人教版广东省中山市2018-2019学年七年级(下)期末数学试卷(含解析)
2018-2019学年度七年级下学期期末试卷数学试题卷

2018-2019学年度七年级下学期期末试卷数学试题卷一.选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个2.下列运算正确的是()A.a2+a2=2a4B.3a3﹣a=2a2C.﹣a3•2a4=﹣2a12 D.3.下列诗句所描述的事件中,是不可能事件的是()A.黄河入海流B.手可摘星辰C.锄禾日当午D.大漠孤烟直4.以下列各组线段长为边,能组成三角形的是()A.1cm,2cm,4cm B.8cm,6cm,4cmC.12cm,5cm,6cm D.2cm,3cm,6cm5.如图,AD和BE是△ABC的两条中线,设△ABD的面积为S1,△BCE的面积为S2,那么()A.S1>S2B.S1=S2C.S1<S2D.不能确定6.若将一副三角板按如图所示的方式放置,则下列结论不正确的是()A.∠1=∠3 B.如果∠2=30°,则有AC∥DEC.如果∠2=30°,则有BC∥ADD.如果∠2=30°,必有∠4=∠C二.填空题(本大题共6小题,每小题3分,共18分)7.若直角三角形的一个锐角为50°,则另一个锐角的度数是度.8.若x2+mx+16是完全平方式,则m的值是.9.如图,直线AB、CD相交于点O,EO⊥AB,垂足为点O,若∠AOD=131°,则∠EOC=°.10.过去的一年里中国的精准脱贫推进有力,农村贫困人口减少1386万.其中数据13860000用科学记数法表示为.11.有若干张如图所示的正方形A类、B类卡片和长方形C类卡片,如果要拼成一个长为(2a+b),宽为(3a+2b)的大长方形,则需要C类卡片张.12.如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于点D,交AB于点E,下述结论:①BD平分∠ABC;②D是AC的中点;③AD=BD=BC;④△BDC的周长等于AB+BC,其中正确的序号是三.(本大题共5小题,每小题6分,共30分)13.(1)|﹣3|+(﹣1)2013×(π﹣3)0﹣(﹣)﹣3(2)a3•a3+(2a3)2+(﹣a2)3.14.先化简再求值:[(x﹣y)2+(x+y)(x﹣y)]÷2x,其中x=3,y=1.15.如图,点B是△ADC的边AD的延长线上一点,若∠C=50°,∠BDE=60°,∠ADC=70°.试说明:DE∥AC.16.如图是7×6的正方形网格,点A、B、C在格点上,在图中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形(三个图形各不相同).17.一个不透明袋中有红、黄、绿三种颜色的球共36个,它们除颜色外都相同,其中黄球个数是绿球个数的2倍.已知从袋中摸出一个球是红球的概率为.(1)求绿球的个数;(2)若从袋中拿出4个黄球,求从袋中随机摸出一个球是黄球的概率.四.(本大题共3小题,每小题8分,共24分)18.为了解某种车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成如表:(1)上表反映的两个变量中,自变量是,因变量是;(2)根据上表可知,该车邮箱的大小为升,每小时耗油升;(3)请求出两个变量之间的关系式(用t来表示Q)19.如图,在△ABC中,AD是BC边上的高,AE是∠BAC平分线.(1)若∠B=38°,∠C=70°,求∠DAE的度数.(2)若∠C>∠B,试探求∠DAE、∠B、∠C之间的数量关系.20.如图,∠B=42°,∠1=∠2+10°,∠ACD=64°,∠ACD的平分线与BA的延长线相交于点E.(1)请你判断BF与CD的位置关系,并说明理由;(2)求∠3的度数.五.(本大题共2小题,每小题9分,共18分)21.回答下列问题(1)填空:x2+=(x+)2﹣=(x﹣)2+(2)若a+=5,则a2+=;(3)若a2﹣3a+1=0,求a2+的值.22.如图,在△ABC中,∠ACB=90°,AC=BC,延长AB至点D,使DB=AB,连接CD,以CD为直角边作等腰三角形CDE,其中∠DCE=90°,连接BE.(1)试说明:△ACD≌△BCE;(2)若AB=3cm,则BE=cm.(3)BE与AD有何位置关系?请说明理由.六.(本大题共12分)23.如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M、N运动几秒后,M、N两点重合?(2)点M、N运动几秒后,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.2018-2019学年度七年级下学期期末试卷数学试题卷参考答案与试题解析一.选择题(共6小题)1.【解答】解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选:C.2.【解答】解:(A)原式=2a2,故A错误;(B)原式=3a3﹣a,故B错误;(C)原式=﹣2a7,故C错误;故选:D.3.【解答】解:A、是必然事件,故A不符合题意;B、是不可能事件,故B符合题意;C、是随机事件,故C不符合题意;D、是随机事件,故D不符合题意;故选:B.4.【解答】解:根据三角形的三边关系,知A、1+2<4,不能组成三角形;B、4+6>8,能够组成三角形;C、5+6<12,不能组成三角形;D、2+3<6,不能组成三角形.故选:B.5.【解答】解:如图,∵AD和BE是△ABC的两条中线,∴△ABD面积=△ACD面积,△BCE面积=△ABE面积,即S1+S4=S2+S3①,S2+S4=S1+S3②,①﹣②得:S1﹣S2=S2﹣S1,∴S1=S2.故选:B.6.【解答】解:∵∠CAB=∠EAD=90°,∴∠1=∠CAB﹣∠2,∠3=∠EAD﹣∠2,∴∠1=∠3.∴(A)正确.∵∠2=30°,∴∠1=90°﹣30°=60°,∵∠E=60°,∴∠1=∠E,∴AC∥DE.∴(B)正确.∵∠2=30°,∴∠3=90°﹣30°=60°,∵∠B=45°,∴BC不平行于AD.∴(C)错误.由AC∥DE可得∠4=∠C.∴(D)正确.故选:C.二.填空题(共6小题)7.【解答】解:∵一个锐角为50°,∴另一个锐角的度数=90°﹣50°=40°.故答案为:40°.8.【解答】解:∵x2+mx+16是一个完全平方式,∴x2+mx+16=(x±4)2,=x2±8x+16.∴m=±8,故答案为:±8.9.【解答】解:∵∠AOD=131°,∴∠COB=131°,∵EO⊥AB,∴∠EOB=90°,∴∠COE=131°﹣90°=41°,故答案为:41.10.【解答】解:数据1386 0000用科学记数法表示为1.386×107.故答案为:1.386×107.11.【解答】解:(2a+b)×(3a+2b)=6a2+7ab+2b2,则需要C类卡片7张.故答案为:7.12.【解答】解:∵AB的垂直平分线DE交AC于D,交AB于E,∴AD=BD,∴∠ABD=∠A=36°,∵AB=AC,∴∠ABC=∠C=72°,∴∠CBD=∠ABD=36°,即BD平分∠ABC;故①正确;∴∠BDC=∠C=72°,∴BC=BD,∴BC=BD=AD,故③正确;∴△BDC的周长为:BC+CD+BD=BC+C+AD=AC+BC=AB+BC;故④正确;∵CD<BD,∴CD<AD,∴D不是AC中点.故②错误.故答案为:①③④三.解答题(共11小题)13.【解答】解:(1)原式=3+(﹣1)×1﹣(﹣2)3=3﹣1+8=10;(2)原式=a6+4a6﹣a6,=4a6.14.【解答】解:原式=(2x2﹣2xy)÷2x=x﹣y,当x=3,y=1时,原式=3﹣1=2.15.【解答】证明:∵∠BDE=60°,∠ADC=70°.∴∠CDE=180°﹣60°﹣70°=50°,∵∠C=50°,∴∠C=∠CDE,∴AC∥DE.16.【解答】解:如图所示,点D即为所求.17.【解答】解:(1)∵从袋中摸出一个球是红球的概率为,∴红球的个数是:36×=12(个),设绿球的个数为x个,根据题意得:x+2x=36﹣12=24,解得:x=8,答:绿球的个数是8个;(2)根据题意得:黄球的个数是:2×8﹣4=12(个),则从袋中随机摸出一个球是黄球的概率为:=.18.【解答】解:(3)由(2)可知:Q=100﹣6t故答案为:(1)t;Q(2)100;619.【解答】解:(1)∵∠B=38°,∠C=70°,∴∠BAC=72°,∵AE是∠BAC平分线,∴∠BAE=36°,∵AD是BC边上的高,∠B=38°,∴∠BAD=52°,∴∠DAE=∠BAD﹣∠BAE=16°;(2)∠DAE=(∠C﹣∠B),如图:∠BAC=180°﹣∠B﹣∠C,∵AE是∠BAC平分线,∴∠EAC=(180°﹣∠B﹣∠C),又∵Rt△ACD中,∠DAC=90°﹣∠C,∴∠DAE=∠EAC﹣∠DAC=(180°﹣∠B﹣∠C)﹣(90°﹣∠C)=(∠C﹣∠B).20.【解答】解:(1)结论:BF∥CD.理由如下:在三角形ABC中,∠B+∠1+∠2=180°,∴42°+∠2+∠2+10°=180°,∴∠2=64°,又∵∠ACD=64°,∴∠2=∠ACD,∴BF∥CD.(2)∵∠ACD=64°,CE平分∠ACD,∴∠DCE=×64°=32°,由(1)知BF∥CD,∴∠3=180°﹣∠DCE=148°.21.【解答】解:(1)2、2.(2)23.(3)∵a2﹣3a+1=0两边同除a得:a﹣3+=0,移向得:a+=3,∴a2+=(a+)2﹣2=7.22.【解答】(1)证明:∵△ACB和△DCE都是等腰直角三角形,∴CD=CE,CA=CB,∵∠ACB=90°,∠DCE=90°,∴∠ECD+∠DCB=∠DCB+∠ACB,即∠ECB=∠ACD,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS);(2)解:∵△ACD≌△BCE,∴AD=BE,∵DB=AB=3cm,∴BE=2×3cm=6cm;(3)解:BE与AD垂直.理由如下:∵△ACD≌△BCE,∴∠1=∠2,而∠3=∠4,∴∠EBD=∠ECD=90°,∴BE⊥AD.23.【解答】解:(1)设点M、N运动x秒后,M、N两点重合,x×1+12=2x,解得:x=12;(2)设点M、N运动t秒后,可得到等边三角形△AMN,如图①,AM=t×1=t,AN=AB﹣BN=12﹣2t,∵三角形△AMN是等边三角形,∴t=12﹣2t,解得t=4,∴点M、N运动4秒后,可得到等边三角形△AMN.(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,由(1)知12秒时M、N两点重合,恰好在C处,如图②,假设△AMN是等腰三角形,∴AN=AM,∴∠AMN=∠ANM,∴∠AMC=∠ANB,∵AB=BC=AC,∴△ACB是等边三角形,∴∠C=∠B,在△ACM和△ABN中,∵,∴△ACM≌△ABN,∴CM=BN,设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,∴CM=y﹣12,NB=36﹣2y,CM=NB,y﹣12=36﹣2y,解得:y=16.故假设成立.∴当点M、N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M、N 运动的时间为16秒.。
人教版中学七年级下册数学期末解答题考试题及答案

人教版中学七年级下册数学期末解答题考试题及答案一、解答题1.(1)小丽计划在母亲节那天送份礼物妈妈,特设计一个表面积为12dm2的正方体纸盒,则这个正方体的棱长是.(2)为了增加小区的绿化面积,幸福公园准备修建一个面积121πm2的草坪,草坪周围用篱笆围绕.现从对称美的角度考虑有甲,乙两种方案,甲方案:建成正方形;乙方案:建成圆形的.如果从节省篱笆费用的角度考虑,你会选择哪种方案?请说明理由;(3)在(2)的方案中,审批时发现修如此大的草坪,目的是亲近自然,若按上方案就没达到目的,因此建议用如图的设计方案:正方形里修三条小路,三条小路的宽度是一样,这样草坪的实际面积就减少了21πm2,请你根据此方案求出各小路的宽度(π取整数).2.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).(1)阅读理解:图1中大正方形的边长为________,图2中点A表示的数为________;(2)迁移应用:请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及35-+的点,并比较它们的大小.3.如图是一块正方形纸片.(1)如图1,若正方形纸片的面积为1dm2,则此正方形的对角线AC的长为dm.(2)若一圆的面积与这个正方形的面积都是2πcm2,设圆的周长为C圆,正方形的周长为C正,则C圆C正(填“=”或“<”或“>”号)(3)如图2,若正方形的面积为16cm2,李明同学想沿这块正方形边的方向裁出一块面积为12cm 2的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?4.喜欢探究的亮亮同学拿出形状分别是长方形和正方形的两块纸片,其中长方形纸片的长为3dm ,宽为2dm ,且两块纸片面积相等.(1)亮亮想知道正方形纸片的边长,请你帮他求出正方形纸片的边长;(结果保留根号) (2)在长方形纸片上截出两个完整的正方形纸片,面积分别为22dm 和23dm ,亮亮认为两个正方形纸片的面积之和小于长方形纸片的总面积,所以一定能截出符合要求的正方形纸片来,你同意亮亮的见解吗?为什么?(参考数据:2 1.414≈,3 1.732≈)5.如图,在3×3的方格中,有一阴影正方形,设每一个小方格的边长为1个单位.请解决下面的问题.(1)阴影正方形的面积是________?(可利用割补法求面积) (2)阴影正方形的边长是________?(3)阴影正方形的边长介于哪两个整数之间?请说明理由.二、解答题6.已知,//AE BD ,A D ∠=∠. (1)如图1,求证://AB CD ;(2)如图2,作BAE ∠的平分线交CD 于点F ,点G 为AB 上一点,连接FG ,若CFG ∠的平分线交线段AG 于点H ,连接AC ,若ACE BAC BGM ∠=∠+∠,过点H 作HM FH ⊥交FG 的延长线于点M ,且3518E AFH ∠-∠=︒,求EAF GMH ∠+∠的度数.7.如图,//MN GH ,点A 、B 分别在直线MN 、GH 上,点O 在直线MN 、GH 之间,若116NAO ∠=︒,144OBH ∠=︒.(1)AOB ∠= ︒;(2)如图2,点C 、D 是NAO ∠、GBO ∠角平分线上的两点,且35CDB ∠=︒,求ACD ∠ 的度数;(3)如图3,点F 是平面上的一点,连结FA 、FB ,E 是射线FA 上的一点,若MAE ∠=n OAE ∠,HBF n OBF ∠=∠,且60AFB ∠=︒,求n 的值.8.如图1,已知直线CD ∥EF ,点A ,B 分别在直线CD 与EF 上.P 为两平行线间一点.(1)若∠DAP =40°,∠FBP =70°,则∠APB =(2)猜想∠DAP ,∠FBP ,∠APB 之间有什么关系?并说明理由; (3)利用(2)的结论解答:①如图2,AP 1,BP 1分别平分∠DAP ,∠FBP ,请你写出∠P 与∠P 1的数量关系,并说明理由;②如图3,AP 2,BP 2分别平分∠CAP ,∠EBP ,若∠APB =β,求∠AP 2B .(用含β的代数式表示)9.如图,已知直线//AB 射线CD ,110CEB ∠=︒.P 是射线EB 上一动点,过点P 作//PQ EC 交射线CD 于点Q ,连接CP .作PCF PCQ ∠=∠,交直线AB 于点F ,CG 平分ECF ∠.(1)若点P ,F ,G 都在点E 的右侧. ①求PCG ∠的度数;②若30EGC ECG ∠-∠=︒,求CPQ ∠的度数.(不能使用“三角形的内角和是180︒”直接解题)(2)在点P 的运动过程中,是否存在这样的偕形,使:3:2EGC EFC ∠∠=?若存在,直接写出CPQ ∠的度数;若不存在.请说明理由.10.已知:AB ∥CD ,截线MN 分别交AB 、CD 于点M 、N .(1)如图①,点B 在线段MN 上,设∠EBM =α°,∠DNM =β°,且满足30-a +(β﹣60)2=0,求∠BEM 的度数;(2)如图②,在(1)的条件下,射线DF 平分∠CDE ,且交线段BE 的延长线于点F ;请写出∠DEF 与∠CDF 之间的数量关系,并说明理由;(3)如图③,当点P 在射线NT 上运动时,∠DCP 与∠BMT 的平分线交于点Q ,则∠Q 与∠CPM 的比值为 (直接写出答案).三、解答题11.为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A 射线从AM 开始顺时针旋转至AN 便立即回转,灯B 射线从BP 开始顺时针旋转至BQ 便立即回转,两灯不停交又照射巡视.若灯A 转动的速度是每秒2度,灯B 转动的速度是每秒1度.假定主道路是平行的,即//PQ MN ,且:3:2BAM BAN ∠∠=.(1)填空:BAN ∠=_________;(2)若灯B 射线先转动30秒,灯A 射线才开始转动,在灯B 射线到达BQ 之前,A 灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯A 射线到达AN 之前.若射出的光束交于点C ,过C 作ACD ∠交PQ 于点D ,且126ACD ∠=︒,则在转动过程中,请探究BAC ∠与BCD ∠的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由. 12.问题情境(1)如图1,已知//, 125155AB CD PBA PCD ︒︒∠=∠=,,求BPC ∠的度数.佩佩同学的思路:过点P 作//PN AB ,进而//PN CD ,由平行线的性质来求BPC ∠,求得BPC ∠︒;问题迁移(2)图2,图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合90,//,ACB DF CG AB ︒∠=与FD 相交于点E ,有一动点P 在边BC 上运动,连接, PE PA ,记,PED PAC αβ∠=∠∠=∠.①如图2,当点P 在,C D 两点之间运动时,请直接写出APE ∠与,αβ∠∠之间的数量关系;②如图3,当点P 在,B D 两点之间运动时,APE ∠与,αβ∠∠之间有何数量关系?请判断并说明理由.13.已知射线//AB 射线CD ,P 为一动点,AE 平分PAB ∠,CE 平分PCD ∠,且AE 与CE 相交于点E .(注意:此题不允许使用三角形,四边形内角和进行解答)(1)在图1中,当点P 运动到线段AC 上时,180APC ∠=︒.直接写出AEC ∠的度数; (2)当点P 运动到图2的位置时,猜想AEC ∠与APC ∠之间的关系,并加以说明; (3)当点P 运动到图3的位置时,(2)中的结论是否还成立?若成立,请说明理由:若不成立,请写出AEC ∠与APC ∠之间的关系,并加以证明. 14.课题学习:平行线的“等角转化”功能. 阅读理解:如图1,已知点A 是BC 外一点,连接AB ,AC ,求∠BAC +∠B +∠C 的度数. (1)阅读并补充下面推理过程 解:过点A 作ED ∥BC , ∴∠B =∠EAB ,∠C =又∵∠EAB +∠BAC +∠DAC =180° ∴∠B +∠BAC +∠C =180° 解题反思:从上面推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC ,∠B ,∠C “凑”在一起,得出角之间的关系,使问题得以解决. 方法运用:(2)如图2,已知AB ∥ED ,求∠B +∠BCD +∠D 的度数.(提示:过点C 作CF ∥AB ) 深化拓展:(3)如图3,已知AB ∥CD ,点C 在点D 的右侧,∠ADC =70°,点B 在点A 的左侧,∠ABC =60°,BE 平分∠ABC ,DE 平分∠ADC ,BE ,DE 所在的直线交于点E ,点E 在AB 与CD 两条平行线之间,求∠BED 的度数.15.综合与探究综合与实践课上,同学们以“一个含30角的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线a ,b ,且//a b ,三角形ABC 是直角三角形,90BCA ∠=︒,30BAC ∠=︒,60ABC ∠=︒操作发现:(1)如图1.148∠=︒,求2∠的度数;(2)如图2.创新小组的同学把直线a 向上平移,并把2∠的位置改变,发现21120∠-∠=︒,请说明理由. 实践探究:(3)填密小组在创新小组发现的结论的基础上,将图2中的图形继续变化得到图3,AC 平分BAM ∠,此时发现1∠与2∠又存在新的数量关系,请写出1∠与2∠的数量关系并说明理由.四、解答题16.操作示例:如图1,在△ABC 中,AD 为BC 边上的中线,△ABD 的面积记为S 1,△ADC 的面积记为S 2.则S 1=S 2.解决问题:在图2中,点D 、E 分别是边AB 、BC 的中点,若△BDE 的面积为2,则四边形ADEC 的面积为 . 拓展延伸:(1)如图3,在△ABC 中,点D 在边BC 上,且BD =2CD ,△ABD 的面积记为S 1,△ADC 的面积记为S 2.则S 1与S 2之间的数量关系为 .(2)如图4,在△ABC 中,点D 、E 分别在边AB 、AC 上,连接BE 、CD 交于点O ,且BO =2EO ,CO =DO ,若△BOC 的面积为3,则四边形ADOE 的面积为 . 17.如图,在ABC 中,ABC ∠与ACB ∠的角平分线交于O 点.(1)若40A ∠=︒,则BOC ∠= ︒; (2)若A n ∠=︒,则BOC ∠= ︒;(3)若A n ∠=︒,ABC ∠与ACB ∠的角平分线交于O 点,ABO ∠的平分线与ACO ∠的平分线交于点1O ,,2016O BD ∠的平分线与2016O CE ∠的平分线交于点2017O ,则2017O ∠=︒.18.在ABC 中,100BAC ∠=︒,A ABC CB =∠∠,点D 在直线BC 上运动(不与点B 、C 重合),点E 在射线AC 上运动,且ADE AED ∠=∠,设DAC n ∠=︒.(1)如图①,当点D 在边BC 上,且40n =︒时,则BAD ∠=__________︒,CDE ∠=__________︒;(2)如图②,当点D 运动到点B 的左侧时,其他条件不变,请猜想BAD ∠和CDE ∠的数量关系,并说明理由;(3)当点D 运动到点C 的右侧时,其他条件不变,BAD ∠和CDE ∠还满足(2)中的数量关系吗?请在图③中画出图形,并给予证明.(画图痕迹用黑色签字笔加粗加黑) 19.互动学习课堂上某小组同学对一个课题展开了探究.小亮:已知,如图三角形ABC ,点D 是三角形ABC 内一点,连接BD ,CD ,试探究BDC ∠与A ∠,1∠,2∠之间的关系.小明:可以用三角形内角和定理去解决. 小丽:用外角的相关结论也能解决.(1)请你在横线上补全小明的探究过程: ∵180BDC DBC BCD ∠+∠+∠=︒,(______) ∴180BDC DBC BCD ∠=︒-∠-∠,(等式性质) ∵12180A DBC BCD ∠+∠+∠+∠+∠=︒, ∴12180A DBC BCD ∠+∠+∠=︒-∠-∠, ∴12BDC A ∠=∠+∠+∠.(______) (2)请你按照小丽的思路完成探究过程; (3)利用探究的结果,解决下列问题:①如图①,在凹四边形ABCD 中,135BDC ∠=︒,25B C ∠=∠=︒,求A ∠=______; ②如图②,在凹四边形ABCD 中,ABD ∠与ACD ∠的角平分线交于点E ,60A ∠=︒,140BDC ∠=︒,则E ∠=______;③如图③,ABD ∠,ACD ∠的十等分线相交于点、1F 、2F 、…、9F ,若120BDC ∠=︒,364BF C ∠=︒,则A ∠的度数为______;④如图④,BAC ∠,BDC ∠的角平分线交于点E ,则B ,C ∠与E ∠之间的数量关系是______;⑤如图⑤,ABD ∠,BAC ∠的角平分线交于点E ,40C ∠=︒,140BDC ∠=︒,求AEB ∠的度数.20.(1)如图1所示,△ABC中,∠ACB的角平分线CF与∠EAC的角平分线AD的反向延长线交于点F;①若∠B=90°则∠F=;②若∠B=a,求∠F的度数(用a表示);(2)如图2所示,若点G是CB延长线上任意一动点,连接AG,∠AGB与∠GAB的角平分线交于点H,随着点G的运动,∠F+∠H的值是否变化?若变化,请说明理由;若不变,请求出其值.【参考答案】一、解答题1.(1)dm;(2)从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)根据此方案求出小路的宽度为【分析】(1)先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可;(2)根据正方形的周解析:(12;(2)从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)根据3m【分析】(1)先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可;(2)根据正方形的周长公式以及圆形的周长公式即可求出答案;(3)根据图形的平移求解.【详解】解:(1)∵正方体有6个面且每个面都相等,∴正方体的一个面的面积=2 dm2.∴正方形的棱长=2dm;故答案为:2dm;(2)甲方案:设正方形的边长为xm,则x2 =121π∴x =11π∴正方形的周长为:4x=44πm乙方案: 设圆的半径rm为,则πr2==121π∴r =11∴圆的周长为:2rπ= 22πm∴ 44π-22π=22π(2-)π∵ 4>π∴ 2π>∴20π->∴正方形的周长比圆的周长大故从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)依题意可进行如图所示的平移,设小路的宽度为ym ,则(π–y)2=121π-21π∴π–yπ∴yπ∵π取整数∴y33m;【点睛】本题主要考查的是算术平方根的定义,熟练掌握正方形的性质以及平移的性质是解题的关键;2.(1);(2)①见解析;②见解析,【分析】(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;(2)① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②解析:(12,22)①见解析;②见解析,350.5-+<-【分析】(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;(2)① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;②由题(1)的原理得出大正方形的边长为5,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,再把N点表示出来,即可比较它们的大小.【详解】解:设正方形边长为a,∵a2=2,∴a=2±,故答案为:2,2-;(2)解:①裁剪后拼得的大正方形如图所示:②设拼成的大正方形的边长为b,∴b2=5,∴b=±5,在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,则M表示的数为-3+5,看图可知,表示-0.5的N点在M点的右方,∴比较大小:350.5-+<-.【点睛】本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.3.(1);(2)<;(3)不能;理由见解析.【分析】(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法;(3)采解析:(122)<;(3)不能;理由见解析.【分析】(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法; (3)采用方程思想求出长方形的长边,与正方形边长比较大小即可.【详解】解:(1)由已知AB 2=1,则AB =1,由勾股定理,AC ;(2,周长为2.1C C <圆正;即C 圆<C 正; 故答案为:<(3)不能;由已知设长方形长和宽为3xcm 和2xcm∴长方形面积为:2x •3x =12解得x∴长方形长边为>4∴他不能裁出.【点睛】本题主要考查了算术平方根在正方形、圆、长方形面积中的应用,灵活的进行算术平方根的计算与无理数大小比较是解题的关键.4.(1);(2)不同意,理由见解析【分析】(1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x 的值;(2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个解析:(1;(2)不同意,理由见解析【分析】(1)设正方形边长为dm x ,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x 的值;(2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个正方形边长的和,并与3比较即可解答.【详解】解:(1)设正方形边长为dm x ,则223x =⨯,由算术平方根的意义可知x =.(2)不同意.因为:两个小正方形的面积分别为22dm 和23dm 和3.1≈,即两个正方形边长的和约为3.1dm ,所以3.13>,即两个正方形边长的和大于长方形的长,所以不能在长方形纸片上截出两个完整的面积分别为22dm 和23dm 的正方形纸片.【点睛】本题考查了算术平方根的应用,解题的关键是读懂题意并熟知算术平方根的概念. 5.(1)5;(2);(3)2与3两个整数之间,见解析【分析】(1)通过割补法即可求出阴影正方形的面积;(2)根据实数的性质即可求解;(3)根据实数的估算即可求解.【详解】(1)阴影正方形的解析:(1)5;(23)2与3两个整数之间,见解析【分析】(1)通过割补法即可求出阴影正方形的面积;(2)根据实数的性质即可求解;(3)根据实数的估算即可求解.【详解】(1)阴影正方形的面积是3×3-4×1212⨯⨯=5 故答案为:5;(2)设阴影正方形的边长为x ,则x 2=5∴x(3)∵ ∴23<<∴阴影正方形的边长介于2与3两个整数之间.【点睛】本题考查了无理数的估算能力和不规则图形的面积的求解方法:割补法.通过观察可知阴影部分的面积是5个小正方形的面积和.会利用估算的方法比较无理数的大小.二、解答题6.(1)见解析;(2)【分析】(1)根据平行线的性质得出,再根据等量代换可得,最后根据平行线的判定即可得证;(2)过点E 作,延长DC 至Q ,过点M 作,根据平行线的性质及等量代换可得出,再根据平角的解析:(1)见解析;(2)72︒【分析】(1)根据平行线的性质得出180A B ∠+∠=︒,再根据等量代换可得180B D ∠+∠=︒,最后根据平行线的判定即可得证;(2)过点E 作//EP CD ,延长DC 至Q ,过点M 作//MN AB ,根据平行线的性质及等量代换可得出ECQ BGM DFG ∠=∠=∠,再根据平角的含义得出ECF CFG ∠=∠,然后根据平行线的性质及角平分线的定义可推出,BHF CFH CFA FAB ∠=∠∠=∠;设,FAB CFH αβ∠=∠=,根据角的和差可得出2AEC AFH ∠=∠,结合已知条件35180AEC AFH ∠-∠=︒可求得18AFH ∠=︒,最后根据垂线的含义及平行线的性质,即可得出答案.【详解】(1)证明://AE BD180A B ∴∠+∠=︒A D ∠=∠180B D ∴∠+∠=︒//AB CD ∴;(2)过点E 作//EP CD ,延长DC 至Q ,过点M 作//MN AB//AB CDQCA CAB ∴∠=∠,BGM DFG ∠=∠,CFH BHF ∠=∠,CFA FAG ∠=ACE BAC BGM ∠=∠+∠ECQ QCA BAC BGM ∴∠+∠=∠+∠ECQ BGM DFG ∴∠=∠=∠180,180ECQ ECD DFG CFG ∠+=︒∠+=︒ECF CFG ∴∠=∠//AB CD//AB EP ∴,PEA EAB PEC ECF ∴∠=∠∠=∠AEC PEC PEA ∠=∠-∠AEC ECF EAB ∴∠=∠-∠ECF AEC EAB ∴∠=∠+∠AF 平分BAE ∠12EAF FAB EAB ∴∠=∠=∠ FH 平分CFG ∠12CFH HFG CFG ∴∠=∠=∠ //CD AB,BHF CFH CFA FAB ∴∠=∠∠=∠设,FAB CFH αβ∠=∠=AFH CFH CFA CFH FAB ∠=∠-∠=∠-∠AFH βα∴∠=-,BHF CFH β∠=∠=222ECF AFH AEC EAB AFH AEC β∴∠+∠=∠+∠+∠=∠+22ECF AFH E BHF ∴∠+∠=∠+∠2AEC AFH ∴∠=∠35180AEC AFH ∠-∠=︒18AFH ∴∠=︒FH HM ⊥90FHM ∴∠=︒90GHM β∴∠=︒-180CFM NMF ∠+∠=︒90HMB HMN β∴∠=∠=︒-EAF FAB ∠=∠18EAF CFA CFH AFH β∴∠=∠=∠-∠=-︒189072EAF GMH ββ∴∠+∠=-︒+︒-=︒72EAF GMH ∴∠+∠=︒.【点睛】本题考查了平行线的判定及性质,角平分线的定义,能灵活根据平行线的性质和判定进行推理是解此题的关键.7.(1)100;(2)75°;(3)n=3.【分析】(1)如图:过O 作OP//MN ,由MN//OP//GH 得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n =3.【分析】(1)如图:过O 作OP //MN ,由MN //OP //GH 得∠NAO +∠POA =180°,∠POB +∠OBH =180°,即∠NAO +∠AOB +∠OBH =360°,即可求出∠AOB ;(2)如图:分别延长AC 、CD 交GH 于点E 、F ,先根据角平分线求得58NAC ∠=︒,再根据平行线的性质得到58CEF ∠=︒;进一步求得18DBF ∠=︒,17DFB ∠=︒,然后根据三角形外角的性质解答即可;(3)设BF 交MN 于K ,由∠NAO =116°,得∠MAO =64°,故∠MAE =641n n ︒⨯+,同理∠OBH =144°,∠HBF =n ∠OBF ,得∠FBH =1441n n ︒⨯+,从而=n BKA FBH n ∠∠=⨯︒+1441,又∠FKN =∠F +∠FAK ,得144606411n n n n ︒︒︒⨯=+⨯++,即可求n . 【详解】解:(1)如图:过O 作OP //MN ,∵MN //GHl∴MN //OP //GH∴∠NAO +∠POA =180°,∠POB +∠OBH =180°∴∠NAO +∠AOB +∠OBH =360°∵∠NAO =116°,∠OBH =144°∴∠AOB =360°-116°-144°=100°;(2)分别延长AC 、CD 交GH 于点E 、F ,∵AC 平分NAO ∠且116NAO ∠=︒,∴58NAC ∠=︒,又∵MN //GH ,∴58CEF ∠=︒;∵144OBH ∠=︒,36OBG ∠=︒∵BD 平分OBG ∠,∴18DBF ∠=︒,又∵,CDB ∠=︒35∴351817DFB CDB DBF ∠=∠-∠=-=︒;∴175875ACD DFB AEF ∠=∠+∠=︒+︒=︒;(3)设FB 交MN 于K ,∵116NAO ∠=︒,则MAO ∠=︒64; ∴641n MAE n ∠=⨯︒+ ∵144OBH ∠=︒, ∴+1n FBH n ∠=⨯︒144,=n BKA FBH n ∠∠=⨯︒+1441, 在△FAK 中,64601n BKA FKA F n ∠=∠+∠=⨯︒+︒+, ∴144646011n n n n ⨯︒=⨯︒+︒++, ∴3n =.经检验:3n =是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.8.(1)110°;(2)猜想:∠APB=∠DAP+∠FBP ,理由见解析;(3)①∠P=2∠P1,理由见解析;②∠AP2B=.【分析】(1)过P 作PM ∥CD ,根据两直线平行,内错角相等可得∠APM=解析:(1)110°;(2)猜想:∠APB=∠DAP +∠FBP ,理由见解析;(3)①∠P =2∠P 1,理由见解析;②∠AP 2B=11802β︒-. 【分析】(1)过P 作PM ∥CD ,根据两直线平行,内错角相等可得∠APM =∠DAP ,再根据平行公理求出CD ∥EF 然后根据两直线平行,内错角相等可得∠MPB =∠FBP ,最后根据∠APM +∠MPB =∠DAP +∠FBP 等量代换即可得证;(2)结论:∠APB =∠DAP +∠FBP .(3)①根据(2)的规律和角平分线定义解答; ②根据①的规律可得∠APB =∠DAP +∠FBP ,∠AP 2B =∠CAP 2+∠EBP 2,然后根据角平分线的定义和平角等于180°列式整理即可得解.【详解】(1)证明:过P 作PM ∥CD ,∴∠APM=∠DAP.(两直线平行,内错角相等),∵CD∥EF(已知),∴PM∥CD(平行于同一条直线的两条直线互相平行),∴∠MPB=∠FBP.(两直线平行,内错角相等),∴∠APM+∠MPB=∠DAP+∠FBP.(等式性质)即∠APB=∠DAP+∠FBP=40°+70°=110°.(2)结论:∠APB=∠DAP+∠FBP.理由:见(1)中证明.(3)①结论:∠P=2∠P1;理由:由(2)可知:∠P=∠DAP+∠FBP,∠P1=∠DAP1+∠FBP1,∵∠DAP=2∠DAP1,∠FBP=2∠FBP1,∴∠P=2∠P1.②由①得∠APB=∠DAP+∠FBP,∠AP2B=∠CAP2+∠EBP2,∵AP2、BP2分别平分∠CAP、∠EBP,∴∠CAP2=12∠CAP,∠EBP2=12∠EBP,∴∠AP2B=12∠CAP+12∠EBP,= 12(180°-∠DAP)+ 12(180°-∠FBP),=180°- 12(∠DAP+∠FBP),=180°- 12∠APB,=180°- 12β.【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线.9.(1)①35°;(2)55°;(2)存在,或【分析】(1)①依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;②依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=20°解析:(1)①35°;(2)55°;(2)存在,52.5︒或7.5︒【分析】(1)①依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;②依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=20°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=60°;(2)设∠EGC=3x,∠EFC=2x,则∠GCF=3x-2x=x,分两种情况讨论:①当点G、F在点E 的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可.【详解】解:(1)①∵AB∥CD,∴∠CEB+∠ECQ=180°,∵∠CEB=110°,∴∠ECQ=70°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=12∠QCF+12∠FCE=12∠ECQ=35°;②∵AB∥CD,∴∠QCG=∠EGC,∵∠QCG+∠ECG=∠ECQ=70°,∴∠EGC+∠ECG=70°,又∵∠EGC-∠ECG=30°,∴∠EGC=50°,∠ECG=20°,∴∠ECG=∠GCF=20°,∠PCF=∠PCQ=12(70°−40°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=∠ECQ-∠PCQ=70°-15°=55°.(2)52.5°或7.5°,设∠EGC=3x°,∠EFC=2x°,①当点G、F在点E的右侧时,∵AB∥CD,∴∠QCG=∠EGC=3x°,∠QCF=∠EFC=2x°,则∠GCF=∠QCG-∠QCF=3x°-2x°=x°,∴∠PCF=∠PCQ=12∠FCQ=12∠EFC=x°,则∠ECG=∠GCF=∠PCF=∠PCD=x°,∵∠ECD=70°,∴4x=70°,解得x=17.5°,∴∠CPQ=3x=52.5°;②当点G、F在点E的左侧时,反向延长CD到H,∵∠EGC=3x°,∠EFC=2x°,∴∠GCH=∠EGC=3x°,∠FCH=∠EFC=2x°,∴∠ECG=∠GCF=∠GCH-∠FCH=x°,∵∠CGF=180°-3x°,∠GCQ=70°+x°,∴180-3x=70+x,解得x=27.5,∴∠FCQ=∠ECF+∠ECQ=27.5°×2+70°=125°,∠FCQ=62.5°,∴∠PCQ=12∴∠CPQ=∠ECP=62.5°-55°=7.5°,【点睛】本题主要考查了平行线的性质,掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键.10.(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3)【分析】(1)由非负性可求α,β的值,由平行线的性质和外角性质可求解;(2)过点E作直线EH∥AB,由角平分线的性质和平行解析:(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3)12【分析】(1)由非负性可求α,β的值,由平行线的性质和外角性质可求解;(2)过点E作直线EH∥AB,由角平分线的性质和平行线的性质可求∠DEF=180°﹣30°﹣2x°=150°﹣2x°,由角的数量可求解;(3)由平行线的性质和外角性质可求∠PMB=2∠Q+∠PCD,∠CPM=2∠Q,即可求解.【详解】α-+(β﹣60)2=0,解:(1)∵30∴α=30,β=60,∵AB∥CD,∴∠AMN=∠MND=60°,∵∠AMN=∠B+∠BEM=60°,∴∠BEM=60°﹣30°=30°;(2)∠DEF+2∠CDF=150°.理由如下:过点E作直线EH∥AB,∵DF平分∠CDE,∴设∠CDF=∠EDF=x°;∵EH∥AB,∴∠DEH=∠EDC=2x°,∴∠DEF=180°﹣30°﹣2x°=150°﹣2x°;∴∠DEF=150°﹣2∠CDF,即∠DEF+2∠CDF=150°;(3)如图3,设MQ与CD交于点E,∵MQ平分∠BMT,QC平分∠DCP,∴∠BMT=2∠PMQ,∠DCP=2∠DCQ,∵AB∥CD,∴∠BME=∠MEC,∠BMP=∠PND,∵∠MEC=∠Q+∠DCQ,∴2∠MEC=2∠Q+2∠DCQ,∴∠PMB=2∠Q+∠PCD,∵∠PND=∠PCD+∠CPM=∠PMB,∴∠CPM=2∠Q,∴∠Q与∠CPM的比值为1,2.故答案为:12【点睛】本题主要考查了平行线的性质、角平分线的性质,准确计算是解题的关键.三、解答题11.(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD【分析】(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数;(2)设A灯转动t秒,解析:(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD【分析】(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数;(2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:当0<t<90时,根据2t=1•(30+t),可得t=30;当90<t<150时,根据1•(30+t)+(2t-180)=180,可得t=110;(3)设灯A射线转动时间为t秒,根据∠BAC=2t-108°,∠BCD=126°-∠BCA=t-54°,即可得出∠BAC:∠BCD=2:1,据此可得∠BAC和∠BCD关系不会变化.【详解】解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,∴∠BAN=180°×2=72°,5故答案为:72;(2)设A灯转动t秒,两灯的光束互相平行,①当0<t<90时,如图1,∵PQ∥MN,∴∠PBD=∠BDA,∵AC∥BD,∴∠CAM=∠BDA,∴∠CAM=∠PBD∴2t=1•(30+t),解得t=30;②当90<t<150时,如图2,∵PQ∥MN,∴∠PBD+∠BDA=180°,∵AC∥BD,∴∠CAN=∠BDA∴∠PBD+∠CAN=180°∴1•(30+t)+(2t-180)=180,解得t=110,综上所述,当t=30秒或110秒时,两灯的光束互相平行;(3)∠BAC和∠BCD关系不会变化.理由:设灯A射线转动时间为t秒,∵∠CAN =180°-2t ,∴∠BAC =72°-(180°-2t )=2t -108°,又∵∠ABC =108°-t ,∴∠BCA =180°-∠ABC -∠BAC =180°-t ,而∠ACD =126°,∴∠BCD =126°-∠BCA =126°-(180°-t )=t -54°,∴∠BAC :∠BCD =2:1,即∠BAC =2∠BCD ,∴∠BAC 和∠BCD 关系不会变化.【点睛】本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补. 12.(1)80;(2)①;②【分析】(1)过点P 作PG ∥AB ,则PG ∥CD ,由平行线的性质可得∠BPC 的度数; (2)①过点P 作FD 的平行线,依据平行线的性质可得∠APE 与∠α,∠β之间的数量关系;解析:(1)80;(2)①APE αβ∠=∠+∠;②APE βα∠=∠-∠【分析】(1)过点P 作PG ∥AB ,则PG ∥CD ,由平行线的性质可得∠BPC 的度数;(2)①过点P 作FD 的平行线,依据平行线的性质可得∠APE 与∠α,∠β之间的数量关系;②过P 作PQ ∥DF ,依据平行线的性质可得∠β=∠QPA ,∠α=∠QPE ,即可得到∠APE =∠APQ -∠EPQ =∠β-∠α.【详解】解:(1)过点P 作PG ∥AB ,则PG ∥CD ,由平行线的性质可得∠B +∠BPG =180°,∠C +∠CPG =180°,又∵∠PBA =125°,∠PCD =155°,∴∠BPC =360°-125°-155°=80°,故答案为:80;(2)①如图2,过点P 作FD 的平行线PQ ,则DF ∥PQ ∥AC ,∴∠α=∠EPQ ,∠β=∠APQ ,∴∠APE =∠EPQ +∠APQ =∠α+∠β,∠APE 与∠α,∠β之间的数量关系为∠APE =∠α+∠β;②如图3,∠APE 与∠α,∠β之间的数量关系为∠APE =∠β-∠α;理由:过P 作PQ ∥DF ,∵DF ∥CG ,∴PQ ∥CG ,∴∠β=∠QPA ,∠α=∠QPE ,∴∠APE =∠APQ -∠EPQ =∠β-∠α.【点睛】本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论.13.(1);(2),证明见解析;(3),证明见解析.【分析】(1)过点作,先根据平行线的性质、平行公理推论可得,从而可得,再根据平行线的性质可得,然后根据角平分线的定义可得,最后根据角的和差即可得; 解析:(1)90︒;(2)2APC AEC ∠=∠,证明见解析;(3)2360APC AEC ∠+∠=︒,证明见解析.【分析】(1)过点E 作//EF AB ,先根据平行线的性质、平行公理推论可得,AEF BAE CEF DCE ∠=∠∠=∠,从而可得AEC BAE DCE ∠=∠+∠,再根据平行线的性质可得180PAB PCD ∠+∠=︒,然后根据角平分线的定义可得11,22BAE PAB DCE PCD ∠=∠∠=∠,最后根据角的和差即可得;(2)过点E 作//EF AB ,过点P 作//PQ AB ,先根据(1)可得1()2AEC BAE DCE PAB PCD ∠=∠+∠=∠+∠,再根据(1)同样的方法可得APC PAB PCD ∠=∠+∠,由此即可得出结论;(3)过点E 作//EF AB ,过点P 作//PQ AB ,先根据(1)可得2PAB PCD AEC ∠+∠=∠,再根据平行线的性质、平行公理推论可得180,180APQ PAB CPQ PCD ∠=︒-∠∠=︒-∠,然后根据角的和差、等量代换即可得出结论.【详解】解:(1)如图,过点E 作//EF AB ,AEF BAE ∴∠=∠,//AB CD ,//EF CD ∴,CEF DCE ∴∠=∠,AEC AEF CEF BAE DCE ∴∠=∠+∠=∠+∠,又//AB CD ,且点P 运动到线段AC 上,180PAB PCD ∴∠+∠=︒,AE ∵平分PAB ∠,CE 平分PCD ∠,11,22BAE PAB DCE PCD ∴∠=∠∠=∠, 111()90222AEC PAB PCD PAB PCD ∴∠=∠+∠=∠+∠=︒; (2)猜想2APC AEC ∠=∠,证明如下:如图,过点E 作//EF AB ,过点P 作//PQ AB ,由(1)已得:1()2AEC BAE DCE PAB PCD ∠=∠+∠=∠+∠, 同理可得:APC PAB PCD ∠=∠+∠,2APC AEC ∴∠=∠;(3)2360APC AEC ∠+∠=︒,证明如下:如图,过点E 作//EF AB ,过点P 作//PQ AB ,由(1)已得:1()2AEC BAE DCE PAB PCD ∠=∠+∠=∠+∠, 即2PAB PCD AEC ∠+∠=∠,//PQ AB ,180APQ PAB ∴∠+∠=︒,即180APQ PAB ∠=︒-∠,//AB CD ,//PQ CD ∴,180CPQ PCD ∴∠+∠=︒,即180CPQ PCD ∠=︒-∠,APC APQ CPQ ∴∠=∠+∠,180180PAB PCD =︒-∠+︒-∠,()360PAB PCD =︒-∠+∠,3602AEC =︒-∠,即2360APC AEC ∠+∠=︒.【点睛】本题考查了平行线的性质、平行公理推论、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.14.(1)∠DAC ;(2)360°;(3)65°【分析】(1)根据平行线的性质即可得到结论;(2)过C 作CF ∥AB 根据平行线的性质得到∠D=∠FCD ,∠B=∠BCF ,然后根据已知条件即可得到结论;解析:(1)∠DAC ;(2)360°;(3)65°【分析】(1)根据平行线的性质即可得到结论;(2)过C 作CF ∥AB 根据平行线的性质得到∠D =∠FCD ,∠B =∠BCF ,然后根据已知条件即可得到结论;(3)过点E 作EF ∥AB ,然后根据两直线平行内错角相等,即可求∠BED 的度数.【详解】解:(1)过点A 作ED ∥BC ,∴∠B =∠EAB ,∠C =∠DCA ,又∵∠EAB +∠BAC +∠DAC =180°,∴∠B +∠BAC +∠C =180°.故答案为:∠DAC ;(2)过C 作CF ∥AB ,∵AB∥DE,∴CF∥DE,∴∠D=∠FCD,∵CF∥AB,∴∠B=∠BCF,∵∠BCF+∠BCD+∠DCF=360°,∴∠B+∠BCD+∠D=360°;(3)如图3,过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,∴∠ABE=12∠ABC=30°,∠CDE=12∠ADC=35°,∴∠BED=∠BEF+∠DEF=30°+35°=65°.【点睛】此题考查了平行线的判定与性质,解题的关键是正确添加辅助线,利用平行线的性质进行推算.15.(1);(2)理由见解析;(3),理由见解析.【分析】(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;(2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°,∠1=∠解析:(1)242∠=︒;(2)理由见解析;(3)12∠=∠,理由见解析.【分析】(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;(2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°,∠1=∠DBC,则∠ABD=∠ABC−∠DBC=60°−∠1,进而得出结论;(3)过点C 作CP∥a,由角平分线定义得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行线的性质得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出。
广东中山市2024年七年级下学期期末数学试题(原卷版)

中山市 2023—2024 学年下学期期末水平测试试卷七年级数学(测试时间:120分钟,满分:120分)温馨提示:请将答案写在答题卡上,不要写在本试卷.一、单项选择题(共10个小题, 每小题3分, 满分30分)1. 在下列各组由运动项目的图标组成的图形中,能将其中一个图形只经过平移得到另一个图形的是( )A B. C. D. 2. 以下调查中,适宜抽样调查的是( )A. 了解某班学生喜爱的体育运动项目的情况B. 你所在学校的男、女同学的人数C. 了解某地区饮用水矿物质含量的情况D. 了解太空空间站的零部件是否正常 3. 中国传统数学对无理数的最早记载是在《九章算术》一书中,书中记载:将开方开不尽的数叫做“面”.下面符合“面”的描述的数是( )A.B.C.D. 4. 在平面直角坐标系中,过点4)A 和点(4,4)B −−作直线,则直线AB ( )A. 平行于x 轴B. 平行于y 轴C. 与x 轴相交D. 经过原点 5. 若p q <,则下列各式中正确的是( )A. 0p q −>B. 2p q q +<C. 22p q −>−D. 22p q −<− 6. 把方程24x y −=改写成用含x 的式子表示y 的形式正确的是( ) A. 24y x =− B. 122x y =+ C. 24y x =+ D. 122x y =− 7.小的最大整数是( )A. 4B. 3C. 2D. l8. 如图是光的反射规律示意图.CO 是入射光线,OD 是反射光线,法线EO AB ⊥,EOD COE ∠=∠.若BOD COD ∠=∠,则AOC ∠的度数为( ).A. 30°B. 40°C. 45°D. 60°9. 如图是由截面为同一种长方形的墙砖粘贴的部分墙面,设每块小长方形墙砖的长为cm x ,宽为cm y ,则下列所列方程组正确的是( )A. 103240x y y += =B. 102402x y y x −= +=C. 10240x y y −= =D. 1032402x y y x += +=10. 平面直角坐标系中点()2024,2024P a a −+不可能( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限二、填空题 (共5个小题,每小题4分,满分20分)11. 利用如图工具可以测得1∠的大小是_______°.12. 在画频数分布直方图时,一个样本容量为100的样本,最小值为110,最大值为172.若确定组距为4,则分成的组数是_______.13. 如图是关于x 的不等式组的解集在数轴上的表示,则其解集为________.14. 在平面直角坐标系中,在第四象限内的点()3P t ,到x 轴的距离是2,则t =_______. 15. 小颖沿着某公园的环形跑道(周长大于 1km )按逆时针方向跑步,并用跑步软件记录运动轨迹,她从起点出发,每跑1km ,软件会在运动轨迹上标注出相应的里程数.前4km的里程数数据如图所示,当小在的颖跑了2圈时,她的运动里程数______3km (填“>” “=”或“<” ).三、解答题( 一)(共4个小题,每小题6分,满分24分)16.1+− 17 解方程组37528x y x y −= +=18. 如图,在平面直角坐标系中,已知ABC 的三个顶点坐标分别为()4,3A ,()3,1B ,()1,2C .若111A B C △是由ABC 平移后所得,且ABC 中的任意一点(),P x y 经过平移后的对应点为()13,2P x y −+.(1)画出111A B C △;(2)求111A B C △的面积.19. 已知:如图,12∠=∠,67∠=∠.求证:45180∠+∠=°.四、解答题(二)(共3个小题,每小题8分,满分24分)20. 某校积极落实“双减”政策,开设了各类社团供学生参与拓展课程,为了解七年级学生各社团活动的.参与人数,该校对参与社团活动的学生进行了抽样调查,制作出如下的统计图.请根据统计图信息,解答下列问题:(1)求此次被调查的学生人数和扇形统计图中书法类所对应的圆心角的大小;(2)请把条形统计图补充完整;(3)已知该校七年级共有1200名学生参加社团活动,请根据样本估算该校七年级学生参加艺术类社团的人数.21. 对于两个关于x 的不等式,若有且仅有两个整数使得这两个不等式同时成立,则称这两个不等式是“双整”的.例如不等式不等式0x >和不等式3x <只有1和2两个整数使得这两个不等式同时成立,所以不等式0x >和不等式3x <是“双整”的.(1)判断不等式235x −<和10x −≥是否是“双整”的并说明理由;(2)若不等式210x a −+<和1x >是“双整”的,求a 的最大值.22. 【阅读理解】在平面直角坐标系中,将横、纵坐标均为整数的点称为格点.若一个多边形的顶点都在格点上,则称该多边形为格点多边形.格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L .如图,ABC 是格点三角形, 其对应的1S =,0N =,4L =.(1)【学以致用】图中格点四边形DEFG 对应的S =______,N =______,L =______ ;(2)【拓展研究】已知格点多边形的S ,N ,L 存在1S aN bL =+− 的数量关系,其中a ,b 为常数. ①试求出a ,b 的值;②若某格点多边形对应的面积S 为79,内部的格点数N 为71,请求出该格点多边形边界上的格点数 L 的值.五、解答题(三)(共2个小题,第23题10分,第24题12分,满分22分)23. 某校为学生提供早餐和午餐服务.(1)学校提供的午餐有甲、乙两种套餐,两种套餐的组成如下: 套餐主食(克) 肉类(克) 其它(克) 甲150 85 165 乙 180 60 160了膳食平衡,需合理控制主食摄入量.如果在一周里,学生午餐主食摄入总量不宜超过820克,那么学生需要在一周里最多几天选择乙套餐?(说明:一周按5天计算)(2)学校提供的一份早餐包括一份综合食品、一份牛奶和一个鸡蛋.已知一份牛奶比一个鸡蛋重量的2倍少10克,一份牛奶和一份综合食品重量的和是一份鸡蛋重量的4倍.其中鸡蛋的蛋白质含量占15%,综合食品和牛奶每100克含蛋白质的重量如下表所示:种类综合食品 牛奶 每100克含蛋白质的重量(克) 9 3若早餐的蛋白质总含量为8%,请求一份早餐中综合食品、牛奶和鸡蛋的重量.24. 如图1,线段AB CD ∥,P 为线段AC 上一动点(不与点A ,C 重合).分别连接BP ,DP .过点P 作BPD ∠的角平分线PE ,在线段AC 的右侧作PF CD ∥.(1)如图2,当PE 与PF 重合时,求证:B D ∠=∠;(2)当PE 与PF 不重合时,探索B ∠,D ∠,EPF ∠之间的数量关系并说明理由.为。
2018-2019学年七年级下学期期末考试数学试卷含答案解析

20、(1 题 5 分、2 题 6 分满分 11 分)
(1)解方程组
3x 3x
y2 11 2
y
(2)解不等式组
轴上表示出来。
并把它的解集在数
21、(5 分)下面是某同学给出一种证法,请你将解答中缺少的条件、结论或证明理由补充 完整:
证明: CD与EF相交于点H , (已知) 1 2 (_________________________)
B、2 个
C、3 个
D、 4 个
5、在“同一平面”条件下,下列说法中错误的个数是( )
(1)过一点有且只有一条直线与已知直线平行;
(2)过一点有且只有一条直线与已知直线垂直;
(3)平移只改变图形的位置,不改变图形的形状和大小;
(4)有公共顶点且有一条公共边的两个角互为邻补角.
A、 1 个
B、2 个
C、3 个
根据以上提供的信息,解答下列问题:
(1)补全频数分布表;
(2)补全频数分布直方图; (3)请你估计该居民小区家庭属于中等收入(大于或等于1000不足1600元)的大约有多少 户?
分组 600≤x<800 800≤x<1000 1000≤x<1200 1200≤x<1400 1400≤x<1600 1600≤x<1800
8m+4n=20 (2 分)
当 m=1 时, n=3;当 m=2 时 n=1
汉 堡 店 可 以 配 送 的 方 案 是 一 个 汉 堡 包 和 3 杯 橙 汁 ;或 2 个 汉 堡 和 一 杯 橙 汁 。( 2 分 )
26.解 :( 1) 设 购 买 甲 种 树 苗 x 棵 , 合用全面调查的是( )
A、了解全班同学每周体育锻炼的时间
人教版七年级数学下册期末测试题及答案共五套完整版

人教版七年级数学下册期末测试题及答案共五套HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】七下期期末姓名: 学号 班级 一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )A.16=±4B.±16=4C.327-=-3D.2(4)-=-4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->b x ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( )A.135x y x y -=⎧⎨+=⎩B.135x y x y -=-⎧⎨+=-⎩C.331x y x y -=⎧⎨-=⎩D.2335x y x y -=-⎧⎨+=⎩ 6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )A .1000B .1100C .1150D .1200PCBA小刚小军小华(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( )A .4B .3C .2D .18.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( )A .5B .6C .7D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 cm 2C .15 cm 2D .17 cm 2C 1A 1ABB 1CD10.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上.的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上)18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩ 21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。
新人教版七年级数学下册期末测试卷及答案【精选】

新人教版七年级数学下册期末测试卷及答案【精选】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2-ab-ac-bc的值是()A.0 B.1 C.2 D.32.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°3.若整数x满足5+19≤x≤45+2,则x的值是()A.8 B.9 C.10 D.114.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元B.100元C.80元D.60元5.若x取整数,则使分式6321xx+-的值为整数的x值有()A.3个B.4个C.6个D.8个6.实数a,b在数轴上对应点的位置如图所示,化简|a|+2()a b+的结果是( )A.﹣2a-b B.2a﹣b C.﹣b D.b7.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C.若CO=BO,则a的值为()A.-3 B.-2 C.-1 D.18.在数轴上,a所表示的点总在b所表示的点的右边,且|a|=6,|b|=3,则a-b 的值为( )A .-3B .-9C .-3或-9D .3或99.如图是一个切去了一个角的正方体纸盒,切面与棱的交点A ,B ,C 均是棱的中点,现将纸盒剪开展成平面,则展开图不可能是( )A .B .C .D .10.已知2,1=⎧⎨=⎩x y 是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为 A .-1 B .1 C .2 D .3二、填空题(本大题共6小题,每小题3分,共18分)1.若△ABC 三条边长为a ,b ,c ,化简:|a -b -c |-|a +c -b |=__________.2.如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2的度数是_____.3.如图,有两个正方形夹在AB 与CD 中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)4.若()2320m n -++=,则m+2n 的值是________.5.如图,在△ABC 和△DEF 中,点B 、F 、C 、E 在同一直线上,BF = CE ,AC ∥DF ,请添加一个条件,使△ABC ≌△DEF ,这个添加的条件可以是________.(只需写一个,不添加辅助线)6.如果20a b --=,那么代数式122a b +-的值是________.三、解答题(本大题共6小题,共72分)1.解方程组:25342x y x y -=⎧⎨+=⎩2.已知关于x 的方程(m+3)x |m+4|+18=0是一元一次方程,试求:(1)m 的值;(2)2(3m+2)-3(4m-1)的值.3.如图,直线AB ∥CD,BC 平分∠ABD,∠1=65°,求∠2的度数.4.某住宅小区有一块草坪如图所示.已知AB =3米,BC =4米,CD =12米,DA =13米,且AB ⊥BC ,求这块草坪的面积.5.为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.6.某农产品生产基地收获红薯192吨,准备运给甲、乙两地的承包商进行包销.该基地用大、小两种货车共18辆恰好能一次性运完这批红薯,已知这两种货车的载重量分别为14吨/吨和8吨/辆,运往甲、乙两地的运费如下表:运费车型运往甲地/(元/辆)运往乙地/(元/辆)大货车 720 800小货车 500 650(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,总运费为w元,求w关于a的函数关系式;(3)在(2)的条件下,若甲地的承包商包销的红薯不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最低总运费.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、C4、C5、B6、A7、A8、D9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、2b-2a2、40°3、70.4、-15、AC=DF(答案不唯一)6、5三、解答题(本大题共6小题,共72分)1、21 xy=⎧⎨=-⎩2、(1)m=-5 (2)373、50°.4、36平方米5、(1)800,240;(2)补图见解析;(3)9.6万人.6、(1)大货车用8辆,小货车用10辆;(2)w=70a+11400(0≤a≤8且为整数);(3)使总运费最少的调配方案是:3辆大货车、7辆小货车前往甲地;5辆大货车、3辆小货车前往乙地.最少运费为11610元.。
最新人教版七年级下册数学《期末测试卷》及答案

人教版七年级下学期期末考试数学试题、选择题1.4 的平方根是()A. ±2B. 2C. ﹣2D. 162. 如图,已知AB∥CD,∠ 2=100°,则下列正确的是()A. ∠ 1=100°B. ∠3=80°3.在﹣2,4 ,2,3.14 这4 个数中,无理数是A. ﹣2B. 44. 在下列所给出坐标的点中,在第二象限的是A. (2,3) B. (﹣2,3)5. 下列调查中,适宜抽样调查的是()A. 了解某班学生的身高情况B. 选出某校短跑最快的学生参加全市比赛C. 了解全班同学每天体育锻炼的时间D. 调查某批次汽车的抗撞击能力6. 下列不等式中一定成立的是().A. 5a > 4aB. a > 2aC.∠4=80°D.∠4=100°()C.2D.3.14C.(﹣2,﹣3 )D.(2,﹣3)23C. <D. a 2 < a 3 aa2 倍,则甲今年的年龄是12岁,4 年后甲的年龄恰好是乙的年龄的A. 20 岁B. 16 岁C. 15 岁D. 12 岁8.在平面直角坐标系中,点A 坐标为(1, 2),将点A 向右平移3 个单位长度后得到A ,则点A 的坐标是()A. ( 2,2)B. (1,5)C. (1,1)D. (4, 2)9.如果关于x, y的方程组x y 3的解是正数,那a 的取值范围是(x 2y a 210.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的A. 4< a< 5B. a> 5C. a< 4D. 无解D. y=2n+n+1二、填空题11.计算:32712.a 与2 的差不大于-1 ,用不等式表示为________13.命题“同角补角相等”的题设是_______ ,结论是_________14.若P(4,﹣3),则点P到x轴的距离是_____.15.空气是由多种气体混合而成的,为了直观地介绍空气各成分的百分比,最适合使用的统计图是___________________________________________________________________________________________________________ (从16.《九章算术》是中国传统数学名著其中记载: “今有牛五、羊二,直金十两;牛二、羊五,直金八两问牛,那么第一架轰炸机C的平每只羊分别值飞行队形,两;2头牛, 5只羊,值金8 两.问每头牛、每只羊各两,根据题意,则可列方程组为主要依据是分别为A(﹣2,1)和B(﹣2,﹣3),羊各直金几何?”译文: “假设有值金多少两?”若设每头17.如图,体育课上老师要18.如图是轰炸机机群x 两、其测学生的跳远成牛,2 只羊,值金19.∠A 的两边与∠ B的两边互相平行,且∠ A 比∠ B 的2倍少15°,则∠ A 的度数为三、解答题21.解下列方程组与不等式(组)3x 2y 11) 解方程组;x 3y 75(x 1) 3x 1 2) 解不等式组2x 1 5x 1 ,1 23x 2 2 x3)解不等式 x- < 并把解集 数轴上表示出来.2322.计算: 4 | 2| 3 27 ( 1)2019 . 23.在下列网格中建立平面直角坐标系如图, 每个小正方形的边长均为 1 个单位长度, 已知 A (1,1) 、 B (3,4)1)在图中标出点 A 、 B 、C .2)将点 C 向下平移 3个单位到 D 点,将点 A 先向左平移 3个单位,再向下平移 1个单位到 E 点,在图中 标出 D 点和 E 点.3)求 EBD 的面积 S EBD 24.解放中学为了了解学生对新闻、体育、动画、娱乐四类电视节目喜爱程度,随机抽取了部分学生进行调查 (每人限选 1项),现将调查结果绘制成如下两幅不完整的统计图,根据图中所给的信息解答下列问题20.若关于 x 的不等式组xa3 1 2xx 2无解,则a 的取值范围是(1)喜爱动画的学生人数和所占比例分别是多少?(2)请将条形统计图补充完整;(3)若该校共有学生1000 人,依据以上图表估计该校喜欢体育的人数约为多少?25. 如图,EF∥ AD,∠ 1=∠ 2,∠ BAC=80°.求∠ A的GD度数.26. 星光橱具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如表:(1)一季度,橱具店购进这两种电器共30台,用去了5600 元,并且全部售完,问橱具店在该买卖中赚了多少钱?(2)为了满足市场需求,二季度橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50 个,且电饭煲的数量不少于23 个,问橱具店有哪几种进货方案?并说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案橱具店赚钱最多?6.下列不等式中一定成立的是( )平行,同位角相等,所以∠ 4= 100°故选 D.点睛】本题主要考查平行线的性质,关键在于识别同旁内角,同位角,内错角3. 在﹣ 2, 4 , 2 ,3.14这 4个数中,无理数是 ( )答案】 C 解析】 分析】、选择题1.4的平方根是( A. ±2B. 2 答案】 A 解析】分析】根据平方根 答案与解析C. ﹣2D. 16定义,求数 a 的平方根,也就是求一个数 x ,使得 x 2=a ,则 x 就是 a 的一个平方根.详解】∵ (±2 )2=4,A. ﹣ 2B. 4D. 3.14∴4 的平方根是 ±2,4= 100°; D 正确,两直线3.平行,内错角相等,所以∠ 3=100°;C 错误,两直线平行,同位角相等,所以∠根据无理数的定义判断即可.(无理数,即非有理数之实数,不能写作两整数之比.若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环.)【详解】根据无理数的定义可得,只有2 是无理数,故选C. 【点睛】本题主要考查无理数的定义,关键在于不能写作两个整数之比,小数点之后的数字有无限多个,并且不循环.4. 在下列所给出坐标的点中,在第二象限的是A. (2,3)B. (﹣2,3)C. (﹣2,﹣3)D. (2,﹣3)【答案】B【解析】根据第二象限内点的坐标符号(-,+)进行判断即可.5. 下列调查中,适宜抽样调查的是()A. 了解某班学生的身高情况B. 选出某校短跑最快的学生参加全市比赛C. 了解全班同学每天体育锻炼的时间D. 调查某批次汽车的抗撞击能力【答案】D【解析】【分析】普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,根据此特征进行判断.【详解】A 、范围较小,容易操作,适合普查,故该选项错误;B、要求比较严格,适合普查,故该选项错误;C、范围较小,容易操作,适合普查,故该选项错误;D 、破坏性大,适合抽样调查,故本选项正确.故选:D.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查,无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度高的调查、事关重大的调查往往选用普查.23 A.5a > 4a B. a> 2a C. <D. a 2 < a 3aa【答案】D【解析】【分析】根据不等式的性质即可得到结论.【详解】A. 当a=0,5a=4a,故错误;B. 当a=0,-a=-2a ,故错误;23C. 当a<0 时, > ,故错误;aaD.a+2<a+3 ,正确;故选D.【点睛】此题考查不等式的性质,解题关键在于掌握运算法则.7.已知今年甲的年龄比乙的年龄多12岁,4 年后甲的年龄恰好是乙的年龄的 2 倍,则甲今年的年龄是B. 16 岁C. 15 岁D. 12 岁A. 20 岁【答案】A【解析】【分析】设乙今年的年龄是x 岁,则甲今年的年龄是(x+12)岁.根据等量关系:4 年后甲的年龄恰好是乙的年龄的2 倍,列出方程进行求解即可. 【详解】设乙今年的年龄是x 岁,根据题意得:(x+12)+4=2(x+4),解得:x=8 ,则:x+12=20 ,即甲今年的年龄是20 岁,故选A.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.8.在平面直角坐标系中,点A的坐标为(1, 2),将点A 向右平移3个单位长度后得到A ,则点A 的坐标是6.下列不等式中一定成立的是()A. ( 2,2)B. (1,5)C. (1,1)D. (4, 2)【答案】 D 【解析】 【分析】将点 A 的横坐标加 3,纵坐标不变即可求解.【详解】将点 A 向右平移 3个单位长度后得到 A ′,则点 A ′的坐标是( 1+3,-2),即( 4,-2), 故选: D . 【点睛】本题主要考查坐标与图形的变化,在平面直角坐标系内,把一个图形各个点的横坐标都加上(或 减去)一个整数a ,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数 a ,相应的新图形就是把原图形向上(或向下)平移 a 个单位长度. (即:横坐标,右移加,左移减;纵坐标,上移加,下移减. )答案】 A 解析】 分析】x 与y ,根据 x 与 y 都为正数,取出 a 的范围即可.∵方程组的解为正数,a4 3 5a 3解得: -4<a < 5, 故选 A .点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.10.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中 关系是()9.如果关于 x, y 的方程组 xy x 2y2的解是正数,a 的取值范围是(A. 4<a<5B. a> 5C. a< 4D. 无解详解】解方程组 xy x 2ya2,得:a43 5a 3将 a 看做已知数求出方程组的解表示出y 与 n 之间的右边三角形的数字规律为: 2,22,⋯, 2n , 下边三角形 数字规律为: 1+2, 2 22, ⋯故选 B .点睛】考点:规律型:数字的变化类.详解】 “a 与 2 的差不大于 -1”用不等式表示为: a-2≤-1. 故答案为: a-2≤-1 .点睛】 本题考查了由实际问题抽象出一元一次不等式的知识, 示为 “≤.”解析】 D. y=2n +n+1详解】∵观察可知:左边三角形的数字规律为: 1,2,⋯,n ,13.命题 “同角的补角相等 ”的题设是 ,结论是答案】 (1). 有两个角是同一个角的补角 (2). 这两个角相等2n,∴最后一个三角形中 y 与 n 之间的关系式是y=2n +n.、填空题11.计算: 3 27答案】 3 解析】试题分析: 根据立方根 ∵33=27, ∴ 3 27 312.a 与 2的差不大于 -答案】 a-2≤-1. 解析】 分析】用不等式表示就是求一个数,使得 x 3=a ,则 x 就是 a 的一个立方根:a 与 2 的差不大于 -1”意思是 a-2小于或者等于 -1,由此可列得相关式子.解答本题的关键是理解 “不大于 ”应用符号表义,解析】 “同角的补角相等”的题设为如两个角是同一个角的补角;结论为这两个角相等.故答案为 :两个角是同一个角的补角;这两个角相等.14.若 P (4,﹣ 3),则点 P 到 x 轴的距离是 _____.【答案】 3 【解析】 【分析】求得 P 纵坐标绝对值即可求得 P 点到 x 轴的距离. 【详解】解:∵ |﹣ 3|=3,∴P 点到 x 轴的距离是 3, 故答案为 3.解析】 分析】解析】 分析】频数分布直方图,清 空气各成分的百分比,最适合使用的统计图是(从线图和直方图分在总体中所 物的变化情况 示出每个项目 百分比,但 中得到体数 间内,各组频数统计图各自的 载 : “今有羊各直金几何 ?”译文: “假设有 5 头牛, 答案】5x 2y 102x 5y 8点睛】此题主要考查点的坐标;用到的知识点为:点到x 轴的距离为点的纵坐标的绝对值.15.空气是由多种气体混合而中选一个条形图,扇形图, 答案】 扇形统计 扇形统计图表示的 折线统计图表示的 条形统计图能清楚 差别. 详解】解:根据 ,得:直观地介绍空气图.故答案为扇形统计图.点睛】此题考查扇形统计图、折线统计图、 、羊二,直金十两 ; 牛羊五 , 直金八两问牛,2 头牛 , 5 只羊,值金 . 问每头牛、每只羊各值金多少两 ?”若设每头牛、每只羊分别值金x 两、 y 两,根据题意,则可16.《九章算术》 是中国传统数学名著, 其,为了直观地根据“假设有 5头牛、2 只羊,值金 10两; 2头牛、【详解】根据题意得:5x 2y 10 2x 5y 85 只羊,值金 8 两 ”,得到等量关系,即可列出方程组.【点睛】本题考查了由实际问题抽象出二元一次方程组,解决本题的关键是找到题目中所存在的等量关系.17.如图,体育课上老师要测量学生的跳远成绩,其测量时主要依据是 .【答案】 垂线段最短 .【解析】 试题分析:点到线上的任意点之间的长度中,垂线段最短 考点:点到线的距离 .18.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A (﹣ 2,1)和B (﹣ 2,﹣3),那么第一架轰炸机 C 的平面坐标是 _________ .答案】( 2, -1) 解析】试题分析:如图,根据 A (-2,1)和 B ( -2, -3)确定平面直角坐标系,然后根据点 C 在坐标系中的位置确定点 C 的坐标为( 2,-1).故答案为5x 2y 10 2x 5y 819. _________________________________________________________________________ ∠A 的两边与∠ B 的两边互相平行,且∠ A 比∠B 的 2倍少 15°,则∠ A 的度数为 ___________________________________ . 【答案】 15°或 115°. 【解析】 【分析】如果两个角的两边互相平行,那么这两个角相等或互补,由∠ A 比∠B 的 3倍小 20°和∠ A 与∠ B 相等或互补,可列方程组求解.A B A B 1800【详解】根据题意,得 0 或 0 ,A 2B 150A 2B 150解方程组得∠ A =∠B =15°或∠A =115°,∠ B = 65°.故答案为 15°或 115°. 【点睛】本题主要考查了平行线的性质,此类问题结合方程的思想解决更简单.注意结论:如果两个角的 两边互相平行,那么这两个角相等或互补.xa320.若关于 x 的不等式组 __________________ 无解, 则a 的取值范围是 .1 2x x 2【答案】 a 2 【解析】【分析】 首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得.解①得: x > a+3,详解】x a 3① 1 2x x 2②考点:根据点的坐标确定平面直角坐标系解②得:x< 1.根据题意得:a+3≥1,解得:a≥-2.故答案是:a≥-2 .【点睛】本题考查了一元一次不等式组的解,解题的关键是熟练掌握解一元一次不等式组的步骤三、解答题21. 解下列方程组与不等式(组)3x 2y 1(1)解方程组;x 3y 75(x 1) 3x 1(2)解不等式组2x 1 5x 1 ;2x 31 5x2 1, 1x 2 2 x(3)解不等式x- < 并把解集在数轴上表示出来.23x=1【答案】(1);(2)-1≤x<3;(3)解集是x<2,在数轴上表示见解析y=2【解析】【分析】(1)运用加减消元法求解本题即可;(2)分别求出不等式组的每个不等式的解集,再取它们的公共部分即可解答本题;(3)根据解一元一次不等式的方法可以解答本题.详解】(1)3x 2y=1 ①x 3y=7 ②②×3-①,得11y=22,解得,y=2 ,将y=2 代入①,的x=1,故原方程组的解是5(x 1) 3x 1 ①2)2x 1 5x 11, 1②x=1由不等式①,得 x <3,由不等式②,得 x ≥-1, 故原不等式组得解集是 -1≤x < 3;不等式两边同乘以 6,得 6x-3( x+2)< 2(2-x ) 去括号,得 6x-3x-6 < 4-2x 移项及合并同类项,得 5x <10 , 系数化为 1,得 x < 2,故原不等式的解集是 x < 2,在数轴上表示如下图所示,【点睛】本题考查解二元一次方程组、解一元一次不等式组、在数轴上表示不等式组的解集,解答本题的 关键是明确解二元一次方程组和一元一次不等式组的方法.22.计算: 4 | 2| 3 27 ( 1)2019 .【答案】 6. 【解析】【分析】 直接利用算术平方根以及立方根、绝对值的性质分别化简得出答案. 详解】 4 | 2| 3 27 ( 1)2019=2+2+3-1 =6.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.每个小正方形的边长均为 1个单位长度, 已知 A(1,1) 、 B(3,4)和 C (4, 2) .3)x-x2 22x23.在下列网格中建立平面直角坐标系如图,(1)在图中标出点A、B 、C.(2)将点C向下平移3个单位到D点,将点A先向左平移3个单位,再向下平移1个单位到E 点,在图中标出D 点和E 点.3)求EBD 的面积S EBD . 29 答案】(1)见解析;(2)见解析;(3).2 解析】分析】1)直接利用A ,B ,C 点的坐标在坐标系中得出各点位置;2)利用平移的性质得出各对应点位置;3)利用△ EBD 所矩形面积减去周围三角形面积进而得出答案.详解】解:(1)如图所示:A、B、C 即为所求;2)如图所示:点D,E 即为所求;1 1 1 29(3)S△EBD =5×6- × 4×5- ×1×5- ×1×6=.2 2 2 2【点睛】此题主要考查了平移变换以及格点三角形面积求法,正确掌握平移的性质是解题关键.24.解放中学为了了解学生对新闻、体育、动画、娱乐四类电视节目的喜爱程度,随机抽取了部分学生进行调查(每人限选1项),现将调查结果绘制成如下两幅不完整的统计图,根据图中所给的信息解答下列问题(1)喜爱动画的学生人数和所占比例分别是多少?(2)请将条形统计图补充完整;(3)若该校共有学生1000 人,依据以上图表估计该校喜欢体育的人数约为多少?【答案】(1)200人;20人;(2)补图见解析;(3)240人.【解析】(1)调查人数为20÷10%=200,喜欢动画的比例为(1﹣46%﹣24%﹣10%)=20%,喜欢动画的人数为200×20%=40 人;(2)补全图形:25.如图,EF∥ AD,∠ 1=∠ 2,∠ BAC=80°.求∠ A的GD度数.答案】100o解析】分析】根据两直线平行,同位角相等可得∠2=∠ 3,然后求出∠ 1=∠3,再根据内错角相等,两直线平行判断出DG ∥AB ,然后根据两直线平行,同旁内角互补解答即可.【详解】∵ EF ∥AD ,∴∠ 2=∠3. ∵∠ 1=∠2,∴∠ 1=∠3, ∴DG ∥AB ,∴∠ AGD=180°﹣∠ BAC=180°﹣ 80°=100°.【点睛】本题考查了平行线的判定与性质,熟记性质与判定方法并判断出26.星光橱具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如表:(1)一季度,橱具店购进这两种电器共 30台,用去了 5600 元,并且全部售完,问橱具店在该买卖中赚了多少钱?煲的数量不少于 23 个,问橱具店有哪几种进货方案?并说明理由;的条件下,请你通过计算判断,哪种进货方案橱具店赚钱最多?解析】所以, 20×50+10×40=1400(元) . 答:橱具店在该买卖中赚了 1400 元 .(2)设购买电饭煲 a 台,则购买电压锅( 50﹣a )台,依题意得200a+160(50- a) ≤9000,解得 a ≤25.DG ∥ AB 是解题的关键.2)为了满足市场需求,二季度橱具店决定用不超过9000 元的资金采购电饭煲和电压锅共 50 个,且电饭3)在( 2) 答案】(1) 橱具店在该买卖中赚了 1400 元; ( 2)有三种方案,具体方案及理由见解析; 3)购进电饭煲,电压锅各25 台时利润最大.试题分析:( 1)设橱具店购进电饭煲 x 台,电压锅 y 台,根据图表中的数据列出关于 x 、 y 的方程组并解方程组即可,等量关系是:这两种电器共30 台、共用去 5600 元;2)设购买电饭煲 a 台,则购买电压锅( 50﹣ a )台,根据“二季度橱具店决定用不超过9000 元的资金采购电饭煲和电压锅共 50 个,且电饭煲的数量不少于23 个”列出不等关系即可解答;3)结合( 2)中的数据进行计算即可试题解析:( 1)设橱具店购进电饭煲 x 台,电压锅y 台,依题意得x y 30200x 160y 5600 x 20,解得x y 2100,∵a≥23,∴23≤a ≤25.又∵a为正整数,∴a 可取23,24,25.故有三种方案:①购买电饭煲23台,则购买电压锅27 台;②购买电饭煲24 台,则购买电压锅26 台;③购买电饭煲25 台,则购买电压锅25 台.(3)设橱具店赚钱数额为W元,当a=23 时,W=23×50+27×40=2230;当a=24 时,W=24×50+26×40=2240;当a=25 时,W=25×50+25×40=2250.综上所述,当a=25 时,W最大,此时购进电饭煲,电压锅各25 台.点睛:本题主要考查二元一次方程组以及不等式的应用,能正确地分析,从题中找到等量关系、不等关系是解题的关键。
人教版七年级数学下册期末质量检测附答案

人教版七年级数学下册期末质量检测附答案一、选择题1.下列图形中,有关角的说法正确的是( )A .∠1与∠2是同位角B .∠3与∠4是内错角C .∠3与∠5是对顶角D .∠4与∠5相等2.下列图中的“笑脸”,是由上面教师寄语中的图像平移得到的是( )A .B .C .D . 3.在平面直角坐标系中,点()3,2A -在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.给出下列命题:①等边三角形是等腰三角形;②三角形的重心是三角形三条中线的交点;③三角形的外角等于两个内角的和;④三角形的角平分线是射线;⑤三角形相邻两边组成的角叫三角形的内角;⑥三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外.其中正确命题的个数有( )A .1个B .2个C .3个D .4个5.一副直角三角尺叠放如图1所示,现将45°的三角尺ADE 固定不动,将含30°的三角尺ABC 绕顶点A 顺时针转动,使两块三角尺至少有一组边互相平行,如图2,当15BAD ∠=︒时,//BC DE ,则BAD ∠(0180BAD ︒<∠<︒)其它所有可能符合条件的度数为( )A .60°和135°B .60°和105°C .105°和45°D .以上都有可能 6.有个数值转换器,原理如图所示,当输入x 为27时,输出的y 值是( )A .3B 33C 3D .327.如图,ABCD 为一长方形纸片,AB ∥CD ,将ABCD 沿E 折叠,A 、D 两点分别与A ′、D ′对应,若∠CFE =2∠CFD ′,则∠AEF 的度数是( )A .60°B .80°C .75°D .72°8.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0)、(2,0)、(2,1)、(3,2)、(3,1)、(3,0)、(4,0),……,根据这个规律探索可得,第20个点的坐标为( )A .(6,4)B .(6,5)C .(7,3)D .(7,5)九、填空题9.已知3x ++|3x +2y ﹣15|=0,则x y +=_____.十、填空题10.若(),3A m -与()4,3B -关于y 轴对称,则m =______.十一、填空题11.如图,已知AB //DE ,BC ⊥CD ,∠ABC 和∠CDE 的角平分线交于点F ,∠BFD =__________°.十二、填空题12.如图,//AB CD ,CE 平分ACD ∠,交AB 于E ,若50ACD ∠=︒,则1∠的度数是______°.十三、填空题13.如图,折叠三角形纸片ABC,使点B与点C重合,折痕为DE;展平纸片,连接AD.若AB=6cm,AC=4cm,则△ABD与△ACD的周长之差为____________.十四、填空题14.任何实数a,可用[]a表示不超过a的最大整数,如[4]4,[3]1==,现对72进行如下操作:72[72]8[8]2[2]1−−−→=−−−→=−−−→=第一次第二次第三次,这样对72只需进行3次操作后变为1,类似地,对144只需进行_____次操作后变为1;那么只需进行3次操作后变为1的所有正整数中,最大的是_________.十五、填空题15.如果点P(x,y)的坐标满足x+y=xy,那么称点P为“美丽点”,若某个“美丽点”P到y 轴的距离为2,则点P的坐标为___.十六、填空题16.如图,在直角坐标系中,A(1,3),B(2,0),第一次将△AOB变换成△OA1B1,A1(2,3),B1(4,0);第二次将△OA1B1变换成△OA2B2,A2(4,3),B2(8,0),第三次将△OA2B2变换成△OA3B3,……,则B2021的横坐标为______.十七、解答题17.计算下列各题:2213-123181632163125()2-3十八、解答题18.求下列各式中的x值.(1)2164x -=(2)()318x -= 十九、解答题19.如图,已知EF ∥AD ,1 2.∠=∠试说明180.DGA BAC ∠+∠=︒请将下面的说明过程填写完整.解:EF ∥AD ,(已知)2∴∠=______.(______).又12∠=∠,(已知)13∴∠=∠,(______).AB ∴∥______,(______)180.(DGA BAC ∴∠+∠=︒______)二十、解答题20.如图,在平面直角坐标系中,已知P (a ,b )是△ABC 的边AC 上一点,△ABC 经平移后点P 的对应点为P 1(a +6,b +2).(1)请画出上述平移后的△A 1B 1C 1,并写出点A 1,C 1的坐标; (2)写出平移的过程;(3)求出以A ,C ,A 1,C 1为顶点的四边形的面积.二十一、解答题21.阅读下面的文字,解答问题. 22的小数部分我们不可能全部地写出来,但是由于122<<2 1.21,差就是21.根据以上的内容,解答下面的问题:(1)5的整数部分是___________,小数部分是___________;(2)若设23+整数部分是x ,小数部分是y ,求x y -的值.二十二、解答题22.求下图44⨯的方格中阴影部分正方形面积与边长.二十三、解答题23.已知,//AB CD .点M 在AB 上,点N 在CD 上.(1)如图1中,BME ∠、E ∠、END ∠的数量关系为: ;(不需要证明);如图2中,BMF ∠、F ∠、FND ∠的数量关系为: ;(不需要证明)(2)如图 3中,NE 平分FND ∠,MB 平分FME ∠,且2180E F ∠+∠=,求FME ∠的度数;(3)如图4中,60BME ∠=,EF 平分MEN ∠,NP 平分END ∠,且//EQ NP ,则FEQ ∠的大小是否发生变化,若变化,请说明理由,若不变化,求出么FEQ ∠的度数. 二十四、解答题24.如图1,O 为直线AB 上一点,过点O 作射线,30OC AOC ︒∠=,将一直角三角板(30M ︒∠=)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方,将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周.(1)几秒后ON 与OC 重合?(2)如图2,经过t 秒后,//MN AB ,求此时t 的值.(3)若三角板在转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,那么经过多长时间OC 与OM 重合?请画图并说明理由.(4)在(3)的条件下,求经过多长时间OC 平分MOB ∠?请画图并说明理由. 二十五、解答题25.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处.(1)若140∠=︒,2∠=________.(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论. ②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.【参考答案】一、选择题1.C解析:C【分析】根据同位角、内错角、对顶角的定义判断即可求解.【详解】A 、∠1与∠2不是同位角,原说法错误,故此选项不符合题意;B 、∠1与∠4不是内错角,原说法错误,故此选项不符合题意;C 、∠3与∠5是对顶角,原说法正确,故此选项符合题意;D 、∠4与∠5不相等,原说法错误,故此选项不符合题意;故选:C .【点睛】本题考查同位角、内错角、对顶角的定义,解题的关键是熟练掌握三线八角的定义及其区分.2.D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A、B、C都不是由平移得到的,D是由平移得到的.故选:D.【点睛】解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A、B、C都不是由平移得到的,D是由平移得到的.故选:D.【点睛】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.3.B【分析】根据各象限内点的坐标特征解答即可.【详解】解:点A(-3,2)在第二象限,故选:B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.B【分析】根据等边三角形的性质可以判断①,根据三角形重心的定义可判断②,根据三角形内角和定理可判断③,根据三角形角平分线的定义可以判断④,根据三角形的内角的定义可以判断⑤,根据三角形的高的定义以及直角三角形的高可以判断⑥.【详解】①等边三角形是等腰三角形,①正确;②三角形的重心是三角形三条中线的交点,②正确;③三角形的外角等于不相邻的两个内角的和,故③不正确;④三角形的角平分线是线段,故④不正确;⑤三角形相邻两边组成的角且位于三角形内部的角,叫三角形的内角,⑤错误;⑥三角形的高所在的直线交于一点,这一点可以在三角形内或在三角形外或者在三角形的边上.正确的有①②,共计2个,故选B【点睛】本题考查了命题的判断,等边三角形的性质,三角形的重心,三角形的内角和定理,三角形的角平分线,三角形的内角的定义,三角形垂心的位置,掌握相关性质定理是解题的关键.5.D【分析】根据题意画出图形,再由平行线的性质定理即可得出结论.【详解】解:如图当AC ∥DE 时,45BAD DAE ∠=∠=︒;当BC ∥AD 时,60DAB B ∠=∠=︒;当BC ∥ AE 时,∵60EAB B ∠=∠=︒,∴4560105BAD DAE EAB ∠=∠+∠=︒+︒=︒;当AB ∥DE 时,∵ 90E EAB ∠=∠=︒,∴4590135BAD DAE EAB ∠=∠+∠=︒+︒=︒.故选:D .【点睛】本题考查的是平行线的判定与性质,根据题意画出图形,利用平行线的性质及直角三角板的性质求解是解答此题的关键.6.B【分析】利用立方根的定义,将x 的值代入如图所示的流程,取27的立方根为3,为有理数,再次33y 值.【详解】根据题意,x=27,取立方根得3,3为有理数,再次取333.符合题意,即输出的y 33故答案选:B.【点睛】此题考查立方根、无理数、有理数,解题关键在于掌握对有理数与无理数的判定. 7.D【分析】先根据平行线的性质,由AB ∥CD ,得到∠CFE =∠AEF ,再根据翻折的性质可得∠DFE =∠EFD ′,由平角的性质可求得∠CFD ′的度数,即可得出答案.【详解】解:∵AB∥CD,∴∠CFE=∠AEF,又∵∠DFE=∠EFD′,∠CFE=2∠CFD′,∴∠DFE=∠EFD′=3∠CFD′,∴∠DFE+∠CFE=3∠CFD′+2∠CFD′=180°,∴∠CFD′=36°,∴∠AEF=∠CFE=2∠CFD′=72°.故选:D.【点睛】本题主要考查了平行线的性质,翻折变换等知识,熟练应用平行线的性质进行求解是解决本题的关键.8.A【分析】横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数.【详解析:A【分析】横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,2⋯横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数.【详解】解:把第一个点(1,0)作为第一列,(2,1)和(2,0)作为第二列,依此类推,则第一列有一个数,第二列有2个数,第n列有n个数.则n列共有(1)2n n+个数,并且在奇数列点的顺序是由上到下,偶数列点的顺序由下到上.因为123615+++⋯+=,则第20个数一定在第6列,由下到上是第4个数.因而第20个点的坐标是(6,4).故选:A.【点睛】本题考查了学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律,题目比较典型,但是一道比较容易出错的题目.九、填空题9.3【分析】直接利用非负数的性质得出x,y的值进而得出答案.【详解】∵+|3x+2y﹣15|=0,∴x+3=0,3x+2y-15=0,∴x=-3,y=12,∴=.故答案是:3.【点睛解析:3【分析】直接利用非负数的性质得出x,y的值进而得出答案.【详解】∵+|3x+2y﹣15|=0,∴x+3=0,3x+2y-15=0,∴x=-3,y=12,∴3.故答案是:3.【点睛】考查了非负数的性质,正确得出x,y的值是解题关键.十、填空题10.【分析】根据关于y轴对称的点的坐标特征,即可求出m的值.【详解】解:∵A(m,-3)与B(4,-3)关于y轴对称,∴m=-4,故答案为:-4.【点睛】本题主要考查了关于y轴对称点的坐解析:4-【分析】根据关于y轴对称的点的坐标特征,即可求出m的值.【详解】解:∵A(m,-3)与B(4,-3)关于y轴对称,∴m=-4,故答案为:-4.【点睛】本题主要考查了关于y轴对称点的坐标,解题的关键在于能够熟练掌握,如果两点关于y 轴对称,那么这两个点的横坐标互为相反数,纵坐标相等.十一、填空题11.135;【分析】连接BD,根据三角形内角和定理得出∠C+∠CBD+∠CDB=180°,再由BC⊥CD可知∠C=90°,故∠CBD+∠CDB=90°,再由AB∥DE可知∠ABD+∠BDE=180°解析:135;【分析】连接BD,根据三角形内角和定理得出∠C+∠CBD+∠CDB=180°,再由BC⊥CD可知∠C=90°,故∠CBD+∠CDB=90°,再由AB∥DE可知∠ABD+∠BDE=180°,故∠CBD+∠CDB+∠ABD+∠BDE =270°,再由∠ABC和∠CDE的平分线交于点F可得出∠CBF+∠CDF的度数,由四边形内角和定理即可得出结论.【详解】解:连接BD,∵∠C+∠CBD+∠CDB=180°,BC⊥CD,∴∠C=90°,∴∠CBD+∠CDB=90°.∵AB∥DE,∴∠ABD+∠BDE=180°,∴∠CBD+∠CDB+∠ABD+∠BDE=90°+180°=270°,即∠ABC+∠CDE=270°.∵∠ABC和∠CDE的平分线交于点F,∴∠CBF+∠CDF=1×270°=135°,2∴∠BFD=360°-90°-135°=135°.故答案为135.【点睛】本题考查平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质.十二、填空题12.25【分析】根据平行线的性质和角平分线的定义求解即可得到答案.【详解】解:∵AB ∥CD ,∴∠1=∠ECD ,∵CE 平分∠ACD ,∠ACD=50°,∴=25°,∴∠1=25°,故答案为解析:25【分析】根据平行线的性质和角平分线的定义求解即可得到答案.【详解】解:∵AB ∥CD ,∴∠1=∠ECD ,∵CE 平分∠ACD ,∠ACD =50°, ∴12ECD ACD ∠=∠=25°, ∴∠1=25°,故答案为:25.【点睛】本题主要考查了角平分线的定义,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.十三、填空题13.2cm【分析】由折叠的性质可得BD=CD ,即可求解.【详解】解:∵折叠三角形纸片ABC ,使点B 与点C 重合,∴BD=CD ,∵△ABD 的周长=AB+BD+AD=6+BD+AD ,△ACD 的周长解析:2cm【分析】由折叠的性质可得BD =CD ,即可求解.【详解】解:∵折叠三角形纸片ABC ,使点B 与点C 重合,∴BD =CD ,∵△ABD 的周长=AB +BD +AD =6+BD +AD ,△ACD 的周长=AC +AD +CD =4+CD +AD ,∴△ABD 与△ACD 的周长之差=6-4=2cm ,故答案为:2cm .【点睛】本题考查了翻折变换,掌握折叠的性质是本题关键.十四、填空题14.255【分析】根据运算过程得出,,,可得144只需进行3次操作变为1,再根据操作过程分别求出255和256进行几次操作,即可得出答案.【详解】解:∵,,,∴对144只需进行3次操作解析:255【分析】根据运算过程得出12=,3=,1=,可得144只需进行3次操作变为1,再根据操作过程分别求出255和256进行几次操作,即可得出答案.【详解】解:∵12=,3=,1=,∴对144只需进行3次操作后变为1, ∵15=,3=,1=,∴对255只需进行3次操作后变为1,从后向前推,找到需要4次操作得到1的最小整数,∵1=,2=, 4=, 16=,∴对256只需进行4次操作后变为1,∴只需进行3次操作后变为1的所有正整数中,最大的是255,故答案为:3,255.【点睛】本题考查了估算无理数的大小的应用,主要考查学生的理解能力和计算能力.十五、填空题15.(2,2),(-2,)【分析】直接利用某个“美丽点”到y 轴的距离为2,得出x 的值,进而求出y 的值求出答案.【详解】解:∵某个“美丽点”到y轴的距离为2,∴x=±2,∵x+y=xy,∴当解析:(2,2),(-2,23)【分析】直接利用某个“美丽点”到y轴的距离为2,得出x的值,进而求出y的值求出答案.【详解】解:∵某个“美丽点”到y轴的距离为2,∴x=±2,∵x+y=xy,∴当x=2时,则y+2=2y,解得:y=2,∴点P的坐标为(2,2),当x=-2时,则y-2=-2y,解得:y=23,∴点P的坐标为(-2,23),综上所述:点P的坐标为(2,2)或(-2,23).故答案为:(2,2)或(-2,23).【点睛】此题主要考查了点的坐标,正确分类讨论是解题关键.十六、填空题16.【分析】根据点B(2,0),B1(4,0),B2(8,0),B3(16,0)可得规律为横坐标为,由此问题可求解.【详解】解:由B(2,0),B1(4,0),B2(8,0),B3(16,0)可解析:20222【分析】根据点B(2,0),B1(4,0),B2(8,0),B3(16,0)可得规律为横坐标为12n ,由此问题可求解.【详解】解:由B (2,0),B 1(4,0),B 2(8,0),B 3(16,0)可得:()12,0n n B +,∴B 2021的横坐标为20222;故答案为20222.【点睛】本题主要考查图形与坐标,解题的关键是根据题意得到点的坐标规律.十七、解答题17.(1)5;(2)-2;(3)2【解析】【分析】根据实数的性质进行化简,再求值.【详解】解:(1)==5;(2)-× =-×4=-2;(3)-++=-6+5+3=2.【点睛】此题主要解析:(1)5;(2)-2;(3)2【解析】【分析】根据实数的性质进行化简,再求值.【详解】解12×4=-2;【点睛】 此题主要考查实数的计算,解题的关键是熟知实数的性质.十八、解答题18.(1) ;(2).【分析】(1)首先求出的值是多少,然后根据平方根的含义和求法,求出x 的值即可. (2)根据立方根的含义和求法,可得x-1=2,据此求出x 的值是多少即可.【详解】(1)解解析:(1)52x =± ;(2)3x =. 【分析】(1)首先求出2x 的值是多少,然后根据平方根的含义和求法,求出x 的值即可. (2)根据立方根的含义和求法,可得x-1=2,据此求出x 的值是多少即可.【详解】(1)2164x -= 2254x = 解得:52x =± 故答案为:52x =± (2)()318x -= 12x -=解得:3x =故答案为:3x =【点睛】本题考查了平方根的含义和求法,立方根的含义和求法.十九、解答题19.;两直线平行,同位角相等 ;等量代换;;内错角相等,两直线平行;两直线平行,同旁内角互补【分析】根据平行线的判定和性质解答即可.【详解】解:EF ∥AD ,(已知)(两直线平行,同位角相等)解析:3∠ ;两直线平行,同位角相等 ;等量代换;DG ;内错角相等,两直线平行;两直线平行,同旁内角互补【分析】根据平行线的判定和性质解答即可.【详解】 解:EF ∥AD ,(已知)23∴∠=∠(两直线平行,同位角相等)又12∠=∠,(已知)13∠∠∴=,(等量代换)AB DG ∴∥,(内错角相等,两直线平行)180DGA BAC ∴∠+∠=︒(两直线平行,同旁内角互补)故答案为:3∠ ;两直线平行,同位角相等 ;等量代换;DG ;内错角相等,两直线平行;两直线平行,同旁内角互补【点睛】本题考查平行线的判定与性质,熟记判定定理和性质定理是解题的关键.二十、解答题20.(1)图见详解;;(2)平移过程为先向右平移6个单位长度,再向上平移2个单位长度;(3)以A ,C ,A1,C1为顶点的四边形的面积为14.【分析】(1)根据点P 的对应点P1(a+6,b+2)可分别解析:(1)图见详解;()()113,4,4,2A C ;(2)平移过程为先向右平移6个单位长度,再向上平移2个单位长度;(3)以A ,C ,A 1,C 1为顶点的四边形的面积为14.【分析】(1)根据点P 的对应点P 1(a +6,b +2)可分别得出A 、B 、C 的对应点A 1,B 1,C 1的坐标,然后连接即可得出图象;(2)由(1)可直接进行求解;(3)由(1)的图象可直接利用割补法进行求解面积.【详解】解:(1)由点P 的对应点P 1(a +6,b +2)可得如图所示图象:∴由图象可得()()113,4,4,2A C ;(2)由图象可得:平移过程为先向右平移6个单位长度,再向上平移2个单位长度; (3)连接11,,AA CC ,如图所示:∵点()()13,2,4,2A C -,∴点1,A C 在同一条直线上,且与x 轴平行, ∴1111272142AC C ACC A S S =⨯=⨯=四边形.【点睛】本题主要考查平移的性质及坐标与图形,熟练掌握坐标的平移是解题的关键. 二十一、解答题21.(1)2,;(2).【分析】(1)利用求解;(2)由于,则,,然后计算.【详解】解:(1)的整数部分是2,小数部分是;(2),而整数部分是,小数部分是,,,.【点睛】本题考查了解析:(1)22;(2)4.【分析】(1)利用23<求解;(2)由于12<<,则3x =,231y ==,然后计算x y -.【详解】解:(122;(2)132<<,而2x ,小数部分是y ,3x ∴=,231y ==,3(31)33143x y .【点睛】本题考查了估算无理数的大小,熟悉相关性质是解题得关键.二十二、解答题22.8;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可.【详解】解:正方形面积=4×4-4××2×2=8;正方形的边解析:8;22【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可.【详解】×2×2=8;解:正方形面积=4×4-4×12正方形的边长=8=22.【点睛】本题考查了算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x 叫做a的算术平方根.记为a.二十三、解答题23.(1)∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小没发生变化,∠FEQ=30°.【分析】(1)过E作EHAB,易得EHABCD,根据平行线的性质解析:(1)∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小没发生变化,∠FEQ=30°.【分析】(1)过E作EH//AB,易得EH//AB//CD,根据平行线的性质可求解;过F作FH//AB,易得FH//AB//CD,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF−∠FND=180°,可求解∠BMF=60°,进而可求解;∠BME,进而可求解.(3)根据平行线的性质及角平分线的定义可推知∠FEQ=12【详解】解:(1)过E作EH//AB,如图1,∴∠BME=∠MEH,∵AB//CD,∴HE//CD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN−∠END.如图2,过F作FH//AB,∴∠BMF=∠MFK,∵AB//CD,∴FH//CD,∴∠FND=∠KFN,∴∠MFN=∠MFK−∠KFN=∠BMF−∠FND,即:∠BMF=∠MFN+∠FND.故答案为∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF−∠FND=180°,∴2∠BME+2∠END+∠BMF−∠FND=180°,即2∠BMF+∠FND+∠BMF−∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小没发生变化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=12∠MEN=12(∠BME+∠END),∠ENP=12∠END,∵EQ//NP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN−∠NEQ=12(∠BME+∠END)−12∠END=12∠BME,∵∠BME=60°,∴∠FEQ=12×60°=30°.【点睛】本题主要考查平行线的性质及角平分线的定义,作辅助线是解题的关键.二十四、解答题24.(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)秒,画图见解析【分析】(1)用角的度数除以转动速度即可得;(2)求出∠AON=60°,结合旋转速度可得时间t;(3)设∠AON=3解析:(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)703秒,画图见解析【分析】(1)用角的度数除以转动速度即可得;(2)求出∠AON=60°,结合旋转速度可得时间t;(3)设∠AON=3t,则∠AOC=30°+6t,由题意列出方程,解方程即可;(4)根据转动速度关系和OC平分∠MOB,由题意列出方程,解方程即可.【详解】解:(1)∵30÷3=10,∴10秒后ON与OC重合;(2)∵MN∥AB∴∠BOM=∠M=30°,∵∠AON+∠BOM=90°,∴∠AON=60°,∴t=60÷3=20∴经过t秒后,MN∥AB,t=20秒.(3)如图3所示:∵∠AON+∠BOM=90°,∠BOC=∠BOM,∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设∠AON=3t,则∠AOC=30°+6t,∵OC与OM重合,∵∠AOC+∠BOC=180°,可得:(30°+6t)+(90°-3t)=180°,解得:t=20秒;即经过20秒时间OC与OM重合;(4)如图4所示:∵∠AON+∠BOM=90°,∠BOC=∠COM ,∵三角板绕点O 以每秒3°的速度,射线OC 也绕O 点以每秒6°的速度旋转,设∠AON=3t ,∠AOC=30°+6t ,∵∠BOM+∠AON=90°,∴∠BOC=∠COM=12∠BOM=12(90°-3t ),由题意得:180°-(30°+6t )=12( 90°-3t ), 解得:t=703秒, 即经过703秒OC 平分∠MOB . 【点睛】 此题考查了平行线的判定与性质,角的计算以及方程的应用,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.二十五、解答题25.(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解; (2)①先根据折叠得:∠ADE=∠A′DE ,∠AED=∠A′解析:(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知70C ∠=︒,65B ∠=︒,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A′DE ,∠AED=∠A′ED ,由两个平角∠AEB 和∠ADC 得:∠1+∠2等于360°与四个折叠角的差,化简得结果;②利用两次外角定理得出结论;(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG )以及(∠C'DE+∠C'ED )和(∠A'HL+∠A'LH ),再利用三角形的内角和定理即可求解.【详解】解:(1)∵70C ∠=︒,65B ∠=︒,∴∠A′=∠A=180°-(65°+70°)=45°,∴∠A′ED+∠A′DE =180°-∠A′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE )=360°-310°=50°;(2)①122A ∠+∠=∠,理由如下由折叠得:∠ADE=∠A′DE ,∠AED=∠A′ED ,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A′DE -∠AED-∠A′ED=360°-2∠ADE-2∠AED ,∴∠1+∠2=2(180°-∠ADE-∠AED )=2∠A ;②221A ∠=∠+∠,理由如下:∵2∠是ADF 的一个外角∴2A AFD ∠=∠+∠.∵AFD ∠是A EF '△的一个外角∴1AFD A '∠=∠+∠又∵A A '∠=∠∴221A ∠=∠+∠(3)如图由题意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG )-(∠C'DE+∠C'ED )-(∠A'HL+∠A'LH )=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【点睛】题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省中山市2018-2019学年七年级第二学期期末数学试卷一、单项选择题(共10个小题,每小题3分,满分30分)1.9的算术平方根是()A.81B.±81C.3D.±32.下列各数中,是无理数的是()A.B.C.﹣1D.03.下列调查中,适宜用全面调查方式的是()A.对中山市某天空质量情况的调查B.对全国中学生课外阅读情况的调查C.对某批食盐的质量情况的调查D.对某班同学使用手机情况的调查4.如图,AB∥CD,∠CED=90°,∠AEC=35°,则∠D的大小()A.35°B.45°C.55°D.65°5.要反映无锡市一周内每天的最高气温的变化情况,宜采用()A.折线统计图B.扇形统计图C.条形统计图D.频数分布直方图6.不等式4x+3≥7的解集,在数轴上表示正确的是()A.B.C.D.7.下列命题是真命题的是()A.垂线最短B.同位角相等C.相等的角是对顶角D.同一平面内,垂直于同一直线的两直线互相平行8.已知两数x,y之和是10,x比y的2倍小1,则所列方程组正确的是()A.B.C.D.9.已知a<b,则下列结论中正确的是()A.3+a>3+b B.3﹣a<3﹣b C.3a>3b D.<10.如图,在平面直角坐标系中,点A1.A2.A3.A4.A5.A6的坐标依次为A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),…按此规律排列,则点A2019的坐标是()A.(1009,1)B.(1009,0)C.(1010,1)D.(1010.0)二、填空题(共6个小题,每小题4分,满分24分)11.点(4,﹣2)在第象限.12.已知2x+y=7,则用x的式子表示y=.13.某校七年级有学生600人,在一次期末考试中,随机抽取七年级150名学生的数学成绩进行分析,这次抽样的样本容量是.14.如图,直线AB,CD相交于点O,∠AOC:∠BOC=7:2,则∠BOD=度.15.如图,将直径为1个单位长度的圆从原点处沿着数轴无滑动的逆时针滚动一周,使圆上的点A 从原点运动至数轴上的点B,则点B表示的数是.16.关于x、y的方程组的解满足x+y<1,则a的取值范围是.三、解答题(一)(共3个小题,每小题6分,满分18分)17.计算:|2﹣|﹣+﹣(﹣)18.解方程组:19.求不等式组的整数解.四、解答题(二)(共3个小题,每小题7分,满分21分)20.如图,正方形ABCD的边长为2(1)建立一个合适的平面直角坐标系,使得点A在第三象限;(2)写出点A、B、C、D的坐标.21.小明参加学校举办的法律知识竞赛,共有25道题,规定答对一道题得4分,答错一道题扣2分,不答得0分,只有得分超过80分才能获奖,小明有2道题没答,问小明至少答对多少道题才能获奖?22.李老师第一次去商场买了2件A商品和1件B商品,共用26元;第二次去商场时A商品打八折出售,B商品打九折出售,李老师买5件A商品和2件B商品共用50元.求两种商品打折前的单价分别是多少元?五、解答题(三)(共3个小题,每小题9分,满分27分)23.某校七年级举行“数学计算能力”比赛,比赛结束后,随机抽查部分学生的成绩,根据抽查结果绘制成如下的统计图表组别分数x频数A40≤x<5020B50≤x<6030C60≤x<7050D70≤x<80mE80≤x<9040根据以上信息解答下列问题:(1)共抽查了名学生,统计图表中,m=,请补全直方图;(2)求扇形统计图中“B组”所对应的圆心角的度数;(3)若七年级共有800名学生,分数不低于60分为合格,请你估算本次比赛全年级合格学生的人数.24.如图,∠1=∠2,∠3=∠D,∠4=∠5.求证:AE∥BF.25.如图,在平面直角坐标系中,已知点A(0,4),B(3,0),线段AB平移后对应的线段为CD,点C在x轴的负半轴上,B、C两点之间的距离为8.(1)求点D的坐标;(2)如图(1),求△ACD的面积;(3)如图(2),∠OAB与∠OCD的角平分线相交于点M,探求∠AMC的度数并证明你的结论.参考答案与试题解析一、单项选择题(共10个小题,每小题3分,满分30分)1.【分析】根据算术平方根的性质可求解.【解答】解:9的算术平方根是3.故选:C.【点评】本题运用了算术平方根的性质,关键是区分好算术平方根和平方根.2.【分析】根据无理数定义,直接判断即可.【解答】解:、﹣1、0是有理数,是无理数.故选:B.【点评】本题无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式)3.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、对中山市某天空质量情况的调查,应采用抽样调查,故此选项错误;B、对全国中学生课外阅读情况的调查,人数众多,应采用抽样调查,故此选项错误;C、对某批食盐的质量情况的调查,范围较广,应采用抽样调查,故此选项错误;D、对某班同学使用手机情况的调查,用全面调查,故此选项正确;故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.【分析】根据平角等于180°求出∠BED,再根据两直线平行,内错角相等解答.【解答】解:∵∠CED=90°,∠AEC=35°,∴∠BED=180°﹣∠CED﹣∠AEC=180°﹣90°﹣35°=55°,∵AB∥CD,∴∠D=∠BED=55°.故选:C.【点评】本题考查了平行线的性质,平角的定义,熟记性质是解题的关键.5.【分析】根据题意选择合适的统计图即可.【解答】解:要反映无锡市一周内每天的最高气温的变化情况,宜采用折线统计图,故选:A.【点评】此题考查了统计图的选择,弄清三种统计图的特点是解本题的关键.6.【分析】先求出不等式的解集,再得出答案即可.【解答】解:4x+3≥7,4x≥4,x≥1,在数轴上表示为:,故选:B.【点评】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.7.【分析】利用垂线的性质、平行线的性质、对顶角的定义等知识分别判断后即可确定正确的选项.【解答】解:A、垂线段最短,故错误,是假命题;B、两直线平行,同位角相等,故错误,是假命题;C、相等的角不一定是对顶角,故错误,是假命题,D、同一平面内,垂直于同一直线的两直线互相平行,正确,是真命题,故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.8.【分析】等量关系为:两数x,y之和是10;x比y的2倍小1,依此列出方程组即可.【解答】解:根据题意列方程组,得:.故选:A.【点评】此题主要考查了由实际问题抽象出二元一次方程组,要注意抓住题目中的一些关键性语句“x比y的2倍大1”,找出等量关系,列出方程组是解题关键.9.【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.【解答】解:A、不等式的两边都加3,不等号的方向不变,故A错误;B、不等式的两边都乘以﹣1,再加上3,不等号的方向改变,故B错误;C、不等式的两边都乘以3,不等号的方向不变,故C错误;D、不等式的两边都除以3,不等号的方向不变,故D正确;故选:D.【点评】本题主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.10.【分析】根据图象可得移动4次图象完成一个循环,从而可得出点A2019的坐标.【解答】解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),…,2019÷4=504…3,所以点A2019的坐标为(504×2+1,0),则点A2019的坐标是(1009,0).故选:B.【点评】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般.二、填空题(共6个小题,每小题4分,满分24分)11.【分析】根据点的横、纵坐标的符号可得所在象限.【解答】解:∵A的横坐标的符号为正,纵坐标的符号为负,∴点A(4,﹣2)第四象限,故答案为:四.【点评】本题考查点的坐标的相关知识;用到的知识点为:横坐标的符号为正,纵坐标的符号为负的点在第四象限.12.【分析】把x当成已知数,求出关于y的方程的解即可.【解答】解:2x+y=7,y=7﹣2x,故答案为:7﹣2x.【点评】本题考查了解二元一次方程,能正确根据等式的性质进行变形是解此题的关键.13.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:这次抽样的样本容量是150.故答案为:150【点评】解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.14.【分析】根据邻补角的定义由∠AOC:∠BOC=7:2,可求∠AOC的度数,再根据对顶角相等即可求解.【解答】解:∵∠AOC:∠BOC=7:2,∴∠AOC=180°×=140°,∴∠BOD=140°.故答案为:140.【点评】本题考查了对顶角的性质以及邻补角的定义,正确理解定义是关键.15.【分析】直接求出圆的周长,进而结合A点位置得出答案.【解答】解:∵将直径为1个单位长度的圆从原点处沿着数轴无滑动的逆时针滚动一周,∴圆滚动的距离为:π,∵点A从原点运动至数轴上的点B,∴点B表示的数是:﹣π.故答案为:﹣π.【点评】此题主要考查了数轴以及圆的周长,正确得出圆的周长是解题关键.16.【分析】把a看做已知数表示出方程组的解,根据题意不等式求出a的范围即可.【解答】解:,①×2+②得:5x=3a+2,即x=,把x=代入②得:y=﹣,根据题意得:﹣<1,解得:a<6,故答案为a<6.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.三、解答题(一)(共3个小题,每小题6分,满分18分)17.【分析】本题涉及绝对值、立方根、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=2﹣﹣5+2+=﹣1.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.【分析】方程组利用代入消元法求出解即可.【解答】解:,由②得:x=﹣2y+3③,把③代入①得:﹣4y+6﹣3y=﹣1,解得:y=1,把y=1代入③得:x=1,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.【分析】分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的整数解即可.【解答】解:由①得,x<4;由②得,x≥2,故此不等式组的解集为:2≤x<4,x的整数解为:2,3.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.四、解答题(二)(共3个小题,每小题7分,满分21分)20.【分析】(1)根据已知条件建立平面直角坐标系即可;(2)根据平面直角坐标系和正方形的性质得出即可.【解答】解:(1)如图所示:;(2)点A、B、C、D的坐标分别为(﹣2,﹣2),(0,﹣2),(0,0),(﹣2,0).【点评】本题考查了正方形的性质和坐标与图形的性质,能正确建立平面直角坐标系是解此题的关键.21.【分析】本题首先找出题中的不等关系即小明的得分>80,由此列出不等式.【解答】解:设小明答对了x道题,则有4x﹣2(25﹣2﹣x)>80,解得x>21,x最小取22,则小明至少答对了22道题.【点评】本题主要考查一元一次不等式的应用,解题的关键是由题意找出题中的不等关系.22.【分析】根据题意可以列出相应的方程组,从而可以求得A、B两种商品打折前的单价.【解答】解:设A、B两种商品打折前的单价分别是x元、y元,,解得,,答:A、B两种商品打折前的单价分别是8元、10元.【点评】本题考查二元一次方程组的应用,解答本题的关键是明确题意,列出相应的方程组,利用方程的知识解答.五、解答题(三)(共3个小题,每小题9分,满分27分)23.【分析】(1)根据C组的频数和所占的百分比可以求得本次抽查的学生数,从而可以求得m 的值,进而可以将直方图补充完整;(2)根据直方图中的数据可以求得扇形统计图中“B组”所对应的圆心角的度数;(3)根据直方图中的数据可以计算出本次比赛全年级合格学生的人数.【解答】解:(1)本次抽查的学生为:50÷25%=200(名),m=200×30%=60,故答案为:200,60,补全的直方图如右图所示;(2)扇形统计图中“B组”所对应的圆心角的度数是:360°×=54°;(3)800×=600(人),答:本次比赛全年级合格学生有600人.【点评】本题考查频数分布直方图、频数分布表、用样本估计总体、扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.24.【分析】依据平行线的判定,即可得到AB∥DF,进而得出AD∥BC,再根据平行线的性质,即可得到∠4=∠6,进而判定AE∥BF.【解答】证明:∵∠1=∠2,∴AB∥DF,∴∠3=∠BCE,又∵∠3=∠D,∴∠D=∠BCE,∴AD∥BC,∴∠6=∠5,又∵∠4=∠5,∴∠4=∠6,∴AE∥BF.【点评】本题主要考查了平行线的判定与性质,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行.25.【分析】(1)根据平移规律可得点D的坐标;(2)利用面积差可得结论;(3)先根据直角三角形的两锐角互余得:∠OAB+∠ABO=90°,由角平分线定义得:∠MCB+∠OAM==45°,最后根据三角形的内角和可得结论.【解答】解:(1)∵B(3,0),∴OB=3,∵BC=8,∴OC=5,∴C(﹣5,0),∵AB∥CD,AB=CD,∴D(﹣2,﹣4);(2)如图(1),连接OD,∴S △ACD =S △ACO +S △DCO ﹣S △AOD =﹣=16;(3)∠M =45°,理由是:如图(2),连接AC ,∵AB ∥CD ,∴∠DCB =∠ABO ,∵∠AOB =90°,∴∠OAB +∠ABO =90°,∴∠OAB +∠DCB =90°,∵∠OAB 与∠OCD 的角平分线相交于点M ,∴∠MCB =,∠OAM =, ∴∠MCB +∠OAM ==45°,△ACO 中,∠AOC =∠ACO +∠OAC =90°,△ACM 中,∠M +∠ACM +∠CAM =180°,∴∠M +∠MCB +∠ACO +∠OAC +∠OAM =180°,∴∠M =180°﹣90°﹣45°=45°.【点评】本题是三角形的综合题,考查了平移的性质,三角形的面积,角平分线的性质,三角形的内角和定理,添加恰当的辅助线是本题的关键.。