用Matlab解代数方程

合集下载

matlab 符号函数 求解方程

matlab 符号函数 求解方程

标题:使用MATLAB符号函数求解方程第一部分:介绍MATLAB符号函数1. MATLAB符号函数的基本概念MATLAB符号函数是MATLAB中的一个重要功能模块,它可以用于求解复杂的数学问题,包括方程、微分方程、积分等。

使用符号函数,能够将数学问题表达为符号形式,从而进行精确的运算和分析。

2. MATLAB符号函数的基本语法在MATLAB中,可以使用syms命令定义符号变量,然后使用符号变量进行符号运算。

例如:syms x yf = x^2 + y^2;3. MATLAB符号函数的优势相比于数值计算,符号计算能够得到更为精确和准确的结果,适用于数学分析、推导、证明等领域。

第二部分:使用MATLAB符号函数求解方程1. 方程求解的基本概念对于给定的方程,可以使用MATLAB符号函数来进行求解。

求解方程的目的是找到满足该方程的未知数的取值,或者找到使得方程等号成立的值。

2. 求解一元方程对于一元方程,可以使用solve函数来求解。

例如:syms xeqn = x^2 - 2*x - 8 == 0;sol = solve(eqn, x);3. 求解多元方程组对于多元方程组,可以使用solve函数同时求解多个未知数。

例如:syms x yeq1 = x + y == 5;eq2 = x - y == 1;[solx, soly] = solve(eq1, eq2, x, y);第三部分:MATLAB符号函数求解方程的实例1. 实例一:一元二次方程考虑方程 x^2 + 2x - 8 = 0,使用MATLAB符号函数求解该方程,可以得到x1 = 2,x2 = -4。

2. 实例二:二元一次方程组考虑方程组x + y = 5x - y = 1使用MATLAB符号函数求解该方程组,可以得到x = 3,y = 2。

第四部分:总结与展望1. 符号函数的应用MATLAB符号函数在数学建模、科学计算、工程技术等领域都有广泛的应用,在方程求解、微分积分、代数运算等方面发挥着重要作用。

专题4 使用MATLAB求解线性方程组的不同方法

专题4 使用MATLAB求解线性方程组的不同方法

Z = null(A) 求出 Ax=0 的基础解系后,将基础解系的向量正交单位化,存储在 Z 中. MATLAB 源代码如下: A=[1 2 2 1;2 1 -2 -2;1 -1 -4 -3]
A= 12 2 1 2 1 -2 -2 1 -1 -4 -3
Rank(A) Ans= 2 A=sym(A) A= [1,2,2,1] [2,1,-2,-2] [1,-1,-4,-3] null(A) ans= [2, 5/3] [-2,-4/3] [1, 0] [0, 1]
运行结果为: rank_A =
2 rank_B =
2 S_H =
-2
1
1
0
0
2
0
1
S_P =
0
1.7500
0
-0.5000
则该线性方程组有无穷多解为:
2 1 0
x

k1
1 0


k2

0 2



7 0
/
4


,
k1
,Leabharlann k2R 0 1 1/ 2
nulla?r?求系数矩阵为a的齐次线性方程组ax0的基础解系结果为有理数bnulla求出ax0的基础解系后将基础解系的向量正交单位化存储在zmatlab源代码如下
专题 4 使用 MATLAB 求解线性方程组的方法
x1 2 x2 2x3 x4 0
【例
1】求齐次方程组

2 x1
end end
x1 2x2 2x3 3x4 2 【例 1.3】使用 Matlab 求解方程组 2x1 4x2 3x3 4x4 5

A03 线性代数部分之MATLAB解方程

A03 线性代数部分之MATLAB解方程
成都信息工程学院数学学院 郑丰华
解方程组 矩阵的特征值与特征向量
郑丰华
成都信息工程学院数学学院 郑丰华
求解代数方程
一般代数方程包括线性(Linear)、非 一般代数方程包括线性(Linear)、非 线性(Nonlinear)和超越方程 线性(Nonlinear)和超越方程 (Transcedental equation)等。求解 equation)等。求解 的指令是solve。 的指令是solve。
成都信息工程学院数学学院 郑丰华
求矩阵的秩
rank rref 讨论线性方程组的解
– 求特解:linsolve(),pinv(A)*b 求特解:linsolve(),pinv(A)*b – 求通解:null() 求通解:null()
成都信息工程学院数学学院 郑丰华
特征值与特征向量
表3-3 eig命令 命令 d=eig(A) [V,D]=eig(A) 功能 求特征值及特征向量
成都信息工程学院数学学院 郑丰华
表3-1 solve命令 命令 S=solve('eq1','eq2',… S=solve('eq1','eq2',…,'eqn', 'v1','v2',… 'v1','v2',…,'vn') 功能 求方程或方程组关于 指定变量的解
说明: 1.'eq1','eq2',…,'eqn'或是字符串表达的方程,或是字 符串表达式;'v1','v2',…,'vn'是字符串表达的求解 变量名; 2.如果'eq1','eq2',…,'eqn'是不含有“等号”的表达式 ,则指令是对eq1=0,eq2=0,…,eqn=0的求解; 3.求解结果S是一个构架数组。如果要显示求解结果,必 须采用S.v1,S.v2,…,S.vn的援引方式; 4.指令solve在缺省规则下,还有一些形式更为简单的调 用方法,但推荐大家使用字符串格式; 5.在得不到“封闭型解析解”时,solve会给出数值解。

如何使用Matlab解决数学问题

如何使用Matlab解决数学问题

如何使用Matlab解决数学问题使用Matlab解决数学问题引言:数学作为一门基础学科,广泛应用于各个学科领域。

而Matlab作为一款数学软件,拥有强大的计算能力和丰富的函数库,成为了数学问题解决的得力工具。

本文将介绍如何使用Matlab解决数学问题,并通过实例来展示其强大的功能和灵活性。

一、Matlab的基本使用方法1. 安装和启动Matlab首先,我们需要从官方网站下载并安装Matlab软件。

安装完成后,打开软件即可启动Matlab的工作环境。

2. 变量和运算符在Matlab中,变量可以用来存储数据。

我们可以通过赋值运算符“=”将数值赋给一个变量。

例如,可以使用“a=5”将数值5赋给变量a。

Matlab支持常见的运算符,如加、减、乘、除等,可以通过在命令行输入相应的表达式进行计算。

3. Matirx和向量的操作Matlab中,Matrix和向量(Vector)是常用的数据结构。

我们可以使用方括号将数值组成的矩阵或向量输入Matlab,比如“A=[1 2; 3 4]”可以创建一个2x2的矩阵。

4. 函数和脚本Matlab提供了丰富的内置函数和函数库,可以通过函数来解决各种数学问题。

同时,我们还可以自己编写函数和脚本。

函数用于封装一段可复用的代码,而脚本则是按照特定的顺序执行一系列的命令。

二、解决线性代数问题1. 线性方程组求解Matlab提供了“solve”函数用于求解线性方程组。

例如,我们可以使用“solve([2*x + y = 1, x + 3*y = 1], [x, y])”来求解方程组2x + y = 1和x + 3y = 1的解。

2. 矩阵运算Matlab提供了丰富的矩阵运算函数,如矩阵的加法、乘法、转置等。

通过这些函数,我们可以快速进行矩阵运算,解决线性代数问题。

三、解决数值计算问题1. 数值积分对于某些无法解析求解的积分问题,Matlab可以通过数值积分方法求得近似解。

Matlab提供了“integral”函数用于数值积分,我们只需要给出被积函数和积分区间即可。

matlab-解方程

matlab-解方程

1、解方程组问1:如何用matlab解方程组?这个问题其实在matlab中解方程组还是很方便的,例如,对于代数方程组Ax=b(A为系数矩阵,非奇异)的求解,MATLAB中有两种方法:(1)、x=inv(A)*b —采用求逆运算解方程组;(2)、x=A\ —采用左除运算解方程组。

例:x1+2x2=82x1+3x2=13>>A=[1,2;2,3];b=[8;13];>>x=inv(A)*bx =2.003.00>>x=A\bx =2.003.00;即二元一次方程组的解x1和x2分别是2和3。

问2:如何用matlab解多次的方程组?有符号解法,方法是:先解出符号解,然后用vpa(F,n)求出n位有效数字的数值解。

具体步骤如下:第一步:定义变量syms x y z ...;第二步:求解[x,y,z,...]=solve('eqn1','eqn2',...,'eqnN','var1','var2',...'varN');第三步:求出n位有效数字的数值解x=vpa(x,n);y=vpa(y,n);z=vpa(z,n);...。

如:解二(多)元二(高)次方程组:x^2+3*y+1=0y^2+4*x+1=0解法如下:>>syms x y;>>[x,y]=solve('x^2+3*y+1=0','y^2+4*x+1=0');>>x=vpa(x,4);>>y=vpa(y,4);结果是:x =1.635+3.029*i1.635-3.029*i-.283-2.987y =1.834-3.301*i1.834+3.301*i-.3600-3.307。

二元二次方程组,共4个实数根;问3,如何用matlab解高次方程组(非符号方程组)?举个例子好吗?解答如下:基本方法是:solve(s1,s2,…,sn,v1,v2,…,vn),即求表达式s1,s2,…,sn组成的方程组,求解变量分别v1,v2,…,vn。

用MATLAB做线性代数实验

用MATLAB做线性代数实验

2
0
, 2

5 3
, 3

1

3
, 4


1
4
, 5

1

2


3

6

0Hale Waihona Puke 73【程序如下】:
% (1)
A=[1 2 1 3;4 -1 5 6;1 -3 -4 7;1 2 1 1]' r=rank(A) [R,IP]=rref(A) % (2) A=[1 2 0 2 1;-2 -5 1 -1 1;0 -3 3 4 2;P3 6 0 -7 3] r=rank(A) [R,IP]=rref(A)
例如:
已知
A

1 3
2 4
,
B

1 1
2 0
,解矩阵方程
(1)
AX
B , (2) XA B 。
MATLAB 程序如下:
A=[1 2;3 4];
B=[1 2;-1 1];
X1=inv(A)*B % AX=B or
X1=A\B
X2=B*inv(A) % XA=B
X2=A/B
将 p(x) 分解为最简分式之和 q( x)
[p,q]=residue(a,b,r) 将简单分式之和合并为有理分式
例如,将有理分式
f
(x)
x2 x3 2x2 3x2
分解为最简分式之和的程序如下:
p=[1 2];
q=[1 2 3 2];
[a,b,r]=residue(p,q)
输出:a =
-0.2500 - 0.4725i
p=[1 -6 11 -6];

matlab求解一元二次方程

matlab求解一元二次方程

matlab求解一元二次方程一元二次方程的求解是学习数学的基础,它涉及到平面几何、代数和代数算法等多个学科。

Matlab是一款数学建模、设计分析和算法编程等工具,可以用来求解一元二次方程。

本文就介绍一下如何使用Matlab求解一元二次方程。

一、什么是一元二次方程?一元二次方程是指一个二次次方的系数和一个一次方的系数(或常数)相乘并且加和相加等于零的一元方程式。

它由一下形式表示:ax+bx+c=0,其中a,b,c为系数。

例如:2x+3x-6=0二、Matlab求解一元二次方程的方法Matlab可以用来求解一元二次方程,可以使用两种方法:1. 使用解析法解析法指的是采用基本的数学算法,直接推导出一元二次方程的解。

要使用Matlab求解一元二次方程,可以使用求根公式(如求一元二次方程的解的公式:x1=(-b+√(b-4ac))/2a).例如,用Matlab求解2x+3x-6=0,首先,计算其系数a=2,b=3,c=-6,然后根据求根公式求解:x1=(-3+√(3-4*2*(-6))/2*2x1=4.5x2=(-3-√(3-4*2*(-6))/2*2x2=-2.52. 使用数值法数值法指的是可以使用数值计算(如牛顿法、二分法等)来求解一元二次方程。

Matlab中有内置的函数能够使用数值法求解一元二次方程。

如函数fzero和fsolve就可以用来求解一元二次方程。

例如,要使用fzero求解2x+3x-6=0,可以使用以下Matlab 代码:>>fun=@(x)2*x^2+3*x-6;>>fzero(fun,0)ans = 4.5000三、总结Matlab可以用来求解一元二次方程,可以采用解析法和数值法两种方法。

解析法是直接使用基本的数学算法求解,而使用数值法的话,就要使用Matlab里的内置函数,如fzero和fsolve。

由此可见,Matlab可以说是求解一元二次方程的一把好手,能够有效地求解复杂的一元二次方程。

第3章 MATLAB的符号运算_微分方程求解_符号代数方程

第3章 MATLAB的符号运算_微分方程求解_符号代数方程
例:f=sym('a*x^2+b*2+c')
或syms a b c x
f='a*x^2+b*2+c'
9/46
数组、矩阵与符号矩阵(P51)
m1=sym('[ab bc cd ; de ef fg ; h l j]') m2=sym('[1 12;23 34]') 例:
– >>A=hilb(3) A= 1.0000 0.5000 0.3333 0.5000 0.3333 0.2500 0.3333 0.2500 0.2000
dx dx2
例6:已知函数
f
= x2 sin 2 y 求
df
df ,
d2 f ,
dx dy dxdy
例7:已知函数
f
=
xe y y2

ff ,
xy
见example3_12
23/46
df
例8:已知导函数
= ax 求原函数
dx
b
例9:已知导函数 f (x) = x2 求 f (x)dx a
例10:计算重积分I = 2 d a r2 sin dr ?
– 例:>>rho=1+sqrt(5)/2; >>sym(rho,’d’); ans= 2.1180339887498949025257388711907
11/46
符号对象转换为数值对象的函数double(), vpa() 1、double()
这种格式的功能是将符号常量转换为双精度数值 2、vpa()
创建符号对象与函数命令(P50)
1、函数命令sym()格式 格式1 s=sym(a)(a代表一个数字值、数值矩阵、数值表达式 格式2 s=sym(‘a’)(a代表一个字符串)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一般的代数方程
函数solve用于求解一般代数方程的根,假定S为符号表达式,命令solve (S)求解表达式等于0的根,也可以再输入一个参数指定未知数。

例:
syms a b c x
S=a*x^2+b*x+c;
solve(S)
ans=
[ 1/2/a*(-b+(b^2-4*a*c)^(1/2))]
[ 1/2/a*(-b-(b^2-4*a*c)^(1/2))]
b=solve(S,b)
b =
-(a*x^2+c)/x
线性方程组
线性方程组的求解问题可以表述为:给定两个矩阵A和B,求解满足方程AX=B或XA=B的矩阵X。

方程AX=B的解用X=A\B或X=inv (A)*B表示;方程XA=B 的解用X=B/A或X=B*inv (A)表示。

不过斜杠和反斜杠运算符计算更准确,占用内存更小,算得更快。

线性微分方程
函数dsolve用于线性常微分方程(组)的符号求解。

在方程中用大写字母D表示一次微分,D2,D3分别表示二阶、三阶微分,符号D2y相当于y关于t的二阶导数。

函数dsolve的输出方式
格式说明
y=dsolve(‘Dyt=y0*y’) 一个方程,一个输出参数[u,v]=dsolve(‘Du=v’,’Dv=u’) 两个方程,两个输出
参数
S=dsolve(‘Df=g’,’Dg=h’,’Dh=-2*f ‘)方程组的解以S.f
S.g S.h结构数组的形式输出
例1 求 2
1u dt
du += 的通解.
解 输入命令:dsolve('Du=1+u^2','t')

果:u = tg(t-c)
例2 求微分方程的特解.
ïîïíì===++15
)0(',0)0(029422
y y y dx
dy
dx y d 解输入命令: y=dsolve('D2y+4*Dy+29*y=0','y(0)=0,Dy(0)=15','x')
结果为: y =3e -2x sin (5x )
例3 求微分方程组的通解.
ïïïîïïïíì+-=+-=+-=z y x dt
dz z
y x dt
dy
z y x dt dx
244354332解输入命令:
[x,y,z]=dsolve('Dx=2*x-3*y+3*z','Dy=4*x-5*y+3*z','Dz=4*x-4*y+2*z', 't');x=simple(x) % 将x 化简y=simple(y)z=simple(z)
结果为:x = (c 1-c 2+c 3+c 2e -3t -c 3e -3t )e 2t
y = -c 1e -4t +c 2e -4t +c 2e -3t -c 3e -3t +(c 1-c 2+c 3)e 2t z = (-c 1e -4t +c 2e -4t +c 1-c 2+c 3)e 2t
非线性微分方程
注意:
1、在解n个未知函数的方程组时,x0和x均为n维向量,m-文件中的待解方程组应以x的分量形式写成.
2、使用Matlab软件求数值解时,高阶微分方程必须等价地变换成一阶微分方程组.
例4 ïî
ïíì===---0)0(';2)0(0)1(1000222x x x dt
dx x dt x d 解: 令y 1=x ,y 2=y 1’
则微分方程变为一阶微分方程组:
ïî
ïíì
==--==0
)0(,2)0()1(1000''21122
1221y y y y y y y y 1、建立m-文件vdp1000.m 如下:
function dy=vdp1000(t,y)dy=zeros(2,1);dy(1)=y(2);
dy(2)=1000*(1-y(1)^2)*y(2)-y(1);
2、取t 0=0,t f =3000,输入命令:
[T,Y]=ode15s('vdp1000',[0 3000],[2 0]); plot(T,Y(:,1),'-')3、结果如图
50010001500200025003000
-2.5
-2-1.5-1-0.50
0.511.52
例5 解微分方程组.
ïïîï
ïí
ì
===-=-==1
)0(,1)0(,0)0(51.0'''3212
13312321y y y y y y y y y y y y 解
1、建立m-文件rigid.m 如下:function dy=rigid(t,y)dy=zeros(3,1);dy(1)=y(2)*y(3);dy(2)=-y(1)*y(3);
dy(3)=-0.51*y(1)*y(2);
2、取t 0=0,t f =12,输入命令:
[T,Y]=ode45('rigid',[0 12],[0 1 1]);
plot(T,Y(:,1),'-',T,Y(:,2),'*',T,Y(:,3),'+')3、结果如图
2
4
6
8
10
12
-1-0.8-0.6
-0.4-0.200.20.40.60.81图中,y 1的图形为实线,y 2的图形为“*”线,y 3的图形为“+”线.
例6 Lorenz 模型的状态
ïîï
íì-+-=+-=+-=)
()()()()()()()()()()()(322133223221t x t x t x t x t x
t x t x t x
t x t x t x t x r s s b &&& 若令3/8,28,10===b r s 且初值为
e ===)0(,0)0()0(321x x x ,e 为一个小常数,假
设10
10
-=e。

相关文档
最新文档