘油等)中可发生质 壁分离后自动复原现象。 ③在高浓度溶液中可发生质壁分离现象,但不会发生质壁分离复原 现象。
变式二 分析影响物质运输的因素 4.(2022·泰州模拟)小肠绒毛 上皮细胞膜上存在着两种运输葡 萄糖的载体SGLT1(主动运输的载 体)和GLUT2(协助扩散的载体), 研究人员通过实验绘制如图所示 曲线。下列说法错误的是( D )
A.该实验可以用来探究不同浓度葡萄糖条件下的主要吸收方式 B.在较高葡萄糖浓度下,细胞主要依赖协助扩散来增大吸收速率 C.小肠绒毛上皮细胞膜上存在SGLT1和GLUT2的根本原因是基因 选择性表达 D.葡萄糖分子在不同的浓度下都可通过主动运输和协助扩散两种 方式进入细胞
考题解密
1.(2022·全国甲卷)植物成熟叶肉细胞的细胞液浓度可以不同。现 将a、b、c三种细胞液浓度不同的某种植物成熟叶肉细胞,分别放入三 个装有相同浓度蔗糖溶液的试管中,当水分交换达到平衡时观察到:① 细胞a未发生变化;②细胞b体积增大;③细胞c发生了质壁分离。若在 水分交换期间细胞与蔗糖溶液没有溶质的交换,下列关于这一实验的叙 述,不合理的是( C )
变式二 掌握质壁分离与复原实验 2.(2022·湖南高考)原生质体(细胞除细胞壁以外的部分)表面积大小 的变化可作为质壁分离实验的检测指标。用葡萄糖基本培养基和NaCl溶 液交替处理某假单孢菌,其原生质体表面积的测定结果如图所示。下列 叙述错误的是( A )

离子通道课件讲解

离子通道课件讲解
1) 双微电极钳位法只适用于巨大的神经轴突、肌肉纤维和卵母细胞等较大 的细胞, 对于直径小于10 微米的细胞, 胞内插入两根电极就很困难, 虽然此时可 用单根吸附电极进行电压钳位, 但是对细胞膜的损伤也不可避免;
2) 只能采用全细胞记录模式, 记录到的是整个细胞膜上所有开放通道的电 流总和, 无法了解单通道电流的情况;
膜片钳实验
(1)玻璃微电极使用硬质有芯玻璃毛细管在拉制仪 (PC-10,Narishige)上拉制,实验前用抛光仪(MF900,Narishige)进行抛光。
全细 胞钾 离子 通道 电流
单通 道记 录钙 离子 通道 电流
抛光仪
拉制仪
显微镜操作系统及可见光源
冷 光 源
膜片钳放大器、操作系统
低 温 水 浴 摇 床
材料的 好坏直 接影响 膜片钳 实验的 成败!
要根据不同的实验目的来栽培材料。 根细胞:通常根长度在2厘米左右,但突变体要 根据该基因起作用的发育阶段来确定; 保卫细胞:通常在土壤中生长4-6周,但绝不能 抽苔;叶肉细胞对光照要求较高,因为光照直 接影响叶绿体的活动。
( 3) 第二信使激活的离子通道, 包括由细胞内Ca2+、 IP3、G 蛋白及蛋白激酶激活的离子通道。
质膜上的离子通道

阴离子通道



液泡膜上的离子通道


通 道
阳离子通道
其他细胞器膜上的离子通道
自从在蚕豆保卫细胞膜上发现植物离子通道以来,人们对植物细 胞乃至作为细胞器的液泡膜上离子通道的认识迅速深入,到目前为 止,已经发现植物细胞及其内膜上存在多种离子通道。
( 3) 机械敏感性: 由细胞膜表面的应力变化控制通道的开放与关闭 状态。 其中以电压依赖性通道最常见

人教版高中生物必修一课件:第四章第3节物质跨膜运输的方式 (共39张PPT)

人教版高中生物必修一课件:第四章第3节物质跨膜运输的方式 (共39张PPT)

(2)根据运输方向:逆浓度梯度的跨膜运输方式是主 动运输。
影响物质出入细胞的因素
•【例2】 如图表示培养液中K+浓度及溶氧量对小 麦根系细胞吸收K+速率的影响。下列有关两曲线 形成机理的解释正确的是(多选)( )。
A.曲线OB段的形成是由于细胞膜上 K+载体数量未达到 饱和且能量充足 B.曲线CD段的形成是由于细胞内 K+过多,细胞大量排 出K+ C.E点表明植物根系可以通过自由扩散的方式吸收K+ D.曲线BC、FG段的形成与细胞膜上K+载体数量有关 思维导图:
•特别提醒 表中“高浓度”、“低浓度”是指运输的离子或小分 子本身的浓度,而不是它们所在的溶液的浓度。
2.影响物质跨膜运输的因素 (1)影响自由扩散的因素 细胞膜内、外物质的浓度差。 (2)影响协助扩散的因素 ①细胞膜内、外物质的浓度差。 ②细胞膜上载体蛋白的数量。 (3)影响主动运输的因素
•1.自由扩散、协助扩散、主动运输的比较
物质出入细 胞的方式 运输方向 被动运输 自由扩散 协助扩散 低浓度→高浓 度 需要 消耗
主动运输
高浓度→低浓度 高浓度→低浓度
是否需要
载体蛋白 是否消耗能量
不需要 不消耗
需要 不消耗
图例 小肠上皮细胞吸 O2、CO2、H2O、甘油、 红细胞吸收 举例 收葡萄糖、氨基 乙醇、苯等出入细胞 葡萄糖 酸、无机盐等
规律方法 坐标曲线题的解法 (1)理解纵坐标与横坐标表示的含义 横坐标为自变量,纵坐标为因变量,即纵坐标 随着横坐标的变化而变化。 (2)学会曲线中限制因素的判断 在曲线上升阶段,限制其增长的因素为横坐标 所表示的因子,如图中限制 EF段的因素为氧气的 相对含量;当曲线不再上升时,限制其增长的因 素需要从内部因素和环境因素两个方面加以考虑, 如图中限制 FG 段的因素为载体数量 ( 内部因素 ) 和 温度(环境因素)等。

4.细胞膜的分子生物学-物质的跨膜运输 ppt课件

4.细胞膜的分子生物学-物质的跨膜运输 ppt课件

2003年,美国科学家彼得·阿格雷和罗德里克·麦金农,分别 因对细胞膜水通道,离子通道结构和机理研究而获诺贝尔化 学奖。
三.载体蛋白介导的主动运输
主动运输(active transport)是指由载体蛋白介 导的物质逆浓度梯度(或化学梯度)的由浓度低 的一侧向浓度 高的一侧的跨膜运输方式。
主动运输的特点是:①逆浓度梯度(逆化学梯度)运输; ②需要能量(由ATP直接供能)或与释放能量的过程偶联 (协同运输);③都有载体蛋白。
功能:在肌质网内储存Ca2+调节肌细胞的收缩与
舒张
肌质网上的钙离子泵 ,肌细胞膜去极化后引起肌 质网上的钙离子通道打开,大量钙离子进入细胞 质,引起肌肉收缩之后由钙离子泵将钙离子泵回 肌质网。
(3)质子泵(H+泵) ATP直接供能
存在位置:溶酶体膜上 作用方式:从胞质中主动将H+输入溶酶
共运输
对向运输
主动运输与被动运输的比较
1、运输方向 2、跨膜动力 3、能量消耗
第二节 大分子物质的囊泡转运——胞吞 和胞吐
囊泡以出芽方式从细胞的一种内膜细胞器脱离后又 与另一内膜细胞器发生融合,这一转运过程称为 囊泡转运。 根据物质的运输方向:胞吞作用(endocytosis) 胞吐作用(exocytosis)
共同特点:双向、特异、有序、化学修饰
㈠ 胞吞作用的两种形式:
胞吞作用消耗能量,属于细胞膜的主动运输 吞噬(phagocytosis) 由专门的吞噬细胞完成,大的颗粒,直径>250nm, 最终到达溶酶体被降解。 吞饮(pinocytosis) 摄入液体和小溶质分子进行消化,直径<150nm。
吞噬过程 吞饮过程
道(电位门通道、配体门通道、环核苷酸门通道、机械门通道)。

第五章-跨膜转运PPT课件

第五章-跨膜转运PPT课件

1、同向协同(symport)
物质运输方向与离子转移方向相同。如小肠细胞对葡萄糖 的吸收伴随着Na+的进入。载体蛋白有两个结合位点,同 时与Na+和特异的氨基酸或葡萄糖分子结合,进行同向转 运。
2、反向协同(antiport)
物质跨膜运动的方向与离子转移的方向相反。如动物细胞 分裂时,常通过Na+/H+反向协同运输的方式来向细胞外转 运H+,以调高细胞内的PH值。
6. 2K+释放到细胞内, α亚基
4. 3Na+释放到细胞外 5. 2K+结合;去磷酸化 构象恢复原始状态。
每一循环消耗一个ATP;转运出三个Na+, 转进两个K+。 是一种基本的、典型的主动 运输方式。
Na+-K+泵的作用: ①维持细胞的渗透压,保持细胞的体积; ②维持低Na+高K+的细胞内环境; ③维持细胞的静息电位。
➢分泌蛋白合成后立即包装入高尔基复合体的分泌囊 泡中,然后被迅速带到细胞膜处排出。
➢所有真核细胞,连续分泌过程 ➢转运途径:粗面内质网→高尔基体→分泌泡 →细胞表面
(二)钙泵(Ca2+ pump )
又称Ca2+-ATP酶。
构成:1个多肽构成的整合膜蛋白,每个泵 单位含有10个跨膜α螺旋。
分布:
❖ 细胞质膜和内质网膜上。 ❖ 肌细胞的肌质网膜上。
工 作 原 理 :
3. 构象改变,破坏Ca2+结 4. 去磷酸化
1. 2Ca2+与位点结合 2. ATP水解;磷酸化
第三节 胞吞作用(endocytosis) 与胞吐作用(exocytosis)
大分子与颗粒性物质的跨膜运输 膜泡运输:转运过程中,物质包裹在囊泡中。 批量运输:同时转运一种或多种数量不等的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
K+通道 内向钾离子通道(K+in) 外向钾离子通道( K+out)
电压门控K+通道模型
电压门控通道
Proposed structural model for AKT1, a plant K+in channel
二、离子载体( ion carrier)
• 生物膜上的一些有跨膜区域结构的 特殊蛋白。
植物细胞跨膜离子运输
第一节 生物膜的物理化学特性
一、生物膜的化学组成与生物膜的 “两亲性”和“绝缘性”
二、跨膜电化学势梯度和膜电位
一、生物膜的化学组成与生物膜的 “两亲性”和“绝缘性”
磷脂分子两亲性:亲水基团 疏水基团
带电离子
亲水部分
绝缘性 疏水层
具有强亲水性的带电离子不易通过膜的脂质双层结构
膜的相对通透性增高
人工膜 H2O 甘油
ClK+ Na+
P
10-2
10-4 10-6 10-8 10-10
生物膜 H2O
甘油
K+ ClNa+
生物膜与人工膜区别:生物膜中含有执行离子跨膜 运输功能的蛋白质。
二、跨膜电化学势梯度和膜电位
化学势
中性分子或粒子 浓度
带电粒子
电化学势 (浓度和电势)
膜电位:膜内外两侧的电势差。 分为:超极化(hyperpolarization) 去极化 (depolarization)
根尖、茎尖或叶肉细胞
patch clamp apparatus
第二节 细胞膜结构中的离子跨 膜运输蛋白
离子跨膜运输蛋白或离子运载体(ion transporter):镶嵌在生物膜中的大量功能 蛋白中执行离子跨膜运输过程的功能蛋白。
离子通道(ion channel) 离子载体( ion carrier) 离子泵(ion pump)
转运系统及机制 四、高等植物Ca2+的跨膜运转机制
一、氮素跨膜转运系统
吸收氮素形式:NH4+、NO3-、某些氮基酸、多肽等。
保卫细胞的特点 气孔运动的机理 影响气孔运动的因素 蒸腾意义
离子跨膜运输蛋白定义及特点: 离子通道 离子载体 离子泵
拟南芥中各种跨膜运输蛋白分类一览表
中文名称
英文名称
ATP结合跨膜运输复 合体
反向运转载体
ABC Transporters Antiporters
基因家族数 量
8
基因数 量
94
13
70
二、主动运输(active transport)
离子的跨膜运输与消耗水解ATP相偶联, 且被运送离子的方向是逆该离子跨膜电 化学势梯度进行。
如H+-ATPase
质膜上的主动运输 初始主动运输
跨膜质子电化 学势梯度
驱动其它离子或小分子通过相应载体 跨膜运输 次级主动运输
通过载体的次级共运输过程示意。在质子电化学势梯度的驱动下,溶质 S 被逆着其电化学势梯度运送过膜。(引自Taiz+Zeiger,1998)
多数植物所必需的矿质元素都是以离子形式 经质膜上的离子载体进入胞内。
三、离子泵(Ion pumps)
生物膜上的运输蛋白,具有 ATPase活性,靠水解ATP提供能 量将离子逆电化学势梯度跨膜运 输。
分为: 致电离子泵(electrogenic pump) 中性离子泵(electroneutral pump)
一、被动运输 二、主动运输 三、共运输
一、被动运输(passive transport)
离子的跨膜运输并不直接消耗ATP,且其 被动运输方式是顺跨膜电化学势梯度进行。
如简单扩散(simple diffusion)
离子的被动跨膜转运输是在载体的协助下 进行,其运输速度慢。
如协助扩散(facilitated diffusion)
三、共运输(co-transport)
也称协同运输,指两种溶质被同时运输 过膜的机制,两者缺一则此过程不会发生。
分为:同向共运输(symport) 反向共运输(antiport)
跨 膜 运 转 蛋 白 的 类 型
第四节 高等植物K+、Ca2+的 跨膜运输机制研究进展
一、氮素跨膜转运系统 二、磷元素跨膜转运系统 三、高等植物细胞K+的跨膜
水孔蛋白
Aquaporins
2
35
无机溶质共运转载体 Inorganic Solute Cotransporters
16
84
离子通道
Ion Channels
7
61
有机溶质共运转载体 Organic Solute Cotransporters
35
279
泵(ATP酶)
Primary Pumps (ATPa13 植物细胞膜H+-ATP酶结构式意图
(引自Buchanan等,2000)
图4-14 离子泵跨膜运输离子的过程示意图(引自 Taiz 和 Zeiger,1998)
植物细胞上确认的离子泵: 质膜上的H+-ATP 酶和Ca2+-ATP 酶 液泡膜上的H+-ATP 酶和Ca2+-ATP 酶 内膜系统上的H+-焦磷酸酶
• 具有活性结合部位,选择性地结 合物质,结合后构象发生变化, 再将物质释放于膜的另一侧。
•不具门控特性,由底物或其它化学 信号激活。载运物质的动力是跨膜 的电化学势梯度。
• 具有饱和效应
分为: 被动运输载体 主动运输载体,如离子泵
离子通过载体从膜的一侧运到另一侧示意图
载体的动力学饱和效应
通过动力学分析,可以区别溶 质是经通道还是经载体转运的, 经通道转运的是扩散过程,没有 饱和现象而经载体转运的,由于 结合部位数量有限,因此具有饱 和现象。
12
83
氨基酸/生长素通透酶 Amino Acid/Auxin Permease
1
43
(AAAP)
主要内在蛋白
Major Intrinsic Protein (MIP)
1
38
1. ATP酶
液 泡 膜 上 的
H+-ATPase
电化学势梯度
ATP酶逆电化学势梯度运送 阳离子到膜外去的假设步骤
第三节 植物细胞的离子跨膜 运输机制
The three classes of membrane transport proteins:channels,carriers,and pumps.
一、离子通道(ion channel)
生物膜上的离子运输蛋白,其氨基酸序列 中的若干疏水区域在膜上形成跨膜孔道结构, 具门控特性,多种因素调节其开放、关闭状态, 对离子具有选择性,离子顺电化学势梯度跨膜 运输。
相关文档
最新文档