直方图 CPK 打印4P

合集下载

2.Cpk和直方图

2.Cpk和直方图

1) 列出最大 值和最小值
2)以0.1为间 隔输入其余 数字
直方图
5.下拉“工 具”菜单, 选择“数据 分析”。
直方图
6.在 “数据分 析” 中,选
择“直方图” 后,点击“确 定”。
直方图
输入标志
7. 点击“输入 区域”右端的 输入标志。
直方图
ห้องสมุดไป่ตู้
8. 对话框变成 一条输入条, 拖动鼠标左键 选中“测量值 (V)”列中的 值,然后按输 入条右端的返 回标志。
返回标志
直方图
9. 同理,在 “接受区域” 中选中“直方 图数据区间” 列中的数据。
直方图
选中表格的空白处
10. 同理,在 “输出区域” 中选中表格的 空白处。
直方图
11. 选择“图 表输出”,再 点击“确定”。
直方图
黑色小方块
12. 点击生成 的图表,再用 鼠标左键拖动 图表左下角的 黑色小方块, 将图表放大、 明显化。
Demand Level
应用:测试产品某个性能指标后,做直方图表明能力情况。
作成方法:
直方图
1.收集数据。
最低需要量 30个(一般 30~200)。 并写下规格 值上限USL 和规格值下 限LSL。
直方图
2. 计算最大 值MAX:
2.1在“结果” 栏中输入 “=MAX(”。
直方图
2.2拖动鼠标 左键选中 “测量值 (V)”列中 的数值。
直方图
13. 完成。
直方图
怎样看直方图
标准型
锯齿型 偏峰型 陡壁型
平顶型
数据的平均值与最大值和最小值的 中间值相同或接近。
如分组过多,当测量方法有问题或读错 正确分组,调整最小的

2.Cpk和直方图PPT优秀课件

2.Cpk和直方图PPT优秀课件

返回标志
•13
直方图
9. 同理,在 “接受区域” 中选中“直方 图数据区间” 列中的数据。
•14
直方图
选中表格的空白处
10. 同理,在 “输出区域” 中选中表格的 空白处。
•15
直方图
11. 选择“图 表输出”,再 点击“确定”。
•16
直方图
黑色小方块
12. 点击生成 的图表,再用 鼠标左键拖动 图表左下角的 黑色小方块, 将图表放大、 明显化。
•6
直方图
2.4 算出结 果,完成。
•7
直方图
3.计算最小 值MIX:
和计算最大 值MAX相似, 输入“=MIN (”,然后选 中“测量值 (V)”列中 的数值,再 输入“)”, 然后按回车 键。算出结 果,完成。
•8
直方图
4.设定直方 图的数据区 间。 设定方法: 1) 列出最大 值和最小值 2)以0.1为间 隔输入其余 数字
•9
直方图
5.下拉“工 具”菜单, 选择“数据 分析”。
•10
直方图
6.在 “数据分 析” 中,选
择“直方图” 后,点击“确 定”。
•11
直方图
输入标志
7. 点击“输入 区域”右端的 输入标志。
•12
直方图
8. 对话框变成 一条输入条, 拖动鼠标左键 选中“测量值 (V)”列中的 值,然后按输 入条右端的返 回标志。
•17
直方图
13. 完成。
•18
直方图
怎样看直方图
标准型
锯齿型 偏峰型 陡壁型 平顶型
数据的平均值与最大值和最小值的 中间值相同或接近。
如分组过多,当测量方法有问题或读错 正确分组,调整最小的

直方图(模板Cpk)

直方图(模板Cpk)

品 名规 格规格上值12.25规格标准12.0规格下值11.75公 差0.5样本总数5012.0211.9812.0112.0312.0412.0812.0312.0512.1012.0912.0412.0312.0412.0112.0712.0912.1011.9911.9812.0112.0412.0311.9812.0012.0512.0711.9912.0412.0312.0412.0012.0412.0512.0711.9912.0612.0112.0712.0812.1012.0412.0811.9912.0012.0612.0411.9711.9912.0412.01最大值12.100分布中心12.035平均数12.035最小值11.97极差0.130Ca 0.14样本方差0.0357UCL 12.14SL 12.04LSL 11.93Ppk2.00747Cp2.334267总不良率0.270%PPM2700直通率99.730%评价建议6组组距7组组距8组组距9组组距10组组距实际分组实际组距0.0220.0190.0160.0140.01350.0500组中值11.80011.85011.90011.95012.00012.05012.10012.15012.200频数00011724800正态线 1.7E-060.001640.22103 4.1907611.1749 4.190760.221030.00164 1.7E-06偏态线4.4E-09 1.6E-050.008770.65652 6.9107710.2307 2.130040.062370.0002611.77511.82511.87511.92511.97512.02512.07512.12512.17512.225000011842505050输入框统计值参考值图形值信息框审核/日期:作成/日期:东莞市日新传导科技股份有限公司HueyUSB外露尺寸(421784)1.本项统计只适用于单次抽样后的CPK 计算与分析; 2.正态曲线图是以"标准规格"与"样本标准方差"为基础,主要用于与直方图作相应对照分析; 根据各组组距,决定组距之值(末位数建议为0或5);数据表中红底色数值为超出规格标准1.是否含有高成本代价的因素;2.公差范围是否可以进一步缩小.CPK 统计分析Cpk≥1.67工序能力过高.1172485101520253011.80011.85011.90011.95012.00012.05012.10012.15012.200频数正态线偏态线第1页。

制程能力及直方图解析

制程能力及直方图解析

1.Deming引SPC 入日本 2.Z 9021/9022/9023 1950 1970
1980
年代
5
二、基本統計概念
1.資料的性質 (1)資料的差異 因爲沒有兩個産品(或製成品)是完全一樣的, 就算是同一條生產線上用同樣的原料,同樣的方 法做出來的,還是會有變動因素所構成的差異。 因此,對於製造者而言,每一零件之各品質規格 特性,所能做的是: a.瞭解差異一定存在; b.找出差異的可能原因(原料、儀器、設備、隨 機、人爲,亦或是「不適當」之組織機能營運 下所潛藏的因素),所以,必須將隨機誤差保 持在一可容忍的範圍裏,統計品管便由此誕生。
2016/5/15 7
A.機遇原因(Chance causes) 又稱爲:不可避免之原因、非人爲原因、共同原 因、偶然原因、一般原因等等。 a.例如某人量身高,用同一量測器,由同一人量 測該人之身高數,在短時間內,所得量測值有 差異存在,造成此種差異之原因,即屬於機遇 原因。 b.在生産工作中,雖然訂有操作標準,但在操作 條件容許之範圍內必有變化。
2016/5/15 30
圖五
圖六
σ


平均值=μ 標準差=σ
抽取 一 個
X
μ- kσ μ μ+ kσ
2016/5/15
31
*以圖六之斜線部份表示,其公式爲: (x-μ)2 μ+kσ 1 2σ2 μ- kσ 2π‧σ‧e dx 式中e=2.718…………………… 當一分配經證實爲一常態分配時,則算出此常 態分配之標準差(σ)及平均值(μ)後,其特 性可用下列表一及圖七說明如下:
2016/5/15 24
(2)統計量
測定樣本所得的測定值,我們謂之統計量, 常使用的統計量一般有: ‧樣本平均﹕樣本的平均值,以符號表 示。 ‧樣本變異﹕樣本的變異,以符號S2表 示。 ‧樣本標準差﹕樣本的標準差,以符號 S表示。 ‧樣本全距: 樣本的全距,以符號R表示。

03-直方图及Cpk

03-直方图及Cpk

3
比亚迪汽车有限公司
直方图与一般条形图的区别
直方图的X轴是连续的,各分组是等间距的, 直方图的X轴是连续的,各分组是等间距的, 一般来讲, 直方图的条柱是垂直的 , 一般来讲 , 直方图的条柱是垂直的, 一般 条形图的条柱可以垂直, 也可以是水平的 , 条形图的条柱可以垂直 , 也可以是水平的, 且X轴非连续。 轴非连续。 直方图的条柱宽度是有实际意义的, 直方图的条柱宽度是有实际意义的 , 代表 质量特征值的组距, 质量特征值的组距 , 而条柱的高度表示处 于该组距内的频数。 于该组距内的频数 。 一般条形图的条柱宽 度没有实际意义。 度没有实际意义。
22
比亚迪汽车有限公司
绘制直方图练习
编写:赵俭平 2003年5月29日
统计技术培训教材
23
比亚迪汽车有限公司
直方图能够告诉我们什么?
通过绘制和分析直方图我们可以: 1、观察数据分布的中心和偏离 2、观察工序中是否存在系统性变异 3、将样本分布结果与期望分布结果进行比较 4、确认影响工序的因素 5、检查数据分布的正态性
分组数k 分组数
5~7 6~10 7~12 10~20
3、计算极差:R=Xmax-Xmin 、计算极差:R=X
编写:赵俭平 2003年5月29日
统计技术培训教材
10
比亚迪汽车有限公司
建立频数分布表的步骤( 建立频数分布表的步骤(续)
4、确定组距CI 、确定组距CI CI≈R/K 5、确定组限: 第1组的下限
编写:赵俭平 2003年5月29日
统计技术培训教材
15
比亚迪汽车有限公司
建立频数分布表举例( 建立频数分布表举例(续)
6、计算组中值。
LB1 + UB1 3.295 + 3.345 MP = = = 3.32 1 2 2 LB2 + UB2 3.345 + 3.395 MP2 = = = 3.37 2 2

柏拉图-直方图-计量CPK计算

柏拉图-直方图-计量CPK计算

各组界之内数据之个数
<=75.5 14 原始值 样本总数 规格上限 规格中值 规格下限 分辨力 极差 分组数 组距 50.00 88.00 79.00 70.00 1 96 25 70.5 5 第1下限 第1上限 5 73 75.5 控制上限 控制中线 控制下限 平均数 标准方差 <=80.5 30 <=85.5 37 统计值 101.3 80.5 59.8 80.52 6.91 <=90.5 44 <=95.5 49 <=100.5 50
0.007419473
0.01 标准方差 6.912
0.002357152 0 50.25 0
73.00
0.001319256
78.00 83.00 88.00 93.00 98.00 50.25
0 CPK值 0.361
3.94652E-06
1.00928E-05
计量CPK
原始数据
77 78 80 76 90 77 86 82 75 76 78 95 85 95 87 75 76 76 78 78 89 83 78 81 72 86 75 76 73 89 92 86 85 75 74 92 75 85 76 73 76 74 71 75 92 74 72 85 96 76
CPK
=
0.36
80.5 85.5 90.5 95.5 100.5 第2上限 第3上限 第4上限 第5上限 第6上限 78 83 88 93 98 50.25
68
外观
结构
包装
性能
焊接
其它
控制上限
101.255 80.520
直方、偏态与正态图
组中值 频数
18 16

工程能力指数Cp、Cpk中文

工程能力指数(Cp、CpK)一、制造部门的使命与职责作为一个制造部门,我们必须制造出具有稳定的品质的产品。

为此,我们须具备能充分理解“Cp、CpK”并且能将其活用的能力。

所以,我们的职责是:①确保工程、产品的“Cp、CpK”(减少偏差)②不作出不良(消除不良损失金额)③构造出能减少成本的工程④严守入库计划将这4点活用之后,必须在已定的“管理状态”下进行工作。

这些就是我们的使命。

就先前的工程能力指数“Cp、CpK”与“社内允许不良发生率”进行少许说明。

在我们公司内既有使用单侧规格的“Cp”,也使用有双侧规格的“CpK”(之后再作详细)。

生产工程中的允许不良发生率是,根据各机种成本资料设定样本工程。

各要求的规格如下所示:●Cp=1.33以上●CpK=1.33以上●允许不良发生率(社内):重大不良0.3%以下,通常的在1%以下(根据成本资料定)。

但铭板等也有允许不良发生率在10%的情况。

这些是产品在预算阶段的基准值(目标值),在初期流动时的工程设计阶段(制造工程管理表及作业手顺书的作成),取必要的数据,并据此数据进行把握。

二、工程管理中直方图的活用(参照附录6)工程管理,一般使用一些作为管理道具的如P管理图等的管理图表。

但是,如在直方图上下功夫的话也可将此运用在工程管理中。

直方图的优点在于,如样品数据有100个就可根据直方图看出其分布的状态,也可活用每个真实的数据。

不管是管理图也好还是QC七手法中的单独一个也好,虽频繁使用但如果不具备比较高水平的知识的话,是很难有效地掌握与使用的。

但是,直方图从直观上让人感觉易理解、只要有一张稿纸,任何人无论在何处均可直接的利用。

所以,比起其它更加活用。

三、管理状态(参照附录4)在前面第一部分中已说明过“管理状态”。

管理状态是指:“工程被维持在不得不有偏差的范围内(规格范围内)的状态”。

因此,即使工程属于管理状态下,依然还是会有不良发生。

请把“不得不有的偏差范围”与“规格”区别来考虑。

CPK模板(直方图)


0.029988 0.0300153 2.22 2.51 1.93 1.93 2.36 2.67 2.05 2.05 0.56 -0.07 1.19 -0.07 0.53 -0.07 1.14 -0.07
0.072121 0.1150155 1.0562475 0.46 0.13 0.79 0.13 0.50 0.14 0.85 0.14 * * 0.27 0.27 * * 0.30 0.30 * * 0.57 * 0.57 * 0.52 * 0.52 43406.45 * 43406.45
12
产品名称 aa 产品描述 试产1 5 尺寸 1 8 30 25 20 15 10 5 0 3.76 3.84 3.93 频率 上、下限界线


aa
人员设备 2#机 张三 图表 整体 组内
编号1 的直方图
4.02
4.11
4.20
16 14 12 10 8 6 4 2 0 9.85 9.89
编号2 的直方图
制程能力报表
产品编号 生产工序 规格编号 规格描述 子组大小 规格值 上公差 下公差 上限值 下限值 序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 样本数 平均值 最大值 最小值 极差 标准差(整体) 标准差(组内) Pp (整体) PPL (整体) PPU (整体) PpK (整体) Cp (组内) CPL (组内) CPU (组内) Cpk (组内) 预期整体PPM<下限 预期整体PPM>上限 合计PPM 123 aa 1 长度 1 4 0.2 -0.2 4.2 3.8 测量值 4.05043 4.04411 4.06679 4.0192 4.04506 4.04162 4.05493 4.05408 4.04105 4.03584 4.00465 4.02052 3.97883 4.05915 4.00664 3.97397 4.05678 4.02391 4.00482 4.03765 4.03066 4.02009 4.01724 4.04028 4.00943 4.0244 3.96437 3.9936 4.07019 4.04006 4.04752 4.0716 4.02016 3.98222 3.98232 4.04025 4.03551 3.96778 4.00124 4.04367 4.00203 4.0276 4.04905 4.03546 4.02892 3.98852 4.00259 4.11054 4.0462 3.99268 50 4.0261242 4.11054 3.96437 0.14617 2 孔径 1 10 0.05 -0.05 10.05 9.95 测量值 9.944 9.9211 9.9248 10.0081 9.8685 9.8948 9.9733 9.9326 9.9526 9.9871 9.9077 9.9756 9.937 9.9501 9.9561 9.9617 9.9167 9.9451 9.9782 9.9544 9.9299 10.0117 9.8994 9.9258 9.9283 9.9229 9.9564 9.9497 9.947 9.9386 9.9323 9.9687 9.9752 9.9288 9.9506 9.9512 9.9614 9.8993 9.9313 9.9092 9.9798 9.9102 9.939 9.945 9.9682 9.9835 9.891 9.9099 9.9681 9.9628 50 10.0117 9.8685 0.1432 3 厚度 1 100 0.2 0 100.2 100 测量值 100.058 99.962 99.978 99.993 99.978 100.12 99.96 99.989 100.037 100.058 99.985 100.023 100.14 100.011 100.071 100.04 100.044 100.113 100.046 100.034 99.976 99.997 100.046 99.984 100.123 100.141 100.078 99.901 99.977 100.001 100.083 99.88 99.99 100.244 100.027 99.975 99.907 100.014 99.996 100.005 100 99.996 100.018 99.948 100.123 100.113 100.036 100.177 100.101 99.932 50 100.244 99.88 0.364 0.3 * 测量值 0.3 0.2 0.1 0 0.2 0.3 0.1 0.2 0.2 0 0.2 0.2 0.2 0.1 0.3 0.3 0.1 0.1 0.2 0.4 0.4 0.3 0.2 0 0.4 0.1 0.3 0.4 0.2 0.2 0.2 0.2 0.1 0.3 0.3 0 0 0.2 0.4 0.3 0.3 0.3 0.2 0 0.2 0.3 0.1 0.2 0.2 0.3 50 0.206 0.4 0 0.4 4 尺寸 1 0.3 0 0 * 8 测量值 8.9664 12.0354 8.5259 9.0799 10.3134 11.2894 8.8717 10.8088 9.5732 7.9177 8.9744 10.898 9.1509 9.6822 8.9207 8.6744 10.3684 9.8528 10.7878 8.2292 12.4574 8.2399 10.3513 11.1751 9.8249 9.4695 11.2272 9.7911 8.8306 8.6902 8.6776 10.1656 9.7234 9.4065 9.8901 10.1753 9.8861 9.8458 12.2528 8.5514 10.017 11.1971 10.7053 9.4089 10.7356 9.7589 9.3851 9.0092 8.9021 9.7672 50 9.808776 12.4574 7.9177 4.5397 14

制程能力CPK及直方图解析教材


其样本平均当然为常态分配N
σ2
(μ,
n),若群体之形状虽为长方形或三角形之分配, 而n≧30时,其样本平均之分配亦可近似成为常态
分配.
2020/9/2
22
• 常态分配 σ2

N(μ, n )。兹用图三来作一说明﹕
σ
μ 三角分配之群体
长方形分配之群体
σ(或 )σ n
μ
μ
样本平均之分配
常态分配N(μ, )
2020/9/2
图三
23
3.基本统计量
(1)群体参数 表示群体特性的定数,谓之群体参数
(PARAMETER),现在一般所使用 的群体。
群体参数有: ‧群体平均 ﹕群体的平均值,以符号μ表
示。 ‧群体变异 ﹕群体的变异,以符号σ2表示。
‧群体标准偏差﹕群体的标准偏差,以符号σ
表示。2020/9/22444. SPC演进史
SPC之演进史
SQC极限 其他技术开发
SQC⊕品质 企划与设计
日本执行SQC 且极有成效
质量障碍极高
SQC开发
质量障碍极低 1.SHEWIIAR T 2.ZI-1/-2/-3
质量障碍高
质量障碍低
1.Deming引SPC 入日本 2.Z 9021/9022/9023
1.QCC发展 2.ZD计划 3.TQC萌芽 4.QFD萌芽 5.实验设计
变异形成之原因,可分为机遇原因及非机遇原 因两类:
2020/9/2
7
A.机遇原因(Chance causes)
又称为:不可避免之原因、非人为原因、共同原 因、偶然原因、一般原因等等。 a.例如某人量身高,用同一量测器,由同一人量
测该人之身高数,在短时间内,所得量测值有 差异存在,造成此种差异之原因,即属于机遇 原因。 b.在生产工作中,虽然订有操作标准,但在操作 条件容许之范围内必有变化。

QC工具应运之:直方图的做成及Cp,Cpk的计算与判断

0011 0010 1010 1101 0001 0100 1011
QC工具应运之:直方图的做成 及Cp,Cpk的计算与判断
QA:黄佩桓 2010-11-30
1
引言
0011 0010 1010 1101 0001 0100 1011
• 在质量管理中,如何预测并监控产品质 量状况?如何对质量波动进行分析?直方 图就是一目了然地把这些问题图表化处 理的工具。它通过对收集到的貌似无序 的数据进行处理,来反映产品质量的分 布情况,判断和预测产品质量及不合格 率。 • 关键词:直方图,标准偏差,Cp ,Cpk,
······ ······
1
• Step4:直方图制作
0011 0010 1010 1101 0001 0100 1011
在”数据分析”窗口中选中 “直方图”并点击“确定”
在step2:加载安装了“分析工 具库”后,再次点击“工具” 菜单,会出现“数据分析” 选项,点击该选项
1
在”输入区域”选中需要的数据列 (如“高度比”),在“接收区域 ”选中step3的设定列,选中“输出 区域”并任意选中一空白单元格, 再选中“图表输出”选项,点击“ 确定”后直方图输出入下:
1
• Step3:计算Cp,Cpk 函数公式: 0011 0010 (规格上限-规格下限)/(6*标准偏差) Cp= 1010 1101 0001 0100 1011
Cpk=MIN((规格上限-平均值)/(3*标准偏差),(平均值-规格下 限)/(3*标准偏差)) 即计算的两个值中取较小值。
1
Cp\Cpk EXCEL计算公式编辑:选中需要数据显示的单元格,在编辑栏或直接在单元格中输入 “=”开始编辑,按上述公式编辑完成后点击“Enter”键返回数据。如上示例。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直方图(Histogram)CPK
CPK:Complex Process Capability Index的缩写:制程能力指数,实质作用是反映制程合格率的高低同Cpk息息相关的两个参数:Ca , Cp
CPK = Min(CPKu,CPKl)
USL (Upper specification limit): 规格上限。

LSL (Low specification limit): 规格下限。

LCL:(Lower Control Limit)控制下限
UCL:(Upper Control Limit)控制上限
ˉx = (x1+x2+...+xn) / n : 平均值。

T = USL - LSL : 规格公差。

U = (USL + LSL) / 2:规格中心。

CPKu = | USL-ˉx | / 3σ
CPKl = | ˉx -L SL | / 3σ
Cpk, Ca, Cp三者的关系:Cpk = Cp * ( 1 - |Ca|),Cpk是Ca及Cp两者的中和反应,Ca反应的是位置关系(集中趋势),Cp反应的是散布关系(离散趋势)
USL (Upper specification limit): 规格上限。

LSL (Low specification limit): 规格下限。

1. Cpk的中文定义为:制程能力指数,是某个工程或制程水准的量化反应,也是工程评估的一类指标。

2. 同Cpk息息相关的两个参数:Ca , Cp.
Ca: 制程准确度。

在衡量「实际平均值」与「规格中心值」之一致性。

对於单边规格,因不存在规格中心,因此不存在Ca;对於双边规格,Ca=(ˉx-U)/(T/2)。

Cp: 制程精密度。

在衡量「规格公差宽度」与「制程变异宽度」之比例。

对於单边规格,
只有上限和中心值,Cpu = | USL-ˉx | / 3σ。

只有下限和中心值,Cpl = | ˉx -LSL | / 3σ
对於双边规格:Cp=(USL-LSL) / 6σ
3. Cpk, Ca, Cp三者的关系:Cpk = Cp * ( 1 - |Ca|),Cpk是Ca及Cp两者的中和反应,Ca反应的是位置关系(集中趋势),Cp反应的是散布关系(离散趋势)
4. 当选择制程站别Cpk来作管控时,应以成本做考量首要因素,还有是其品质特性对后制程的影响度。

5. 计算取样数据至少应有20~25组数据,方具有一定代表性。

等级Cpk值处理原则
A+≥1.67无缺点考虑降低成本
A1.33≤Cpk<1.67状态良好维持现状
B1.0≤Cpk<1.33改进为A级
C0.67≤Cpk<1.0制程不良较多,必须提升其能力
DCpk<0.67制程能力较差,考虑整改设计制程
6. 计算Cpk除收集取样数据外,还应知晓该品质特性的规格上下限(USL,LSL),才可顺利计算其值。

7. 首先可用Excel的“STDEVP”函数(注:还是应该是“STDEV”,可参考minitab计算出的数据。

)自动计算所取样数据的标准差(σ),再计算出规格公差(T),及规格中心值(U). 规格公差T=规格上限-规格下限;规格中心值U=(规格上限+规格下限)/2;
8. 依据公式:Ca=(ˉx-U)/(T/2) ,计算出制程准确度:Ca值(ˉx为所有取样数据的平均值)
人——
设备——
材料——
工艺——
测具——
环境——生产环境及劳动条件的适应性。

1Cp>1.67
2 1.67≥Cp>1.33
3 1.33≥Cp>1
4 1≥Cp>0.67 三级加工
5Cp≤0.67 四级加工
措施:
(1)要通过提高设备精度、改进工艺方法、提高操作技术水平、改善原材料质量等措施提高工序能力。

(2)要加强检验,必要时实行全检。

相关文档
最新文档