时间序列模型

合集下载

时间序列模型的作用

时间序列模型的作用

时间序列模型的作用时间序列模型是一种用于预测和分析时间序列数据的统计模型。

时间序列数据是按照时间顺序排列的数据,例如每日的股票价格、每月的销售额、每年的气温变化等。

时间序列模型通过分析过去的数据,预测未来的趋势和模式,帮助人们做出决策和制定计划。

时间序列模型可以用于预测未来趋势。

通过分析过去的数据,时间序列模型可以发现数据的周期性和趋势性。

例如,通过分析过去几年的销售额数据,可以发现销售额在每年的年底都会上升,这是一个明显的趋势。

基于这个趋势,可以预测未来年底的销售额,并制定相应的销售策略。

时间序列模型可以用于分析季节性变动。

许多时间序列数据都具有明显的季节性,例如每年的节假日销售额、每周的股票交易量等。

时间序列模型可以发现这些季节性变动的规律,并对未来的季节性变动进行预测。

这对于制定季节性促销活动和调整供应链计划非常有帮助。

时间序列模型还可以用于异常检测。

异常数据是指与其他数据明显不符的数据点,可能是由于突发事件或错误导致的。

时间序列模型可以通过分析数据的波动性和趋势性,检测出异常数据点。

这对于发现潜在问题和采取相应措施非常重要。

例如,在股票交易中,如果某只股票的价格突然大幅上涨或下跌,可能是由于市场操纵或错误交易导致的,时间序列模型可以及时发现这种异常情况。

时间序列模型还可以用于评估政策和策略的效果。

许多政策和策略的效果需要一定时间才能体现出来,例如推出新产品后的销售情况、实施市场营销活动后的品牌知名度等。

时间序列模型可以通过分析过去的数据,评估政策和策略的效果,并帮助做出相应调整。

这对于企业和政府部门制定决策和规划具有重要意义。

时间序列模型在预测和分析时间序列数据方面发挥着重要作用。

它可以帮助人们预测未来的趋势和模式,分析季节性变动,检测异常数据,评估政策和策略的效果。

通过合理应用时间序列模型,人们可以更好地理解和利用时间序列数据,做出准确的预测和决策。

典型时间序列模型分析

典型时间序列模型分析

典型时间序列模型分析时间序列模型是一种用于预测未来时间上连续变量的模型。

它基于过去的观察数据,通过识别出时间序列中的趋势、季节性和随机性等特征,来预测未来的发展趋势。

典型的时间序列模型包括自回归移动平均模型(ARMA)、自回归综合移动平均模型(ARIMA)、季节性自回归综合移动平均模型(SARIMA)、指数平滑模型、神经网络模型等。

自回归移动平均模型(ARMA)是一种广泛应用于时间序列分析和预测中的模型。

它结合了自回归(AR)模型和移动平均(MA)模型的特点,能够较好地对时间序列进行建模。

ARMA模型的基本思想是通过过去p个时刻的观察值和过去q个残差项来预测当前时刻的观察值。

参数p和q是模型的阶数,可以通过自相关函数(ACF)和偏自相关函数(PACF)来选择。

自回归综合移动平均模型(ARIMA)是ARMA模型的一种推广形式,它解决了ARMA模型无法处理非平稳时间序列的问题。

ARIMA模型通过差分运算将非平稳时间序列转化为平稳时间序列,再利用ARMA模型对差分后的时间序列进行建模和预测。

ARIMA模型的阶数包括差分阶数d、自回归阶数p和移动平均阶数q,可以通过观察时间序列的趋势和周期性来确定。

季节性自回归综合移动平均模型(SARIMA)是ARIMA模型在季节性时间序列上的推广形式。

它考虑了时间序列中的季节性变化,并通过季节性差分运算将季节性时间序列转化为平稳时间序列。

SARIMA模型的参数包括季节性差分阶数D、季节性自回归阶数P和季节性移动平均阶数Q,还有非季节性差分阶数d、非季节性自回归阶数p和非季节性移动平均阶数q。

指数平滑模型是一种简单且常用的时间序列模型,适用于没有明显趋势和季节性的数据。

指数平滑模型通过对过去一段时间内的观察值进行加权平均,来预测未来的观察值。

基本的指数平滑模型有简单指数平滑模型(SES)、双指数平滑模型和三指数平滑模型等。

双指数平滑模型适用于具有一定趋势性的数据,而三指数平滑模型适用于具有趋势性和季节性的数据。

时间序列模型

时间序列模型

时间序列模型时间序列模型⼀、分类①按所研究的对象的多少分,有⼀元时间序列和多元时间序列。

②按时间的连续性可将时间序列分为离散时间序列和连续时间序列两种。

③按序列的统计特性分,有平稳时间序列和⾮平稳时间序列。

狭义时间序列:如果⼀个时间序列的概率分布与时间t ⽆关。

⼴义时间序列:如果序列的⼀、⼆阶矩存在,⽽且对任意时刻t 满⾜均值为常数和协⽅差为时间间隔τ的函数。

(下⽂主要研究的是⼴义时间序列)。

④按时间序列的分布规律来分,有⾼斯型时间序列和⾮⾼斯型时间序列。

⼆、确定性时间序列分析⽅法概述时间序列预测技术就是通过对预测⽬标⾃⾝时间序列的处理,来研究其变化趋势的。

⼀个时间序列往往是以下⼏类变化形式的叠加或耦合。

①长期趋势变动:它是指时间序列朝着⼀定的⽅向持续上升或下降,或停留在某⼀⽔平上的倾向,它反映了客观事物的主要变化趋势。

通常⽤T t表⽰。

②季节变动:通常⽤S t表⽰。

③循环变动:通常是指周期为⼀年以上,由⾮季节因素引起的涨落起伏波形相似的波动。

通常⽤C t表⽰。

④不规则变动。

通常它分为突然变动和随机变动。

通常⽤R t表⽰。

也称随机⼲扰项。

常见的时间序列模型:⑴加法模型:y t=S t+T t+C t+R t;⑵乘法模型:y t=S t·T t·C t·R t;⑶混合模型:y t=S t·T t+R t;y t=S t+T t·C t·R t;R t2这三个模型中y t表⽰观测⽬标的观测记录,E R t=0,E R t2=σ2如果在预测时间范围以内,⽆突然变动且随机变动的⽅差σ2较⼩,并且有理由认为过去和现在的演变趋势将继续发展到未来时,可⽤⼀些经验⽅法进⾏预测。

三、移动平均法当时间序列的数值由于受周期变动和不规则变动的影响,起伏较⼤,不易显⽰出发展趋势时,可⽤移动平均法,消除这些因素的影响,分析、预测序列的长期趋势。

移动平均法有简单移动平均法,加权移动平均法,趋势移动平均法等。

时间序列分析模型概述

时间序列分析模型概述

时间序列分析模型概述时间序列分析是一种统计方法,用于研究时间序列数据中的模式、趋势和周期性。

它基于时间序列数据的特点,通过建立数学模型来预测未来的数值。

时间序列数据是按照时间顺序排列的一系列观测值,它们通常用于描述一种随时间变化的现象。

例如,股票价格、气温、销售数据等都是时间序列数据。

时间序列分析的目标是通过对已知的观测值进行分析,找出数据中的规律,并利用这些规律来预测未来的数值。

时间序列分析模型通常可以分为两类:基于统计方法的模型和基于机器学习的模型。

基于统计方法的时间序列模型包括AR(自回归模型)、MA (移动平均模型)、ARMA(自回归移动平均模型)和ARIMA(差分自回归移动平均模型)等。

这些模型基于不同的假设和理论,通过寻找数据中的自相关和移动平均性质,来建立模型并进行预测。

它们常常需要对数据进行平稳性检验和参数估计。

基于机器学习的时间序列模型包括神经网络模型、支持向量机模型和深度学习模型等。

这些模型不同于统计方法,它们通过学习时间序列数据中的特征和模式来建立预测模型。

这些模型通常需要大量的数据进行训练,并且需要对模型进行调参。

除了上述模型,时间序列分析还可以包括季节性调整模型、外生变量模型等。

季节性调整模型是用于处理具有明显季节性的时间序列数据,它通过分解数据中的趋势和季节成分,来消除季节性的影响,从而提高预测的准确性。

外生变量模型是将其他影响因素(例如经济指标、政策变化等)引入时间序列模型中,以更全面地考虑影响因素对数据的影响。

时间序列分析模型在经济学、金融学、气象学等领域有着广泛的应用。

例如,在金融领域,时间序列分析模型可以用于预测股票价格和汇率等,帮助投资者做出更准确的投资决策。

在气象学领域,时间序列分析模型可以用于预测天气变化,从而为农业生产和灾害预防提供支持。

总之,时间序列分析是一种重要的数据分析方法,用于处理时间序列数据并进行预测。

它采用统计方法和机器学习方法来建立模型,并通过对数据的分析来找出数据中的规律和趋势。

常见时间序列算法模型

常见时间序列算法模型

常见时间序列算法模型
1. AR模型(自回归模型):AR模型是一种基本的时间序列模型,它假设当前时刻的观测值与过去时刻的观测值之间存在线性关系。

AR模型根据过去的一系列观测值来预测未来的观测值。

2. MA模型(滑动平均模型):MA模型也是一种基本的时间序列模型,它假设当前时刻的观测值与过去时刻的误差项之间存在线性关系。

MA模型根据过去的一系列误差项来预测未来的观测值。

3. ARMA模型(自回归滑动平均模型):ARMA模型结合了AR模型和MA模型的特点,它假设当前时刻的观测值既与过去时刻的观测值有关,又与过去时刻的误差项有关。

ARMA 模型根据过去的观测值和误差项来预测未来的观测值。

4. ARIMA模型(自回归积分滑动平均模型):ARIMA模型是对ARMA模型的扩展,它引入了差分操作,用来对非平稳时间序列进行平稳化处理。

ARIMA模型根据差分后的时间序列的观测值和误差项来预测未来的观测值。

5. SARIMA模型(季节性自回归积分滑动平均模型):SARIMA模型是对ARIMA模型的扩展,用于处理具有季节性的时间序列。

SARIMA模型基于季节性差分后的观测值和误差项来预测未来的观测值。

6. LSTM模型(长短期记忆网络):LSTM模型是一种递归神经网络模型,它通过学习时间序列中的长期依赖关系来进行预测。

LSTM模型能够捕捉到时间序列中的复杂模式,适用于处理非线性和非稳定的时间序列。

以上是几种常见的时间序列算法模型,可以根据具体问题选择合适的模型进行建模和预测。

《时间序列模型》课件

《时间序列模型》课件
对于非线性时间序列,可能需要使用 其他复杂的模型,如神经网络、支持 向量机或深度学习模型。
对异常值的敏感性
时间序列模型往往对异常值非常敏感,一个或几个异常值可能会对整个模型的预测结果产生重大影响 。
在处理异常值时,需要谨慎处理,有时可能需要剔除异常值或使用稳健的统计方法来减小它们对模型 的影响。
PART 06
指数平滑模型
总结词
利用指数函数对时间序列数据进行平滑处理,以消除随机波动。
详细描述
指数平滑模型是一种非参数的时间序列模型,它利用指数函数对时间序列数据进行平滑处理,以消除 随机波动的影响。该模型通常用于预测时间序列数据的未来值,特别是对于具有季节性和趋势性的数 据。
GARCH模型
要点一
总结词
用于描述和预测时间序列数据的波动性,特别适用于金融 市场数据的分析。
时间序列的构成要素
时间序列由时间点和对应的观测值组成,包括时间点和观测值两 个要素。
时间序列的表示方法
时间序列可以用表格、图形、函数等形式表示,其中函数表示法 最为常见。
时间序列的特点
动态性
时间序列数据随时间变化而变化,具有动态 性。
趋势性
时间序列数据往往呈现出一定的趋势,如递 增、递减或周期性变化等。
随机性
时间序列数据受到多种因素的影响,具有一 定的随机性。
周期性
一些时间序列数据呈现出明显的周期性特征 ,如季节性变化等。
时间序列的分类
根据数据性质分类
时间序列可分为定量数据和定性数据两类。定量数据包括 连续型和离散型,而定性数据则包括有序和无序类型。
根据时间序列趋势分类
时间序列可分为平稳和非平稳两类。平稳时间序列是指其统计特 性不随时间变化而变化,而非平稳时间序列则表现出明显的趋势

时间序列分析模型

时间序列分析模型

时间序列分析模型时间序列分析是一种广泛应用于统计学和经济学领域的建模方法,用于研究随时间变化的数据。

它的目的是揭示和预测数据中隐含的模式和关系,以便更好地理解和解释现象,并做出相应的决策。

时间序列分析模型可以分为统计模型和机器学习模型两类。

一、统计模型1.平稳时间序列模型:平稳时间序列是指在统计学意义上均值和方差都是稳定的序列。

常用的平稳时间序列模型包括:自回归移动平均模型(ARMA)、自回归整合移动平均模型(ARIMA)和季节性自回归整合移动平均模型(SARIMA)等。

-自回归移动平均模型(ARMA)是根据时间序列数据的自相关和移动平均性质建立的模型。

它将序列的当前值作为过去值的线性组合来预测未来值。

ARMA(p,q)模型中,p表示自回归项的阶数,q表示移动平均项的阶数。

-自回归整合移动平均模型(ARIMA)在ARMA模型基础上引入差分操作,用于处理非平稳时间序列。

ARIMA(p,d,q)模型中,d表示差分的次数。

-季节性自回归整合移动平均模型(SARIMA)是ARIMA模型的扩展,在存在季节性变化的时间序列数据中应用。

SARIMA(p,d,q)(P,D,Q)s模型中,s表示季节周期。

2.非平稳时间序列模型:非平稳时间序列是指均值和/或方差随时间变化的序列。

常用的非平稳时间序列模型包括:趋势模型、季节性调整模型、自回归积分滑动平均模型(ARIMA)和季节性自回归积分滑动平均模型(SARIMA)等。

- 趋势模型用于描述数据中的趋势变化,例如线性趋势模型(y = ax + b)和指数趋势模型(y = ab^x)等。

-季节性调整模型用于调整季节性变化对数据的影响,常见的方法有季节指数调整和X-12-ARIMA方法。

-自回归积分滑动平均模型(ARIMA)和季节性自回归积分滑动平均模型(SARIMA)在非平稳时间序列中引入差分操作进行模型建立。

二、机器学习模型机器学习模型在时间序列分析中发挥了重要作用,主要应用于非线性和高维数据的建模和预测。

时间序列模型

时间序列模型

时间序列模型时间序列模型是一种用于预测时间序列数据的统计模型。

这种模型可以帮助我们了解数据中的趋势、季节性和周期性,并基于这些信息做出未来的预测。

时间序列模型的核心思想是将过去的观察结果作为未来预测的基础。

通过对已有数据的分析和建模,我们可以确定模型的参数和时间序列的性质,从而进行准确的预测。

有许多不同的时间序列模型可以使用,其中最常用的是自回归移动平均模型(ARMA)和自回归集成移动平均模型(ARIMA)。

这些模型假设未来的数值是过去的线性组合,并通过对数据进行差分来观察数据的趋势。

另一个流行的时间序列模型是季节性自回归集成移动平均模型(SARIMA),它在ARIMA模型的基础上增加了季节性组分。

这种模型特别适用于季节性数据,可以更好地捕捉季节性的规律。

除了上述模型之外,还有各种其他的时间序列模型,例如指数平滑模型、灰度预测模型和波动性模型等。

这些模型在数据的不同方面和性质上有不同的适用性。

时间序列模型的应用非常广泛,可以用于经济预测、股票价格预测、天气预测等领域。

它可以帮助我们研究和理解时间序列数据中的规律,并根据过去的观测结果做出未来的预测。

然而,时间序列模型也存在一些不足之处。

首先,它假设未来的数值是过去的线性组合,而无法捕捉非线性的规律。

其次,时间序列模型在数据中存在异常值或离群值时表现不佳。

此外,时间序列模型无法处理缺失值,而且对于长期预测的准确性可能会受到影响。

综上所述,时间序列模型是一种重要的统计模型,可以用于预测时间序列数据。

它能够帮助我们了解数据中的趋势、季节性和周期性,并根据这些信息做出未来的预测。

然而,我们在使用时间序列模型时需要注意其假设和限制,并结合实际情况进行分析和解释。

时间序列模型是一种用于分析和预测时间序列数据的统计模型。

它可以帮助我们识别和理解数据中隐含的模式和趋势,并以此为基础进行未来的预测。

时间序列模型广泛应用于各个领域,如经济学、金融学、交通规划、气象预测等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

时间序列模型一、分类①按所研究的对象的多少分,有一元时间序列和多元时间序列。

②按时间的连续性可将时间序列分为离散时间序列和连续时间序列两种。

③按序列的统计特性分,有平稳时间序列和非平稳时间序列。

狭义时间序列:如果一个时间序列的概率分布与时间t 无关。

广义时间序列:如果序列的一、二阶矩存在,而且对任意时刻t 满足均值为常数和协方差为时间间隔的函数。

(下文主要研究的是广义时间序列)。

④按时间序列的分布规律来分,有高斯型时间序列和非高斯型时间序列。

二、确定性时间序列分析方法概述时间序列预测技术就是通过对预测目标自身时间序列的处理,来研究其变化趋势的。

一个时间序列往往是以下几类变化形式的叠加或耦合。

①长期趋势变动:它是指时间序列朝着一定的方向持续上升或下降,或停留在某一水平上的倾向,它反映了客观事物的主要变化趋势。

通常用表示。

②季节变动:通常用表示。

③循环变动:通常是指周期为一年以上,由非季节因素引起的涨落起伏波形相似的波动。

通常用表示。

④不规则变动。

通常它分为突然变动和随机变动。

通常用表示。

也称随机干扰项。

常见的时间序列模型:⑴加法模型:;⑵乘法模型:;⑶混合模型:;;这三个模型中表示观测目标的观测记录,如果在预测时间范围以内,无突然变动且随机变动的方差较小,并且有理由认为过去和现在的演变趋势将继续发展到未来时,可用一些经验方法进行预测。

三、移动平均法当时间序列的数值由于受周期变动和不规则变动的影响,起伏较大,不易显示出发展趋势时,可用移动平均法,消除这些因素的影响,分析、预测序列的长期趋势。

移动平均法有简单移动平均法,加权移动平均法,趋势移动平均法等。

、简单移动平均法当预测目标的基本趋势是在某一水平上下波动时,可用一次简单移动平均方法建立预测模型:其预测目标的标准差为:当然我们还可以得到如下递推关系:N的选取方式:①一般N 取值范围:5 ≤N ≤ 200。

当历史序列的基本趋势变化不大且序列中随机变动成分较多时,N 的取值应较大一些。

否则N 的取值应小一些。

②选择不同的N比较若干模型的预测误差,预测标准误差最小者为最好。

、加权移动平均法在简单移动平均公式中,每期数据在求平均时的作用是等同的。

但是,每期数据所包含的信息量不一样,近期数据包含着更多关于未来情况的信心。

因此,把各期数据等同看待是不尽合理的,应考虑各期数据的重要性,对近期数据给予较大的权重,这就是加权移动平均法的基本思想。

其中为权数,体现了相应的在加权平均数中的重要性。

在加权移动平均法中,的选择,同样具有一定的经验性。

一般的原则是:近期数据的权数大,远期数据的权数小。

至于大到什么程度和小到什么程度,则需要按照预测者对序列的了解和分析来确定。

、趋势移动平均法简单移动平均法和加权移动平均法,在时间序列没有明显的趋势变动时,能够准确反映实际情况。

但当时间序列出现直线增加或减少的变动趋势时,用简单移动平均法和加权移动平均法来预测就会出现滞后偏差。

因此,需要进行修正,修正的方法是作二次移动平均,利用移动平均滞后偏差的规律来建立直线趋势的预测模型。

这就是趋势移动平均法。

一次移动的平均数为二次移动的平均数为下面讨论如何利用移动平均的滞后偏差建立直线趋势预测模型:设时间序列{} 从某时期开始具有直线趋势,且认为未来时期也按此直线趋势变化,则可设此直线趋势预测模型为其中t 为当前时期数;T 为由t 至预测期的时期数;为截距,为系数,两者均称为平滑系数。

可以推算出:趋势移动平均法对于同时存在直线趋势与周期波动的序列,是一种既能反映趋势变化,又可以有效地分离出来周期变动的方法。

四、指数平滑法一次移动平均实际上认为最近N 期数据对未来值影响相同,都加权;而N 期以前的数据对未来值没有影响,加权为0。

但是,二次及更高次移动平均数的权数却不是,且次数越高,权数的结构越复杂,但永远保持对称的权数,即两端项权数小,中间项权数大,不符合一般系统的动态性。

一般说来历史数据对未来值的影响是随时间间隔的增长而递减的。

所以,更切合实际的方法应是对各期观测值依时间顺序进行加权平均作为预测值。

指数平滑法可满足这一要求,而且具有简单的递推形式。

指数平滑法根据平滑次数的不同,又分为一次指数平滑法、二次指数平滑法和三次指数平滑法等,分别介绍如下:、一次指数平滑法其中为加权系数。

预测模型为:即也就是以第t期指数平滑值作为t +1期预测值。

如何选择加权系数具体如何选择一般可遵循下列原则:①如果时间序列波动不大,比较平稳,则α应取小一点,如(~)。

以减少修正幅度,使预测模型能包含较长时间序列的信息;②如果时间序列具有迅速且明显的变动倾向,则α应取大一点,如(~)。

使预测模型灵敏度高一些,以便迅速跟上数据的变化。

③在实用上,类似移动平均法,多取几个α值进行试算,看哪个预测误差小,就采用哪个。

如何确定初值具体如何选择一般可遵循下列原则:①当时间序列的数据较多,比如在20 个以上时,初始值对以后的预测值影响很少,可选用第一期数据为初始值。

②如果时间序列的数据较少,在20个以下时,初始值对以后的预测值影响很大,这时,就必须认真研究如何正确确定初始值。

一般以最初几期实际值的平均值作为初始值。

、二次指数平滑法当时间序列的变动出现直线趋势时,采用二次指数平滑法其中为一次指数的平滑值;为二次指数的平滑值。

当时间序列{},从某时期开始具有直线趋势时,类似趋势移动平均法,可用直线趋势模型:进行预测。

、三次指数平滑法当时间序列的变动表现为二次曲线趋势时,则需要用三次指数平滑法。

三次指数平滑是在二次指数平滑的基础上,再进行一次平滑,其计算公式为式中为三次指数平滑值三次指数平滑法的预测模型为:其中:选择α值的一些基本准则:指数平滑预测模型是以时刻t为起点,综合历史序列的信息,对未来进行预测的。

选择合适的加权系数α是提高预测精度的关键环节。

根据实践经验,α的取值范围一般以~为宜。

α值愈大,加权系数序列衰减速度愈快,所以实际上α取值大小起着控制参加平均的历史数据的个数的作用。

α值愈大意味着采用的数据愈少。

(1)如果序列的基本趋势比较稳,预测偏差由随机因素造成,则α值应取小一些,以减少修正幅度,使预测模型能包含更多历史数据的信息。

(2)如果预测目标的基本趋势已发生系统地变化,则α值应取得大一些。

这样,可以偏重新数据的信息对原模型进行大幅度修正,以使预测模型适应预测目标的新变化。

如何确定初值初始值可以取前3~5个数据的算术平均值作为初始值。

五、差分指数平滑法当时间序列的变动具有直线趋势时,用一次指数平滑法会出现滞后偏差,其原因在于数据不满足模型要求。

因此,我们也可以从数据变换的角度来考虑改进措施,即在运用指数平滑法以前先对数据作一些技术上的处理,使之能适合于一次指数平滑模型,以后再对输出结果作技术上的返回处理,使之恢复为原变量的形态。

差分方法是改变数据变动趋势的简易方法。

、一阶差分指数平滑法当时间序列呈直线增加时,可运用一阶差分指数平滑模型来预测。

其中的∇为差分记号。

第一个式子表示对呈现直线增加的序列作一阶差分,构成一个平稳的新序列,第二个式子表示把经过一阶差分后的新序列的指数平滑预测值与变量当前的实际值迭加,作为变量下一期的预测值。

指数平滑值实际上是一种加权平均数。

因此把序列中逐期增量的加权平均数(指数平滑值)加上当前值的实际数进行预测,比一次指数平滑法只用变量以往取值的加权平均数作为下一期的预测更合理。

从而使预测值始终围绕实际值上下波动,从根本上解决了在有直线增长趋势的情况下,用一次指数平滑法所得出的结果始终落后于实际值的问题。

二阶差分指数平滑模型当时间序列呈现二次曲线增长时,可用二阶差分指数平滑模型来预测,计算公式如下:其中表示二阶差分。

差分方法和指数平滑法的联合运用,除了能克服一次指数平滑法的滞后偏差之外,对初始值的问题也有显著的改进。

因为数据经过差分处理后,所产生的新序列基本上是平稳的。

这时,初始值取新序列的第一期数据对于未来预测值不会有多大影响。

其次,它拓展了指数平滑法的适用范围,使一些原来需要运用配合直线趋势模型处理的情况可用这种组合模型来取代。

但是,对于指数平滑法存在的加权系数α的选择问题,以及只能逐期预测问题,差分指数平滑模型也没有改进。

六、自适应滤波法、自适应滤波法的基本过程自适应滤波法与移动平均法、指数平滑法一样,也是以时间序列的历史观测值进行某种加权平均来预测的,它要寻找一组“最佳”的权数,其办法是先用一组给定的权数来计算一个预测值,然后计算预测误差,再根据预测误差调整权数以减少误差。

这样反进行,直至找出一组“最佳”权数,使误差减少到最低限度。

由于这种调整权数的过程与通讯工程中的传输噪声过滤过程极为接近,故称为自适应滤波法。

自适应滤波法的基本预测公式为:其中为第t+1期的预测值,为第t-i+1期的观测值权数,为第期的观测值,N为权数的个数。

其调整权数的公式为:式中,n,n为序列数据的个数,为调整前的第i个权数,为调整后的第i个权数,k为学习常数,为第t+1期的预测误差。

该式表明调整后的一组权数应等于旧的一组权数加上误差调整项,这个调整项包括预测误差、原观测值和学习常数等三个因素。

学习常数k的大小决定权数调整的速度。

N, k值和初始权数的确定在开始调整权数时,首先要确定权数个数N和学习常数k。

一般说来,当时间序列的观测值呈季节变动时,N应取季节性长度值。

如序列以一年为周期进行季节变动时,若数据是月度的,则取 N=12,若季节是季度的,则取N=4。

如果时间序列无明显的周期变动,则可用自相关系数法来确定,即取N为最高自相关系数的滞后时期。

k的取值一般可定为 1/N,也可以用不同的k值来进行计算,以确定一个能使S最小的k值。

初始权数的确定也很重要,如无其它依据,也可用 1/N作为初始权系数用。

自适应滤波法有两个明显的优点:一是技术比较简单,可根据预测意图来选择权数的个数和学习常数,以控制预测。

也可以由计算机自动选定。

二是它使用了全部历史数据来寻求最佳权系数,并随数据轨迹的变化而不断更新权数,从而不断改进预测。

由于自适应滤波法的预测模型简单,又可以在计算机上对数据进行处理,所以这种预测方法应用较为广泛。

七、趋势外推预测方法趋势外推法是根据事物的历史和现时资料,寻求事物发展规律,从而推测出事物未来状况的一种比较常用的预测方法。

利用趋势外推法进行预测,主要包括六个阶段:(a)选择应预测的参数;(b)收集必要的数据;(c)利用数据拟合曲线;(d)趋势外推;(e)预测说明;(f)研究预测结果在进行决策中应用的可能性。

趋势外推法常用的典型数学模型有:指数曲线、修正指数曲线、生长曲线、包络曲线等。

、指数曲线一般来说,技术的进步和生产的增长,在其未达饱和之前的新生时期是遵循指数曲线增长规律的,因此可以用指数曲线对发展中的事物进行预测。

相关文档
最新文档