【初中数学】部编本新人教版九年级上册数学21.2降次---解一元二次方程(第五课时)
新部编人教版九年级数学上册《21.2解一元二次方程【全套】》精品PPT优质课件

x1 7 x2 1
课堂小结
概 念 利用平方根的定义求方程的根的方法
直
接
关键要把方程化成 x2=p(p ≥0)或
开 步 骤 (x+n)2=p (p ≥0).
平
方 法
基本思路
一 元 降次 二次
两个一 元一次
方 程 直接开平方法 方程
课后作业
1.从教材课后习题中选取; 2.从练习册中选取。
课堂感想 1、这节课你有什么收获? 2、这节课还有什么疑惑? 说出来和大家一起交流吧!
∴x1=30, x2=-30.
探究交流
对照上面方法,你认为怎样解方程(x+3)2=5 在解方程(I)时,由方程x2=25得x=±5.由此想到: (x+3)2=5 , ② 得 x 3 5,
x 3 5 ,或 x 3 5 . ③
于是,方程(x+3)2=5的两个根为
x1 3 5 ,或 x2 3 5
第二十一章 一元二次方程
21.2.1 配方法
第1课时 直接开平方法
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1.会把一元二次方程降次转化为两个一元一次方程. (难点) 2.运用开平方法解形如x2=p或(x+n)2=p (p≥0)的方程. (重点)
导入新课
复习引入
1.如果 x2=a,则x叫做a的 平方根 . 2.如果 x2=a(a ≥0),则x= a . 3.如果 x2=64 ,则x= ±8 . 4.任何数都可以作为被开方数吗?
解题归纳
上面的解法中 ,由方程②得到③,实质上是 把一个一元二次方程“降次”,转化为两个一元 一次方程,这样就把方程②转化为我们会解的方 程了.
九年级数学上册 21.2 降次—解一元二次方程 直接开平方法解一元二次方程教案 新人教版(2021

陕西省安康市石泉县池河镇九年级数学上册21.2 降次—解一元二次方程直接开平方法解一元二次方程教案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(陕西省安康市石泉县池河镇九年级数学上册21.2 降次—解一元二次方程直接开平方法解一元二次方程教案(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为陕西省安康市石泉县池河镇九年级数学上册21.2 降次—解一元二次方程直接开平方法解一元二次方程教案(新版)新人教版的全部内容。
21。
2.1直接开平方法解一元二次方程一、教材分析新课标要求,理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题。
本节是九年级上册21. 2.1内容,一元二次方程的求解是初中代数学习中非常重要的一部分,而直接开平方法则是解一元二次方程的基础方法,它看似简单,却不容忽视。
首先“直接开平方法解一元二次方程"是配方法解一元二次方程的基础;其次,在一元二次不等式的求解及求二次函数与x轴交点等问题中都必须应用一元二次方程的解法;同时这一节的教材编写中还突出体现了“换元、转化、类比等重要的数学思想方法。
因此这一节不仅是为后续学习打下坚实基础的一节课,更是让学生体验并逐步掌握相关数学思想方法的一节课。
二、学情分析根据已学的平方根的意义来解形如x2=p(p≥0)的一元二次方程,然后迁移到解(mx+n)2=p(p≥0)型的一元二次方程.这样容易完成学习内容。
三、教学目标理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题。
提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程。
人教版九年级数学上册《降次—解一元二次方程》课件(共15张PPT)

开方:根据平方根意义,方程两 边开平方;
例题精讲,反思巩固
(1)x²-8x+1=0 (2)(x+3)²+2x=5 (3)x²+4x-9=2x-11
课堂小结,归纳提
高 1、用直接开平方法
(1)定义:一般地,对于形如 x2=p(p≥0)的
方程,根据平方根的定义,可解得
降次—解一元二次 方程
(配方法)
一般地,对于形如 x2=p(p≥0)
的方程,根据平方根的定义,可解得 x1 p,x2 p
这种解一元二次方程的方法,叫做 直接开平方法.
解下列方程: (1)9x²-16=0 (2)(x+3)²=3 (3)x²+6x+9=2
如果方程 x2能 p或 ( 化m 成 xn) 2p的形式
x1 p,x2 p 这种解一元二次方程的方法,叫做直接开平
方法.
(2)拓展 如果方程(m 能 xn化 )2成 p(p0)的形式
:
那么可 mx得 n p.
课堂小结,归纳提高
2、配方法 (1)定义: 通过配成完全平方式的形式解一元二次方 程的方法,叫做配方法;
(2)步骤:移、配、开、解
作业布 置
课本P45页 §习题22.2 1、第1题,第2题; 2、第3题的(1)、(2).
谢谢观赏
You made my day!
我们,还在路上……
x2+6x-16=0
பைடு நூலகம்移项
(mx+n)2=p(p≥0)
x2+6x=16
两边加上3²
x2+6x+9=16+9
左边写成完全平方形式
人教版初中数学九年级上册第二十一章《一元二次方程》21.2降次-解一元二次方程教案

-将现实问题抽象为一元二次方程,并运用所学知识解决。
举例解释:
-配方法中的移项和加、减同一个数以形成完全平方的过程,如将x²-6x+9转化为(x-3)²;
-在公式法中,对于方程2x²-5x+2=0,学生需要计算判别式Δ=(-5)²-4*2*2=25-16=9,并理解Δ>0时方程有两个不同实数根;
3.重点难点解析:在讲授过程中,我会特别强调一元二次方程的四种解法:直接开平、配方法、公式法和因式分解法。对于难点部分,如配方法和公式法,我会通过具体方程的求解过程来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元二次方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过图形的折叠和剪裁,学生可以直观地理解配方法中的完全平方概念。
人教版初中数学九年级上册第二十一章《一元二次方程》21.2降次-解一元二次方程教案
一、教学内容
人教版初中数学九年级上册第二十一章《一元二次方程》21.2降次-解一元二次方程教案:
1.掌握一元二次方程的一般形式:ax²+bx+c=0(a≠0);
2.了解求解一元二次方程的四种方法:直接开平方法、配方法、公式法和因式分解法;
我也观察到,在总结回顾环节,有些学生对所学知识的掌握并不牢固,可能需要更多的复习和练习。因此,我计划在接下来的课程中,增加一些巩固性的练习,特别是针对那些难度较大的解法,以确保学生能够扎实掌握。
最后,我认识到,教学过程中要不断关注学生的反馈,根据他们的学习情况调整教学策略。在今后的教学中,我会更加注重因材施教,针对不同学生的学习能力和兴趣,设计更加个性化的教学活动。同时,我也会鼓励学生提出自己的疑问,并及时给予解答,帮助他们克服学习中的困难。
人教版九年级数学:21.2.1降次--解一元二次方程配方法

开平方得: x 1 7
44
∴原方程的解为:x1 2 ,
x2
3 2
反馈练习巩固新知
用配方法解下列方程:
(1)x2+8x-15=0 (2)x2-5x-6=0
(3)2x2-5x-6=0
(4)x2+px+q=0(p2-4q>0)
小结
1、配方法通:过配方,将方程的左边化成一个含未
知数的完全平方式,右边是一个非负常数,运用直接
怎样解这
个方程?
移项
两边加上32,使左边配成
x 2 2bx b2的形式
左边写成完全平方形式 降次
心动不如行动
例1:用配方法解方程
x2 6x 7 0
解: 移项得:x2 6x 7
配方得:x2 6x 32 7 32
即 (x 3)2 16
开平方得: x 3 4
(4)
y2
1 2
y
(__14_)_2
(
y
__14 _)2
问题1一桶油漆可刷的面积为1500,d 李m林2 用这桶
油漆恰好刷完10个同样的正方体形状的盒子的全部 外表面,你能算出盒子的棱长吗?
设正方体的棱长为xdm,
列方程10 6x2 1500
由此可得 x2 25
x 5,
∴原方程的解为:x1 1, x2 7
范例研讨运用新知
例2:你能用配方法解方程
吗? 2x2 x 6 0
解:二次项系数化为1得:x2 1 x 3 0
移项得: x2 1 x 3
2
配方得:x2
1
2 x
(
1)2
九年级数学上册21.2降次—解一元二次方程一元二次方程的解法总析素材新人教版

一元二次方程的解法总析一元二次方程的基本解法包括:直接开平方法、配方法、公式法、分解因式法。
直接开平方法和分解因式法,虽然简便,但并非所有的方程都可采用.配方法适用于任何一个一元二次方程,但过程比较麻烦.而公式法是在配方法的基础上,利用其导出的求根公式直接求解,比配方法简单很多,但又不如直接开平方法和分解因式法快捷.那么,在解一元二次方程时,为了提高解题的速度和准确率,根据题目特点,如何选择适当的方法就值得我们来归纳总结一番。
下面就此结合具体实例进行阐述.一、直接开平方法例1:方程2(1)9x +=的解是( )A .2x =B .4x =-C .122,4x x ==-D .122,4x x =-=解:两边开平方,得13x +=±∴122,4x x ==-故选C 。
小结:直接开平方法适合于解形如2()x m n +=(n ≥0)形式的一元二次方程.二、配方法例2:解方程22120x x --=解:在方程两边都加上21(一次项系数2-的一半的平方),得222211120x x -+--=即 2(1)13x -=开平方,得1x -=∴1x -=或1x -=∴13x =23x =小结:用配方法解一元二次方程的关键是通过配成完全平方式的方法,将方程转化为2()x m n +=的形式,这中间,转化过程没有一定的程序。
配方法通常适用于二次项系数化为1后,一次项系数是偶数的一元二次方程。
三、公式法例3:解方程2523x x +=解:移项,得23520x x --=∵3,5,2a b c ==-=-224(5)43(2)490b ac -=--⨯⨯-=>∴56x ±= 即 12x =213x =- 小结:公式法的意义在于,对于任意的一元二次方程,只要将方程化成一般形式,就可以直接代入公式求解。
实际解题过程中,通常是在上述四种方法中的其它三种不很好解时,再选用公式法.四、分解因式法例4:解方程3(1)22x x x -=-解:变形,得3(1)2(1)x x x -=--移项,得3(1)2(1)0x x x -+-=∴(1)(32)0x x -+=∴10x -=或320x +=∴11x = 223x =- 小结:当一元二次方程的一边为0,而另一边易于分解成两个一次因式的乘积时,我们就用分解因式的方法来解。
21.2+解一元二次方程---因式分解法++课件2023-2024学年人教版九年级数学上册
解:因式分解,得 (x-2)(x+1)=0.
于是得 x-2=0或x+1=0, x1=2,x2=-1.
25x2 2x 1 x2 2x 3.
4
4
解:移项、合并同类项,得
4x2 1 0.
因式分解,得 ( 2x+1)( 2x-1 )=0.
2x+1=0或2x-1=0,
a=1,b=-12,c=-4.
b2-4ac=(-12)²-4×1×(-4)=160>0.
方程有两个不等的实数根
x b b2 4ac 12 4 10 .
2a
2
即x1 6 2 10, x2 6 2 10
(6) 3x2 = 4x + 1
公式法:
解:方程化为3x2 - 4x-1=0. a=3,b=-4,c=-1. b2-4ac=(-4)²-4×3×(-1)=28>0.
x b b2 4ac 7 7 .
2a
4
即
7 x1 2 , x2 0
(4)(2x-5)²=(x+7)²
解:两边开平方得 2x-5=±(x+7)
所以 2x-5=x+7 或 2x-5=-x-7
即
x1
12, x2
2 3
上述三个方程可得三种形式:
①x²= p ②(x - n)²= p
x1 p, x2 p x1 p n, x2 p n
即 x1 0, x2 3
2.改错 (2x+3)(x-2)=(x-2) 解:2x+3 =1 ①
2x= -2 ② x= -1 ③
上述过程从第__①____步开始出错,请 你写出正确的解决过程.
改: 解:(2x+3)(x-2)=(x-2),
部编数学九年级上册专题21.2一元二次方程的解法【八大题型】(人教版)(解析版)含答案
专题21.2 一元二次方程的解法【八大题型】【人教版】【题型1 用直接开平方法解一元二次方程】 (1)【题型2 用配方法解一元二次方程】 (2)【题型3 用公式法解一元二次方程】 (4)【题型4 用因式分解法解一元二次方程】 (5)【题型5 用指定方法解一元二次方程】 (6)【题型6 用适当的方法解一元二次方程】 (12)【题型7 用换元法解一元二次方程】 (14)【题型8 配方法的应用】 (17)【题型1 用直接开平方法解一元二次方程】【例1】(2022•建华区二模)解方程:−13(x ﹣2)2+34=0(开平方法).【分析】先把方程变形为(x ﹣2)2=94,再两边开方得到x ﹣2=±32,然后解两个一次方程即可.【解答】解:−13(x ﹣2)2+34=0,−13(x ﹣2)2=−34,(x ﹣2)2=94,x ﹣2=±32,所以x 1=72,x 2=12.【变式1-1】(2022•齐齐哈尔)解方程:(2x +3)2=(3x +2)2(开平方法).【分析】方程开方转化为一元一次方程,求出解即可.【解答】解:方程:(2x+3)2=(3x+2)2,开方得:2x+3=3x+2或2x+3=﹣3x﹣2,解得:x1=1,x2=﹣1.【变式1-2】(2021秋•徐汇区校级月考)解方程:4(x+1)2﹣9(x﹣2)2=0(开平方法).【分析】直接开方,再解一元一次方程即可.【解答】解:4(x+1)2=9(x﹣2)2,∴2(x+1)=±3(x﹣2),∴x1=8,x2=4 5.【变式1-3】(2022春•黄浦区校级期中)解关于x的方程:x2﹣3=1+ax2(a≠1)(开平方法).【分析】方程整理后,利用平方根定义开方即可求出解.【解答】解:方程整理得:(a﹣1)x2=﹣4,即x2=41−a,当1﹣a>0,即a<1时,x=当1﹣a<0,即a>1时,无解.来求出它的解,如果右边是一个负数,则判定此方程无实数解.【题型2 用配方法解一元二次方程】【例2】(2022春•淄川区期中)(1)请用配方法解方程2x2﹣6x+3=0;(2)请用配方法解一元二次方程ax2+bx+c=0(a≠0).【分析】(1)方程二次项系数化为1,常数项移到右边,两边加上一次项系数一半系数平方,利用完全平方公式变形,开方即可求出解;(2)方程二次项系数化为1,常数项移到右边,两边加上一次项系数一半系数平方,利用完全平方公式变形,开方即可求出解.【解答】解:(1)方程整理得:x 2﹣3x =−32,配方得:x 2﹣3x +94=94−32,即(x −32)2=34,开方得:x −32=解得:x 1=32+x 2=32−(2)方程整理得:x 2+b a x =−c a ,配方得:x 2+b a x +b 24a 2=b 24a 2−c a ,即(x +b 2a )2=b 2−4ac 4a 2,开方得:x +b 2a =解得:x 1=x 2=【变式2-1】(2022秋•松江区期末)用配方法解方程:x 2=4.【分析】两边都加上一次项系数一半的平方配成完全平方式后,再开方即可得.【解答】解:∵x 2=4,∴x 2﹣+5=4+5,即(x 2=9,∴x 3或x =−3,∴x 1=3x 2=﹣3+【变式2-2】(2022秋•伊川县期中)用配方法解方程:4x 2﹣8x ﹣7=0.【分析】根据配方法的步骤先把二次项系数化为1,再在等式左右两边同时加上一次项系数的一半的平方,然后开方即可.【解答】解:4x 2﹣8x ﹣7=0,4x 2﹣8x =7,x 2﹣2x =74,配方得x 2﹣2x +12=74+1,(x ﹣1)2=114,x ﹣1=x =∴x1=1x2=1【变式2-3】(2022秋•潢川县期末)解方程:2x2﹣5x+1=0(用配方法)【分析】将常数项移到右边后把二次项系数化为1,再两边配上一次项系数一半的平方求解可得.【解答】解:∵2x2﹣5x=﹣1,∴x2−52x=−12,∴x2−52x+2516=−12+2516,即(x−54)2=1716,则x−5 4 =∴x【题型3 用公式法解一元二次方程】【例3】(2022春•通州区校级月考)用公式法解方程:2a2﹣3=﹣4a.【分析】先把原方程化成一元二次方程的一般形式,再利用公式法进行计算即可解答.【解答】解:2a2﹣3=﹣4a,整理得:2a2+4a﹣3=0,∵Δ=42﹣4×2×(﹣3)=16+24=40,∴a=∴a1a2=【变式3-1】(2022秋•徐汇区校级月考)解方程:5x+2=(3x﹣1)(2x+2)(公式法).【分析】整理成一般式,先求出b2﹣4ac的值,再代入公式求出即可.【解答】解:方程整理得:6x2﹣x﹣4=0,∵a=6,b=﹣1,c=﹣4,∴b2﹣4ac=(﹣1)2﹣4×6×(﹣4)=97>0,∴x=∴x1x2=【变式3-2】(2022秋•金山区校级期中)用公式法解方程:x2﹣﹣3=0.【分析】先求出b2﹣4ac的值,再代入公式求出方程的解即可.【解答】解:x2﹣﹣3=0,∵a=1,b=﹣c=﹣3,∴Δ=b2﹣4ac=(﹣2﹣4×1×(﹣3)=20>0,∴x=∴x1=x2=【变式3-3】(2022•市中区二模)用公式法解一元二次方程:2x2﹣7x+6=0.【分析】方程利用公式法求出解即可.【解答】解:方程2x2﹣7x+6=0,这里a=2,b=﹣7,c=6,∵Δ=49﹣48=1>0,∴x=7±1 4,则x1=2,x2=1.5.转化为解两个一元一次方程,这种解一元二次方程的方法叫做因式分解法.【题型4 用因式分解法解一元二次方程】【例4】(2022秋•莲湖区期中)用因式分解法解方程:2(x﹣3)=3x(x﹣3).【分析】移项后,利用提公因式法将方程的左边因式分解,继而得出两个关于x的一元一次方程,再进一步求解即可.【解答】解:∵2(x﹣3)=3x(x﹣3),∴2(x﹣3)﹣3x(x﹣3)=0,则(x﹣3)(2﹣3x)=0,∴x﹣3=0或2﹣3x=0,解得x1=3,x2=2 3.【变式4-1】(2022秋•徐汇区校级月考)解方程:(4﹣3x)+(3x﹣4)2=0(因式分解法).【分析】利用提取公因式(4﹣3x),将左边因式分解,再进一步求解即可.【解答】解:∵(4﹣3x)+(3x﹣4)2=0,∴(4﹣3x)(5﹣3x)=0,则4﹣3x=0或5﹣3x=0,解得x1=43,x2=53.【变式4-2】(2022秋•长白县期中)用因式分解法解方程:(x+3)2=(1﹣2x)2.【分析】方程整理后,利用因式分解法求出解即可.【解答】解:方程整理得:(x+3)2﹣(1﹣2x)2=0,分解因式得:(x+3+1﹣2x)(x+3﹣1+2x)=0,即(4﹣x)(3x+2)=0,可得4﹣x=0或3x+2=0,解得:x1=4,x2=−2 3.【变式4-3】(2022秋•简阳市月考)用因式分解法解方程:x2+0【分析】利用因式分解法把方程化为x=0或x+=0,然后解一次方程即可.【解答】解:(x x+0,x=0或x+=0,所以x1=x2=【题型5 用指定方法解一元二次方程】【例5】(2022秋•兴平市校级月考)按规定的方法解下列方程:(1)(x+1)2﹣144=0(直接开平方法);(2)x2=8x+9(配方法);(3)2y2+7y+3=0(公式法);(4)3(x﹣2)2=x(x﹣2)(因式分解法).【分析】(1)移项,然后开平方即可求解;(2)首先移项,然后配方,利用直接开平方法即可求解;(3)利用公式法即可求解;(4)移项,然后利用因式分解法即可求解.【解答】解:(1)(x+1)2=144,则x+1=12或x+1=﹣12,解得:x1=﹣13,x2=11;(2)移项,得:x2﹣8x=9,配方,得x2﹣8x+16=25,则(x﹣4)2=25,即x﹣4=5或x﹣4=﹣5,解得:x1=9,x2=﹣1;(3)a=2,b=7,c=3,△=49﹣4×2×3=49﹣24=25>0.则x=−7±54,则x1=﹣3,x2=−1 2;(4)原式即3(x﹣2)2﹣x(x﹣2)=0,因式分解得:(x﹣2)【3(x﹣2)﹣x】=0,即(x﹣2)(2x﹣6)=0,则x﹣2=0或2x﹣6=0,解得:x1=2,x2=3.【变式5-1】(2022秋•宁县校级月考)用适当的方法解方程:(1)x(x﹣2)+x﹣2=0(用因式分解法)(2)x2﹣4x+3=0(用配方法解)(3)x2+5x+1=0(用公式法解)(4)(x﹣4)2=(5﹣2x)2(用直接开平方法)【分析】(1)先提取公因式(x﹣2)因式分解,再求解即可;(2)先利用完全平方公式配方,然后开平方求解即可;(3)写出a、b、c的值,然后利用求根公式法求解;(4)直接开平方求解即可.【解答】解:(1)因式分解得,(x﹣2)(x+1)=0,由此得,x﹣2=0,x+1=0,所以,x1=2,x2=﹣1;(2)配方得,x2﹣4x+4﹣4+3=0,即(x﹣2)2=1,所以,x﹣2=±1,所以,x1=3,x2=1;(3)a=1,b=5,c=1,Δ=b2﹣4ac=52﹣4×1×1=25﹣1=24,xx1x2=(4)开平方得,x﹣4=±(5﹣2x),所以,x﹣4=5﹣2x或x﹣4=2x﹣5,解得x1=3,x2=1.【变式5-2】(2022秋•简阳市月考)解下列方程(1)(2x﹣1)2=7(直接开平方法)(2)2x2﹣7x﹣4=0(用配方法)(3)2x2﹣10x=3(公式法)(4)(3x﹣4)2=(3﹣4x)2(因式分解法)(5)x2+=26(用换元法解)(6)(2x2+1)2﹣2x2﹣3=0(用换元法解)【分析】(1)用直接开平方法求解就可以了;(2)先将常数项移到等号的右边,再将二次项系数化为1,然后配方为完全平方公式后直接用开平方法求解就可以;(3)先化为一般形式,然后确定a、b、c的值,最后代入求根公式求解就可以了;(4)先移项,然后用平方差公式分解因式就可以求出结论;(5a,将原方程变形为a2﹣a=30,再解一个关于a的一元二次方程求解;(6)将原方程变形为:(2x2+1)2﹣(2x2+1)﹣2=0,再设2x2+1=a,就可以变为a2﹣a﹣2=0,最后可以运用因式分解法求解.【解答】解:(1)开平方,得2x﹣1=∴x1x2(2)移项,得2x2﹣7x=4,化二次项的系数为1,得x2−72x=2,配方,得x2−72x+4916=2+4916,(x−74)2=8116开平方,得x−74=±94,∴x1=4,x2=−1 2;(3)移项,得2x2﹣10x﹣3=0,∴a=2,b=﹣10,c=﹣3,∴△=100+24=124>0,∴x∴x1x2=(4)移项,得(3x﹣4)2﹣(3﹣4x)2=0分解因式,得(3x﹣4+3﹣4x)(3x﹣4﹣3+4x)=0,∴﹣x﹣1=0或7x﹣7=0,∴x1=﹣1,x2=1;(5)原方程变形为:x2+30,a,将原方程变形为:a2﹣a=30,移项,得a2﹣a﹣30=0,因式分解,得(a+5)(a﹣6)=0,∴a+5=0或a﹣6=0,∴a1=﹣5(舍去),a2=6,6,解得:x=经检验,x=(6)原方程变形为:(2x2+1)2﹣(2x2+1)﹣2=0,设2x2+1=a,则原方程变为:a2﹣a﹣2=0,解得:a1=﹣1,a2=2,当a=﹣1时,2x2+1=﹣1,Δ<0,原方程无解,当a=2时,2x2+1=2,解得:x=【变式5-3】(2022秋•恩阳区月考)解方程:①x2+x+=0(因式分解法)②5x2+2x﹣1=0(公式法)③y 2+6y +2=0(配方法)④9(x ﹣2)2=121(x +1)2(直接开平方法)⑤x 1x 2−2x 2x 1=1(换元法)⑥(x 2﹣x )2﹣5(x 2﹣x )+6=0(适当方法)【分析】①根据方程特点,采用因式分解法解答.②根据方程的系数特点,应准确确定各个项系数,利用求根公式求得.③可以先移项,然后利用配方法解答.④利用直接开平方法解答;⑤移项整理,利用换元法求得未知数的解即可.⑥利用换元法解答.【解答】解:①x 2+x +0,(x x +0,∴x +=0或x +=0,∴x 1=x 2=②5x 2+2x ﹣1=0,a =5,b =2,c =﹣1,Δ=b 2﹣4ac =4+20=24,x所以x 1=x 2③y 2+6y +2=0,y 2+6y =﹣2,y 2+6y +9=﹣2+9,即(y +3)2=7,∴y +3∴y 1=﹣3+y 2=﹣3④9(x ﹣2)2=121(x +1)2,3(x ﹣2)=±11(x +1),∴3(x ﹣2)=11(x +1)或3(x ﹣2)=﹣11(x +1),∴x 1=−178,x 2=−514;⑤x 1x 2−2x 2x 1=1,x 1x 2−2x 2x 1−1=0,设y =x 1x 2,则原方程为y −2y −1=0,y 2﹣y ﹣2=0,解得:y =﹣1,或y =2,当y =﹣1,x 1x 2=−1,此方程无解;当y =2,x 1x 2=2,解得:x 1=1,x 2=−12,经检验,x 1=1,x 2=−12是原分式方程的解,所以原方程的解为x 1=1,x 2=−12.⑥(x 2﹣x )2﹣5(x 2﹣x )+6=0,设y =x 2﹣x ,则原方程为y 2﹣5y +6=0,解得:y =3,或y =2,当y =3,x 2﹣x =3,x 1=x 2=当y =2,x 2﹣x =2,解得:x 3=2,x 4=﹣1;所以原方程的解为x 1x 2x 3=2,x 4=﹣1.【题型6 用适当的方法解一元二次方程】【例6】(2022春•富阳区校级期中)用适当的方法解下列一元二次方程:(1)(x +4)2﹣5(x +4)=0;(2)x 2﹣2x ﹣15=0.【分析】(1)等式左边可提取公因式(x +4),转化为(x +4)(x ﹣1)=0求解;(2)根据十字相乘法可将方程变形为(x +3)(x ﹣5)=0,由此可得同解方程x +3=0或x ﹣5=0,据此求解.【解答】解:(1)(x +4)2﹣5(x +4)=0,将方程变形,得(x+4)(x﹣1)=0,即x+4=0,x﹣1=0,解得:x1=﹣4,x2=1.(2)x2﹣2x﹣15=0,将方程变形,得(x+3)(x﹣5)=0,则x+3=0或x﹣5=0,解得x1=﹣3,x2=5.【变式6-1】(2022春•大观区校级期中)用适当的方法解方程(1)x2﹣x﹣1=0;(2)(x+1)2﹣3(x+1)=0.【分析】(1)利用公式法解方程;(2)利用因式分解法解方程.【解答】解:(1)Δ=(﹣1)2﹣4×(﹣1)=5>0,x所以x1=x2=(2)(x+1)2﹣3(x+1)=0.(x+1)(x+1﹣3)=0,x+1=0或x+1﹣3=0,所以x1=﹣1,x2=2.【变式6-2】(2022春•萧山区期中)用适当的方法解下列方程:(1)x2﹣x﹣6=0;(2)4(x﹣1)2=9(x﹣5)2.【分析】(1)利用十字相乘法将方程的左边因式分解,继而得出两个关于x的一元一次方程,再进一步求解即可;(2)先移项,再利用公式法将方程的左边因式分解,继而得出两个关于x的一元一次方程,再进一步求解即可.【解答】解:(1)∵x2﹣x﹣6=0,∴(x﹣3)(x+2)=0,则x ﹣3=0或x +2=0,解得x 1=3,x 2=﹣2;(2)∵4(x ﹣1)2=9(x ﹣5)2,∴4(x ﹣1)2﹣9(x ﹣5)2=0,∴[2(x ﹣1)+3(x ﹣5)][2(x ﹣1)﹣3(x ﹣5)]=0,则2(x ﹣1)+3(x ﹣5)=0或2(x ﹣1)﹣3(x ﹣5)=0,解得x 1=13,x 2=175.【变式6-3】(2022春•柯桥区期中)选用适当的方法解下列方程.(1)2x (x ﹣1)=3(x ﹣1);(2)12x 2﹣5=0.【分析】(1)方程移项后,利用因式分解法求出解即可;(2)方程整理后,利用配方法求出解即可.【解答】解:(1)方程移项得:2x (x ﹣1)﹣3(x ﹣1)=0,分解因式得:(x ﹣1)(2x ﹣3)=0,所以x ﹣1=0或2x ﹣3=0,解得:x 1=1,x 2=32;(2)方程整理得:x 2=10,配方得:x 2+8=18,即(x 2=18,开方得:x =解得:x 1=x 2=﹣【题型7 用换元法解一元二次方程】【例7】(2022秋•安居区期末)为解方程(x 2﹣1)2﹣5(x 2﹣1)+4=0,我们可以将x 2﹣1视为一个整体,然后设x 2﹣1=y ,则原方程可化为y 2﹣5y +4=0,解此方程得y 1=1,y 2=4.当y =1时,x 2﹣1=1,所以x =±当y =4时,x 2﹣1=4,所以x =±所以原方程的根为x 1=x 2=x 3x 4=以上解方程的方法叫做换元法,利用换元法达到了降次的目的,体现了数学的转化思想.运用上述方法解下列方程:(1)(x2﹣x)(x2﹣x﹣4)=﹣4;(2)x4+x2﹣12=0.【分析】(1)设x2﹣x=a,原方程可化为a2﹣4a+4=0,求出a的值,再代入x2﹣x=a求出x即可;(2)设x2=y,原方程化为y2+y﹣12=0,求出y,再把y的值代入x2=y求出x即可.【解答】解:(1)(x2﹣x)(x2﹣x﹣4)=﹣4,设x2﹣x=a,则原方程可化为a2﹣4a+4=0,解此方程得:a1=a2=2,当a=2时,x2﹣x=2,即x2﹣x﹣2=0,因式分解得:(x﹣2)(x+1)=0,解得:x1=2,x2=﹣1,所以原方程的解是x1=2,x2=﹣1;(2)x4+x2﹣12=0,设x2=y,则原方程化为y2+y﹣12=0,因式分解,得(y﹣3)(y+4)=0,解得:y1=3,y2=﹣4,当y=3时,x2=3,解得:x=±当y=﹣4时,x2=﹣4,无实数根,所以原方程的解是x1=x2=【变式7-1】(2021春•龙口市月考)阅读下面材料:方程x4﹣6x2+8=0是一个一元四次方程,根据该方程的特点,它的解法通常是设x2=y,则x4=y2,∴原方程可化为y2﹣6y+8=0,解方程求得y的值,进而得到原方程的四个根x1=x2=x3=2,x4=﹣2.以上方法叫做换元法,通过换元达到降次的目的,体现了数学的转化思想,运用上述方法解答下列问题.(1)解方程2(x2+3x)2﹣3(x2+3x)﹣2=0;(2)已知实数a满足(a2+2﹣3a2=2的值.【分析】(1)先设y=x2+3x,则原方程变形为2y2﹣3y﹣2=0,运用因式分解法解得y1=2,y2=−1 2,再把y=2和−12分别代入y=x2+3x得到关于x的一元二次方程,然后解两个一元二次方程,最后确定原方程的解;(2)设y =a 2y 2﹣3y ﹣10=0,运用因式分解法解得y 1=﹣2,y 2=5,再把y =5代y =a 2得到a 2+5,即可求得a 2=52的值.【解答】解:(1)设y =x 2+3x ,则2y 2﹣3y ﹣2=0,则(y ﹣2)(2y +1)=0,解得y 1=2,y 2=−12,当x 2+3x =2,即x 2+3x ﹣2=0时,解得x =当x 2+3x =−12,即x 2+3x +12=0时,解得x =综上所述,原方程的解为x 1=x 2x 3x 4=(2)(a 2+2﹣3a 2=a 22﹣3(a 2﹣10=0,设y =a 2+y 2﹣3y ﹣10=0,则(y +2)(y ﹣5)=0,解得y 1=﹣2,y 2=5,当y =﹣2时,则a 2+=−2,无意义,舍去;当y =5时,则a 2+5,得到a 2=5∴2=53﹣故2的值为3﹣【变式7-2】(2022秋•邵东市期末)请你先认真阅读下列材料,再参照例子解答问题:已知(x +y ﹣3)(x +y +4)=﹣10,求x +y 的值.解:设t =x +y ,则原方程变形为(t ﹣3)(t +4)=﹣10,即t 2+t ﹣2=0∴(t +2)(t ﹣1)=0得t 1=﹣2,t 2=1∴x +y =﹣2或x +y =1已知(x 2+y 2﹣4)(x 2+y 2+2)=7,求x 2+y 2的值.【分析】根据举例进行解答即可.【解答】解:设t =x 2+y 2>0∴(t ﹣4)(t +2)=7t 2﹣2t ﹣15=0,解得:t 1=5,t 2=﹣3(舍去)∴x 2+y 2=5.【变式7-3】(2022秋•甘井子区月考)【例】解方程(x ﹣1)2﹣5(x ﹣1)+4=0.解:设x ﹣1=y ,则原方程可化为y 2﹣5y +4=0.解得y 1=1,y 2=4.当y =1时,即x ﹣1=1,解得x =2;当y =4时,即x ﹣1=4,解得x =5.所以原方程的解为x 1=2,x 2=5.上述解法称为“整体换元法”.(1)请运用“整体换元法”解方程:(2x ﹣5)2﹣(2x ﹣5)﹣2=0;(2)已知x 2﹣xy ﹣y 2=0,求x y 的值.【分析】(1)先设y =2x ﹣5,则原方程变形为y 2﹣y ﹣2=0,运用因式分解法解得y 1=2,y 2=﹣1,再把y =2和﹣1分别代y =2x ﹣5得到关于x 的一元二次方程,然后解两个一元二次方程,最后确定原方程的解;(2)x 2﹣xy ﹣y 2=0,方程两边同时除以y 2,可得x 2−xy−y 2y 2=0,设x y =m ,方程可化为m 2﹣m ﹣1=0,类似(1)的减法可得x y 的值.【解答】解:(1)设y =2x ﹣5,则原方程变形为y 2﹣y ﹣2=0,解得y 1=2,y 2=﹣1,当y =2时,即2x ﹣5=2,解得x =3.5;当y =﹣1时,2x ﹣5=﹣1,解得x =2.所以原方程的解为x 1=3.5,x 2=2;(2)x 2﹣xy ﹣y 2=0,方程两边同时除以y 2,得x 2−xy−y 2y 2=0,设x y =m ,方程可化为m 2﹣m ﹣1=0,解得m 1m 2∴x y 的值为【题型8 配方法的应用】【例8】(2022秋•饶平县期末)已知a ,b ,c 满足a 2+2b =7,b 2﹣2c =﹣1,c 2﹣6a =﹣17,则a +b ﹣c 的值为( )A.1B.﹣5C.﹣6D.﹣7【分析】题目中的式子相加,然后利用配方法变形为完全平方的形式,再利用非负数的性质即可求得所求式子的值.【解答】解:∵a2+2b=7,b2﹣2c=﹣1,c2﹣6a=﹣17,∴(a2+2b)+(b2﹣2c)+(c2﹣6a)=7+(﹣1)+(﹣17),∴a2+2b+b2﹣2c+c2﹣6a=﹣11,∴(a2﹣6a+9)+(b2+2b+1)+(c2﹣2c+1)=0,∴(a﹣3)2+(b+1)2+(c﹣1)2=0,∴a﹣3=0,b+1=0,c﹣1=0,解得,a=3,b=﹣1,c=1,∴a+b﹣c=3﹣1﹣1=1.故选:A.【变式8-1】(2022•武汉模拟)若实数a,b,x满足a﹣b=2,a2﹣b2=﹣4x,则多项式a2+ab﹣b2的值可能为( )A.﹣5B.﹣6C.﹣7D.﹣8【分析】将多项式a2+ab﹣b2进行变形,利用配方法可得(b+3)2﹣5,再根据偶次方的非负数性质解答即可.【解答】解:∵a﹣b=2,∴a=b+2,∴a2+ab﹣b2=(b+2)2+b(a﹣b)=b2+4b+4+2b=b2+6b+4=(b+3)2﹣5,∴a2+ab﹣b2的最小值是﹣5.故选:A.【变式8-2】(2022春•仪陇县校级月考)已知a+b+c+3=+则a+b+c的值是 .【分析】先将条件配方成)2)2)2=0,根据完全平方式的非负性求出a、b和c的值即可.【解答】解:∵a+b+c+3=++∴+++1=0,即)2)2)2=0,1=0=0=0,解得a=1,b=5,c=3.∴a+b+c=1+5+3=9.故答案为:9.【变式8-3】(2022春•临湘市期中)阅读材料例:求代数式2x2+4x﹣6的最小值.解:2x2+4x﹣6=2(x2+2x﹣3)=2(x+1)2﹣8.可知当x=﹣1时,2x2+4x﹣6有最小值,最小值是﹣8.根据上面的方法解决下列问题:(1)m2﹣4m﹣5最小值是 .(2)多项式a2+b2﹣4a+6b+18最小值可以是 .【分析】(1)将多项式加4再减4,利用配方法后可得结论;(2)将多项式重新分组,改写成(a2﹣4a+4)+(b2+6b+9)+5,配方后可得结论.【解答】解:(1)∵m2﹣4m﹣5=m2﹣4m+4﹣9=(m﹣2)2﹣9,∴当m=2时,m2﹣4m﹣5有最小值,最小值是﹣9.故答案为:﹣9;(2)∵a2+b2﹣4a+6b+18=(a2﹣4a+4)+(b2+6b+9)+5=(a﹣2)2+(b+3)2+5,∴当a=2,b=﹣3时,多项式a2+b2﹣4a+6b+18有最小值,最小值是5.故答案为:5.。
人教版九上数学 21.2解一元二次方程(第1课时) 教案
21.1 解一元二次方程(1)【教学目标】知识与技能:1.会用开平方法解形如x2=p或(mx+n)2=p(p≥0)的一元二次方程2.探索利用配方法解一元二次方程的一般步骤;能够利用配方法解一元二次方程.过程与方法:在探索配方法时,使学生感受前后知识的联系,体会配方的过程以及方法。
情感态度价值观:体会由未知向已知转化的思想方法.【教学重难点】重点:用直接开平方法和配方法解一元二次方程.难点:把一元二次方程通过配方转化为(x十m)2=n(n 0)的形式.【教学过程】一、复习引入【问题】1.求出下列各式中x的值,并说说你的理由.(1)x2=9 (2)x2=5 (3)x2=a(a>0).说明:复习平方根的意义,解形如x2=n的方程,为继续学习引入作好铺垫.2.什么是完全平方式?3. 填上适当的数,使下列各式成立.(1)x2+ 6x+ =(x+3)2(2) x2+8x+ =(x+ )2(3)a2+2ab+ =(a+ )2 (4)a2-2ab+=(a- )2二、探索新知【问题】一桶某种油漆可刷的面积为1 500 dm 2,李林用这桶油漆恰好刷完10个同样的正方体的盒子的全部外表,你能算出盒子的棱长吗?分析:学生独立分析题意,发现若设正方体的棱长为x dm ,则一个正方体的表面积为6x 2 dm 2,根据一桶油漆可以刷的面积,列出方程:10×6x 2=1500整理,得x 2=25x=±5x 1=5,x 2=-5棱长不能为负数,所以盒子的棱长为5 dm说明:在学生列出方程后,让学生讨论方程的解法,由于所列出的方程形式比较简单,可以运用平方根的定义(即开平方法)来求出方程的解.让学生感受开平方可以解一些简单的一元二次方程.归纳:一般地,对于方程2x p =(1)当P >0时,方程有两个不等的实数根(2)当P=0时,方程有两个相等的实数根(3)当P <0时,方程没有实数根【探究】你认为怎样解方程2(3)5x +=?学生独立分析问题,发现和【问题】中的方程形式类似,可以利用平方根的定义,直接开平方得到35x +=±,于是得到13x =-23x =-归纳:在解一元二次方程时通常通过“降次”把它转化为两个一元一次方程. 说明:在学生讨论方程的解法时,注意引导学生根据降次的思想,利用配方的方法解决问题,进而体会配方法解方程的一般步骤.【探究】怎样解方程2640x x ++=?归纳:1.通过配成完全平方式的形式解一元二次方程的方法,叫作配方法;2.配方的目的是为了降次,把一元二次方程转化为两个一元一次方程说明:引导学生根据降次的思想,利用配方的方法把一元二次方程转化为两个一元一次方程来解方程.【例题讲解】例:解下列方程(1)x 2-8x + 1 = 0; (2)2213x x +=; (3)23640x x -+=.学生首先独立思考,自主探索,然后交流配方时的规律.经过分析得到(1)中经过移项可以化为281x x -=-,为了使方程的左边变为完全平方式,可以在方程两边同时加上42,得到2228414x x -+=-+,得到(x -4)2=15;(2)中二次项系数不是1,此时可以首先把方程的两边同时除以二次项系数2,然后再进行配方,即23122x x -=-,方程两边都加上23()4,方程可以化为231()416x -=; (3)按照(2)的方式进行处理.总结:利用配方法解方程时应该遵循的步骤:(1)把方程化为一般形式20ax bx c ++=; (2)把方程的常数项通过移项移到方程的右边;(3)方程两边同时除以二次项系数a ;(4)方程两边同时加上一次项系数一半的平方;(5)此时方程的左边是一个完全平方式,然后利用平方根的定义把一元二次方程化为两个一元一次方程来解.说明:在学生解决问题的过程中,适时让学生讨论解决遇到的问题(比如遇到二次项系数不是1的情况该如何处理等),通过解几个具体的方程,归纳作配方法解题的一般过程.归纳:一般地,对于方程2()x n p +=(1)当P >0时,方程有两个不等的实数根,1x n =-+2x n =-(2)当P=0时,方程有两个相等的实数根12x x n ==-(3)当P <0时,方程没有实数根三、巩固练习教材9页第1、2题.说明:检查学生对基础知识的掌握情况,进一步掌握配方法四、小结作业小结:1. 要熟练直接开平方法和配方法的技巧,来解一元二次方程,2.掌握配方法解一元二次方程的一般步骤,并注意每一步的易错点。
2024年人教版九年级数学上册教案及教学反思全册第21章 一元二次方程(教案)因式分解法教案
21.2 解一元二次方程21.2.3 因式分解法一、教学目标【知识与技能】1.会用因式分解法(提公因式法、运用公式)解一元二次方程.2.能根据方程的具体特征,灵活选择方程的解法,体会解决问题方法的多样性.【过程与方法】在经历探索用因式分解法解一元二次方程及依据方程特征选择恰当方法解一元二次方程的过程中,进一步锻炼学生的观察能力,分析能力和解决问题能力.【情感态度与价值观】通过因式分解法解一元二次方程的探究活动,培养学生勇于探索的良好习惯,感受数学的严谨性及教学方法的多样性.二、课型新授课三、课时1课时四、教学重难点【教学重点】会用因式分解法解一元二次方程.【教学难点】理解并应用因式分解法解一元二次方程.五、课前准备课件六、教学过程(一)导入新课1.解一元二次方程的方法有哪些?(出示课件2)学生答:直接开平方法:x2=a (a≥0),配方法:(x+m)2=n (n≥0),公式法:x=2ba-±(b2-4ac≥0).2. 什么叫因式分解?学生答:把一个多项式分解成几个整式乘积的形式叫做因式分解,也叫把这个多项式分解因式.3.分解因式的方法有那些?(出示课件3)学生答:(1)提取公因式法:am+bm+cm=m(a+b+c).(2)公式法:a²-b²=(a+b)(a-b), a²±2ab+b²=(a±b) ².(3)十字相乘法.教师问:下面的方程如何使解答简单呢?x2+25x=0.出示课件5:根据物理学规律,如果把一个物体从地面以10m/s的速度竖直上抛,那么经过x s物体离地面的高度(单位:m)为10x-4.9x2.你能根据上述规律求出物体经过多少秒落回地面吗?(精确到0.01s)教师问:你能根据题意列出方程吗?学生答:设物体经过x s 落回地面,这时它离地面的高度为0m ,即10x -4.9x 2=0.教师问:你能想出解此方程的简捷方法吗?(二)探索新知探究 因式分解法的概念学生用配方法和公式法解方程10x -4.9x 2=0.(两生板演)配方法解方程10x -4.9x 2=0. 解:2100049x x -=,22210050500494949x x ⎛⎫⎛⎫-+-=+- ⎪ ⎪⎝⎭⎝⎭2250504949x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭50504949x -=±50504949x =±+110049,=x 20.=x公式法解方程10x -4.9x 2=0.解:24.9100x x -=,a=4.9,b=-10,c=0.b 2-4ac= (-10)2-0=100,a acb b x 242-±-=()10102 4.9--±=⨯110049,=x20. =x教师引导学生尝试找出其简洁解法为:(出示课件7)x(10-4.9x)=0. ∴x=0或10-4.9x=0, ∴x1=0,x2=10049≈2.04.这种解法是不是很简单?教师问:以上解方程的方法是如何使二次方程降为一次方程的?x(10-4.9x)=0,①x=0或10-4.9x=0,②通过学生的讨论、交流可归纳为:(出示课件8)可以发现,上述解法中,由①到②的过程,不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次.这种解法叫做因式分解法.教师提示:(出示课件9)1.用因式分解法的条件是:方程左边易于分解,而右边等于零;2.关键是熟练掌握因式分解的方法;3.理论依据是“ab=0,则a=0或b=0 ”.师生共同归纳:(出示课件10)分解因式法解一元二次方程的步骤是:1.将方程右边化为等于0的形式;2.将方程左边因式分解为A×B;3.根据“ab=0,则a=0或b=0”,转化为两个一元一次方程;4.分别解这两个一元一次方程,它们的根就是原方程的根.例1 解下列方程:(出示课件11)(1)x(x-2)+x-2=0; (2)5x 2-2x-14=x 2-2x+34. 师生共同解答如下: 解:(1)因式分解,得(x-2)(x+1)=0.故有x-2=0或x+1=0.∴x 1=2,x 2=-1;(2)原方程整理为4x 2-1=0.因式分解,得(2x+1)(2x-1)=0.∴2x+1=0或2x-1=0.∴x 1=-12,x 2=12. 想一想 以上两个方程可以用配方法或公式法来解决吗?如果可以,请比较它们与因式分解法的优缺点.学生思考后,教师总结如下:(出示课件12)一.因式分解法简记歌诀:右化零,左分解;两因式,各求解.二.选择解一元二次方程的技巧:1.开平方法、配方法适用于能化为完全平方形式的方程.2.因式分解法适用于能化为两个因式之和等于0的形式的方程.3.配方法、公式法适用于所有一元二次方程.出示课件13:解下列方程:2222221 +=0; (2) -=0; (3) 3-6=-3;(4) 4-121=0; (5) 3(2+1)=4+2; (6) (-4)=(5-2).()x x x x x x x x x x x 学生自主思考并解答.(六生板演)解:⑴因式分解,得x(x+1)=0.于是得x=0或x+1=0,x 1=0,x 2=-1.⑵因式分解,得x (x)=0于是得x=0或x-2=0x1=0,x2=2.⑶将方程化为x2-2x+1 = 0. 因式分解,得(x-1)(x-1)=0.于是得x-1=0或x-1=0,x1=x2=1.⑷因式分解,得(2x+11)(2x-11)=0.于是得2x+11=0或2x-11=0,x1=-5.5,x2=5.5.⑸将方程化为6x2-x-2=0. 因式分解,得(3x-2)(2x+1)=0. 于是得3x-2=0或2x+1 = 0,x1=23,x2=12.⑹将方程化为(x-4)2-(5-2x)2=0.因式分解,得(x-4-5+2x)(x-4+5-2x)=0.(3x-9)(1-x)=0.于是得3x-9=0或1-x=0,x1=3,x2=1.出示课件16:用适当方法解下列方程:−x)2;(2)x2-6x-19=0;(3)3x2=4x+1;(4)y2-15=2y;(5)5x(x-3)-(x-3)(x+1)=0;(6)4(3x+1)2=25(x-2)2.教师提示:根据方程的结构特征,灵活选择恰当的方法来求解.四种方法的选择顺序是:直接开平方法→因式分解法→公式法→配方法.师生共同解答如下.(出示课件17,18,19)解:(1)(1-x)2=3,∴(x-1)2=3,x-1∴x1=1x2=1.(2)移项,得x2-6x=19.配方,得x2-6x+(-3)2=19+(-3)2.∴(x-3)2=28.∴x-3=±.∴x1=3+,x2=3-.(3)移项,得3x2-4x-1=0.∵a=3,b=-4,c=-1,∴x=−(−4)±√(−4)2−4×3×(−1)2×3=2±73.∴x1=2+73,x2=2-73.(4)移项,得y2-2y-15=0.把方程左边因式分解,得(y-5)(y+3)=0. ∴y-5=0或y+3=0.∴y1=5,y2=-3.(5)将方程左边因式分解,得(x-3)[5x-(x+1)]=0. ∴(x-3)(4x-1)=0.∴x-3=0或4x-1=0.∴x1=3,x2=1 4 .6)移项,得4(3x+1)2-25(x-2)2=0.∴[2(3x+1)]2-[5(x-2)]2=0.∴[2(3x+1)+5(x-2)]·[2(3x+1)-5(x-2)]=0. ∴(11x-8)(x+12)=0.∴11x-8=0或x+12=0.∴x1=811,x2=-12.出示课件20,21:用适当的方法解下列方程:(1)x2-41=0;(2) 5(3x+2)2=3x(3x+2).学生自主思考并解答.解:(1)∵x2-14=0,∴x2=14,即x=±14.∴x1=12,x2=-12.⑵原方程可变形为5(3x+2)2-3x(3x+2)=0,∴(3x+2)(15x+10-3x)=0.∴3x+2=0或12x+10=0.∴x1=-23,x2=-56.(三)课堂练习(出示课件22-30)1.已知x=2是关于x的一元二次方程kx²+(k²﹣2)x+2k+4=0的一个根,则k的值为.2. 解方程:2(x﹣3)=3x(x﹣3).3.解下列方程:(1)x2+4x-9=2x-11;(2)x(x+4)=8x+12.4.小华在解一元二次方程x2-x=0 时,只得出一个根x=1,则被漏掉的一个根是()A.x=4 B.x=3C.x=2 D.x=05.我们已经学习了一元二次方程的四种解法:直接开平方法、配方法、公式法和因式分解法.请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程.①x2-3x+1=0;②(x-1)2=3;③x2-3x=0;④x2-2x=4.我选择______________________.6.解方程:(x2+3)2-4(x2+3)=0.参考答案:1.-32.解:2(x﹣3)=3x(x﹣3),移项得2(x﹣3)﹣3x(x﹣3)=0,因式分解得(x﹣3)(2﹣3x)=0,x﹣3=0或2﹣3x=0,解得:x1=3,x2=32.3.解:⑴x2+2x+2=0,(x+1)2=-1.此方程无解.⑵x2-4x-12=0,(x-2)2=16.x1=6,x2=-2.4.D5.解:答案不唯一.若选择①,①适合公式法,x2-3x+1=0,∵a=1,b=-3,c=1,∴b2-4ac=9-4=5>0.∴x=3±5 2.∴x1=3+52,x2=3-52.若选择②,②适合直接开平方法,∵(x-1)2=3,x-1=±3,∴x1=1+3,x2=1- 3. 若选择③,③适合因式分解法,x2-3x=0,因式分解,得x(x-3)=0.解得x1=0,x2=3.若选择④,④适合配方法,x2-2x=4,x2-2x+1=4+1=5,即(x-1)2=5.开方,得x-1=± 5.∴x1=1+5,x2=1- 5.5.提示:把(x2+3)看作一个整体来提公因式,再利用平方差公式,因式分解.解:设x2+3=y,则原方程化为y2-4y=0.分解因式,得y(y-4)=0,解得y=0,或y=4.①当y=0 时,x2+3=0,原方程无解;②当y=4 时,x2+3=4,即x2=1.解得x=±1.所以原方程的解为x1=1,x2=-1.(四)课堂小结1.用因式分解法解一元二次方程有哪些优缺点?需注意哪些细节问题?2.通过本节课的学习,你还有哪些收获和体会?⑴公式法虽然是万能的,对任何一元二次方程都适用,但不一定是最简单的,因此在解方程时我们首先考虑能否应用“直接开平方法”、“因式分解法”等简单方法,若不行,再考虑公式法(适当也可考虑配方法).⑵方程中有括号时,应先用整体思想考虑有没有简单方法,若看不出合适的方法时,则把它去括号并整理为一般形式再选取合理的方法.(五)课前预习预习下节课(21.2.4)的相关内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22.2降次---解一元二次方程(第五课时)
22.2.4 一元二次方程的根与系数的关系
◆随堂检测
1、已知一元二次方程01322
=--x x 的两根为1x 、2x ,则=+21x x ______.
2、关于x 的一元二次方程2
0x bx c ++=的两个实数根分别为1和2,则b =______,c =______. 3、一元二次方程2
10x ax -+=的两实数根相等,则a 的值为( ) A .0a = B .2a =或2a =- C .2a = D .2a =或0a =
4、已知方程2
310x x ++=的两个根为1x 、2x ,求12(1)(1)x x ++的值.
◆典例分析
已知关于x 的一元二次方程22
(21)0x m x m +-+=有两个实数根1x 和2x . (1)求实数m 的取值范围;
(2)当22
120x x -=时,求m 的值.
(提示:如果1x 、2x 是一元二次方程2
0(0)ax bx c a ++=≠的两根,那么有12b x x a
+=-
,12c x x a
=
) 分析:本题综合考查了一元二次方程根的判别式和根与系数的关系,特别是第(2)问中,所求m 的值一定须在一元二次方程有根的大前提下才有意义.这一点是同学们常常容易忽略出错的地方. 解:(1)∵一元二次方程2
2
(21)0x m x m +-+=有两个实数根,
∴△=2
2
(21)41410m m m --⨯⨯=-+≥,∴14
m ≤
. (2)当22
120x x -=时,即1212()()0x x x x +-=,∴120x x +=或120x x -=.
当120x x +=时,依据一元二次方程根与系数的关系可得12(21)x x m +=--, ∴(21)0m --=,∴12
m =
. 又∵由(1)一元二次方程2
2
(21)0x m x m +-+=有两个实数根时m 的取值范围是14
m ≤,∴1
2
m =
不成立,故m 无解; 当120x x -=时,12x x =,方程有两个相等的实数根, ∴△=2
2
(21)41410m m m --⨯⨯=-+=,∴14
m =
.
综上所述,当22
120x x -=时,14
m =
. ◆课下作业
●拓展提高
1、关于x 的方程2
0x px q ++=的两根同为负数,则( ) A .0p >且q >0 B .0p >且q <0 C .0p <且q >0 D .0p <且q <0
2、若关于x 的一元二次方程22430x kx k ++-=的两个实数根分别是12,x x ,且满足1212x x x x +=g .则k 的值为( ) A 、-1或
34 B 、-1 C 、3
4
D 、不存在 (注意:k 的值不仅须满足1212x x x x +=g ,更须在一元二次方程有根的大前提下才有意义,即k 的值必须使得△0≥才可以.)
3、已知1x 、2x 是方程2
630x x ++=的两实数根,求
21
12
x x x x +的值. 4、已知关于x 的方程230x x m -+=的一个根是另一个根的2倍,求m 的值. 5、已知1x ,2x 是关于x 的方程(2)()(2)()x x m p p m --=--的两个实数根. (1)求1x ,2x 的值;
(2)若1x ,2x 是某直角三角形的两直角边的长,问当实数m ,p 满足什么条件时,此直角三角形的面积最大?并求出其最大值.
●体验中考
1、(2009年,河北)已知一个直角三角形的两条直角边的长恰好是方程2
2870x x -+=的两个根,则这个直角三角形的斜边长是( ) A
B .3
C .6
D .9
(提示:如果直接解方程2
2870x x -+=,可以得到直角三角形的两条直角边的长,再运用勾股定理求出直角三角形的斜边长.但由于方程的两根是无理数,计算十分麻烦.因此应充分利用一元二次方程根与系数的关系进行简便求解.)
2、(2008年,黄石)已知,a b 是关于x 的一元二次方程210x nx +-=的两个实数根,则式子b a
a b
+的值是( )
A .2
2n + B .2
2n -+ C .2
2n - D .2
2n --
参考答案: ◆随堂检测 1、
23. 依据一元二次方程根与系数的关系可得1232
x x +=. 2、-3,2 依据一元二次方程根与系数的关系可得1212x x b
x x c
+=-⎧⎨=⎩,
∴(12)3,122b c =-+=-=⨯=.
3、B. △=22
()41140a a --⨯⨯=-=,∴2a =或2a =-,故选B. 4、解:由一元二次方程根与系数的关系可得:12123
1
x x x x +=-⎧⎨
=⎩,
∴121212(1)(1)1()1311x x x x x x ++=+++=-+=-. ◆课下作业 ●拓展提高
1、A. 由一元二次方程根与系数的关系可得:1212x x p x x q
+=-⎧⎨
=⎩,当方程2
0x px q ++=的两根
12,x x 同为负数时,12120
0x x x x +<⎧⎨>⎩,∴0p >且q >0,故选A.
2、C. 由一元二次方程根与系数的关系可得:122
1243
x x k
x x k +=-⎧⎨=-⎩, ∵1212x x x x +=g ,∴2
43k k -=-,解得11k =-,234
k =
. 当11k =-时,△=2222
41(43)151215(1)1230k k k -⨯⨯-=-+=-⨯-+=-<,此时方程无
实数根,故11k =-不合题意,舍去. 当234k =
时,△=222
2341(43)151215()1204k k k -⨯⨯-=-+=-⨯+>,故234
k = 符合题意.综上所述,23
4
k =
.故选C.
3、解:由一元二次方程根与系数的关系可得:1212
6
3x x x x +=-⎧⎨
=⎩,
∴222221121212121212()2(6)23
103
x x x x x x x x x x x x x x ++---⨯+====. 4、解:设方程2
30x x m -+=的两根为1x 、2x ,且不妨设122x x =.
则由一元二次方程根与系数的关系可得:1212
3
x x x x m +=⎧⎨=⎩,
代入122x x =,得22
2332x x m
=⎧⎨
=⎩,∴21x =,2m =.
5、解:(1)原方程变为:2
2
(2)2(2)2x m x m p m p m -++=-++ ∴2
2
(2)(2)0x p m x m p --+++=, ∴()()(2)()0x p x p m x p -+-+-=, 即()(2)0x p x p m -+--=, ∴1x p =,22x m p =+-. (2)∵直角三角形的面积为
)2(212121p m p x x -+==p m p )2(2
1
212++- =)]4)2(()22(
)2([212
22+-+++--m m p m p =8
)2()22(212
2+++--m m p ,
∴当2
2
+=
m p 且m >-2时,以x 1,x 2为两直角边长的直角三角形的面积最大,最大面积为8)2(2+m 或2
2
1p . ●体验中考
1、B. 设1x 和2x 是方程2
2870x x -+=的两个根,由一元二次方程根与系数的关系可得:
12124
72
x x x x +=⎧⎪⎨=⎪⎩ ∴2222
1212127()24292x x x x x x +=+-=-⨯=,
∴这个直角三角形的斜边长是3,故选B.
2、D 由一元二次方程根与系数的关系可得:1
a b n ab +=-⎧⎨
=-⎩,
∴222222()2()()2221
b a a b a b ab a b n n a b ab ab ab ++-+-+===-=-=---.故选D.。