2023年河北省高考数学二轮复习专题 专题6 导数解答题30题专项提分计划(含答案)

合集下载

2023年河北省高考数学二轮复习专题 专题5 圆锥曲线解答题30题专项提分计划(含答案)

2023年河北省高考数学二轮复习专题 专题5 圆锥曲线解答题30题专项提分计划(含答案)

2023届河北省新高考数学复习专题5 圆锥曲线解答题30题专项提分计划1.(2022·河北·模拟预测)已知抛物线2:2(0)C x py p =>,点(4,1)A -,P 为抛物线上的动点,直线l 为抛物线的准线,点P 到直线l 的距离为d ,||PA d +的最小值为5. (1)求抛物线C 的方程;(2)直线1y kx =+与抛物线相交于M ,N 两点,与y 轴相交于Q 点,当直线AM ,AN 的斜率存在,设直线AM ,AN ,AQ 的斜率分别为1k ,2k ,3k ,是否存在实数λ,使得12311k k k λ+=,若存在,求出λ;若不存在,说明理由.是8.(1)求双曲线C 的方程;(2)过点(0,3)P 的直线l 与双曲线C 的右支交于不同的两点A 和B ,若直线l 上存在不同于点P 的点D 满足||||||||PA DB PB DA ⋅=⋅成立,证明:点D 的纵坐标为定值,并求出该定值.=.交C于A(点A在第一象限),B两点,且AB4(1)求C的标准方程.(2)已知l为C的准线,过F的直线1l交C于M,N(M,N异于A,B)两点,证明:直线AM,BN和l相交于一点.4.(2022·河北·河北容城中学校考模拟预测)已知点E,F⎫⎪⎪⎝⎭,点A满足|||AE AF=,点A的轨迹为曲线C.(1)求曲线C的方程;(2)若直线:l y kx m=+与双曲线:22149x y-=交于M,N两点,且2MONπ∠=(O为坐标原点),求点A到直线l距离的取值范围.2所以1OM ON x x⊥⇒化简,得212(1)k x x+22849kmxk+=--,5.(2022·河北秦皇岛·统考二模)已知双曲线22:1(0,0)C a b a b-=>>的左、右焦点分别为1F ,2F ,虚轴长为2F 的直线l 与双曲线C 的右支交于A ,B 两点.(1)求双曲线C 的方程;(2)已知(P -,若ABP 的外心Q 的横坐标为0,求直线l 的方程. ,根据ABP 外接圆的圆心的方程为y =两点,求得k 的范围,设线段因为ABP为等腰三角形,且ABP外接圆的圆心()0,0Q.9QA=+23QP=,所以当直线l的斜率存在时,设直线l的方程为联立方程组yx⎧⎨)2221k x--6.(2022·河北衡水·统考二模)在平面直角坐标系xOy 中,已知椭圆()22:10x y C a b a b+=>>的左、右焦点为12,F F ,离心率为2.过点()2,0P 作直线l 与椭圆C 相交于,A B 两点.若A 是椭圆C 的短轴端点时,23AF AP ⋅=. (1)求椭圆C 的标准方程;(2)试判断是否存在直线l ,使得21F A ,2112F P ,21F B 成等差数列?若存在,求出直线l 的方程;若不存在,说明理由.当A 为椭圆的短轴端点时,不妨设,则(2,AF b =-,(,2AP b =-22AF AP b ∴⋅=+又222a b c =+=椭圆C 的标准方程为(2)设(:2l y k x =-464k ∆=设(11,A x y 2212x x ∴+=()11,0F -同理可得:21F A ∴+又2F P =2k ⎛∈- ⎝【点睛】思路点睛:本思路是假设直线存在,量关系后,通过求解7.(2022·河北张家口·统考三模)已知0b a >>,点)A ,B ⎛⎫⎪ ⎪⎝⎭,动点P 满足|||PA PB =,点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)直线y kx m =+与曲线C 相切,与曲线2222:1x y E a b -=交于M 、N 两点,且π2MON ∠=(O 为坐标原点),求曲线E 的离心率. y kx =+设(1,M x y 将y kx =+222b a k -12x x ∴+=MON ∠=0OM ON ∴⋅=,即21221()y y kx kx m k x x =+=222222222220a m a a b m b a k a k b +-∴=--2222a b b a∴-故曲线E 8.(2022·河北邯郸·统考模拟预测)平面直角坐标系中,点P 在轴右侧,且到点1,0F 的距离比其到y 轴距离多1. (1)求点P 轨迹C 的方程;(2)过点F 的直线l 与C 交于A 、B 两点,Q 是y 轴上一点.若ABQ 是正三角形,求直线l 的斜率.,由于ABQ 为正三角形,则,即2221m a m -+-,(2AB =2(2m a +-A ⎛⎫⎪ ⎪⎝⎭. (1)求椭圆C 的方程;(2)点A 关于原点O 的对称点为点B ,与直线AB 平行的直线l 与C 交于点,M N ,直线AM 与BN 交于点P ,点P 是否在定直线上?若在,求出该直线方程;若不在,请说明理由.10.(2022·河北秦皇岛·统考三模)已知抛物线:2(0)C y px p =>上的点M 与焦点F 的距离为9,点M 到x 轴的距离为 (1)求抛物线C 的方程.(2)经过点F 的直线与抛物线C 交于,A B 两点,E 为直线=1x -上任意一点,证明:直线,,EA EF EB 的斜率成等差数列.11.(2022·河北邯郸·统考二模)已知点P (2,3)为椭圆C :221(0)x y a b a b+=>>)上一点,A ,B 分别为C 的左、右顶点,且△P AB 的面积为5. (1)求C 的标准方程;(2)过点Q (1,0)的直线l 与C 相交于点G ,H (点G 在x 轴上方),AG ,BH 与y 轴分别交于点M ,N ,记1S ,2S 分别为△AOM ,△AON (点O 为坐标原点)的面积,证明12:S S 为定值.12.(2022·河北石家庄·石家庄二中校考模拟预测)已知椭圆()22:10x y C a b a b+=>>的左右焦点分别为12,F F ,点E ⎝⎭为以12F F 为直径的圆与椭圆C 在第一象限的交点.(1)求椭圆C 的方程;(2)若过点()1,0D 且倾斜角为钝角的直线l 与椭圆C 交于,A B 两点(其中点B 在x 轴下方),P 为AB 的中点,O 为原点,求当OPB ∠最大时,OPB △的面积. 【答案】(1)2214x y +=(2)78【分析】(1)将263,33E ⎛⎫ ⎪ ⎪⎝⎭代入圆和椭圆方程,可解得22,a b ,由此可得椭圆方程; (2)设直线():10l x my m =+<,与椭圆方程联立可得韦达定理的形式,由此可得P 点坐标,利用41tan 134l OP l op k k m OPB k k m -⎛⎫∠==+ ⎪+⋅⎝⎭,结合基本不等式可知当2m =-时,OPB ∠最大,由121122OPBOABSS OD y y ==⋅-可求得结果. (1)设()1,0F c -,()()2,00F c c >,则以12F F 为直径的圆为:222x y c +=, 222263333c ⎛⎫⎛⎫∴=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,即223a b -=,又2281133a b +=,24a ∴=,21b =,∴椭圆C 的方程为2214x y +=. (2)由题意可设直线():10l x my m =+<,()11,A x y ,()22,B x y 由22114x my x y =+⎧⎪⎨+=⎪⎩得:()224230m y my ++-=,则216480m ∆=+>, 12224my y m ∴+=-+,12234y y m =-+, 24P m y m ∴=-+,则2224144P m x m m =-+=++,224,44m P m m ⎛⎫∴- ⎪++⎝⎭,m<,∴取等号),即当m=-1122OPB OABS S OD∴==【点睛】关键点点睛:三角形面积的关键是能够利用直线斜率表示出最大值,由取等条件确定13.(2022·河北·校联考模拟预测)已知椭圆22:1(0)x yL a ba b+=>>,椭圆上的点到两焦点的距离和为12⎫-⎪⎝⎭在椭圆L上.(1)求椭圆L的标准方程;(2)过点(0,2)P作直线l交椭圆于,A B两点,点E为点P关于x轴的对称点,求ABE面积的最大值.12ABE PEB PEAS S S x=-=通过换元法求得.【详解】(1)∵椭圆上的点到两焦点的距离和为12ABEPEB PEASS S=-=⨯222201541515k k k ⎛⎫-⨯ ⎪++⎝⎭2 14.(2023·河北衡水·衡水市第二中学校考模拟预测)已知抛物线C :20y px p =>和椭圆E :()22101x y a a a+=>+有共同的焦点F(1)求抛物线C 的方程,并写出它的准线方程(2)过F 作直线l 交抛物线C 于P , Q 两点,交椭圆E 于M , N 两点,证明:当且仅当l x ⊥轴时,PQMN取得最小值()2222:10,0y x C a b a b-=>>,实轴长为4.(1)求C 的方程;(2)如图,点A 为双曲线的下顶点,直线l 过点()0,P t 且垂直于y 轴(P 位于原点与上顶点之间),过P 的直线交C 于G ,H 两点,直线AG ,AH 分别与l 交于M ,N 两点,若O ,A ,N ,M 四点共圆,求点P 的坐标. 【答案】(1)22144-=y x(2)()0,1【分析】(1)根据双曲线的离心率结合实轴长,可求得a,b ,即得答案;(2)根据O ,A ,N ,M 四点共圆结合几何性质可推出1AN OM k k ⋅=,设()11,G x y ,()22,H x y ,(,)M M M x y ,从而可以用点的坐标表示出t ,再设直线:GH y kx t =+,联立双曲线与直线方程,利用根与系数的关系式,代入t 的表达式中化简,可得答案. 【详解】(1)因为实轴长为4,即24a =,2a =, 又2ca=,所以22c =,2224b c a =-=, 故C 的方程为22144-=y x .(2)由O ,A ,N ,M 四点共圆可知,ANM AOM π∠+∠=, 又MOP AOM π∠+∠=,即ANM MOP ∠=∠, 故1tan tan tan ANM MOP OMP∠=∠=∠,即1AN OMk k -=-,所以1AN OM k k ⋅=, 设()11,G x y ,()22,H x y ,(,)M M M x y , 由题意可知()0,2A -,则直线112:2y AG y x x +=-,直线222:2y AH y x x +=-,16.(2022·河北·石家庄二中校联考模拟预测)已知椭圆C :()2210x y a b a b+=>>的左、右焦点分别为1F ,2F ,椭圆C 点P 在椭圆C 上,124PF PF +=,且12PF F △(1)求椭圆C 的标准方程;(2)点M (1,1),A ,B 是椭圆C 上不同的两点,点N 在直线l :34120x y +-=上,且NA AM λ=,NB BM μ=,试问λμ+是否为定值?若是,求出该定值;若不是,请说明理由.由于NA AM λ=,NB BM μ=,所以1)得椭圆C 的方程为2243x y +所以直线MN 与椭圆必有两个交点当直线MN 的斜率不存在时,直线33⎛⎫由NA AM λ=,NB BM μ=得0,⎛ ⎝所以33,,022λμλμ==-+=.当直线MN 的斜率存在时,设直线()11y k x ⎧-=-y 120=⎩4k +由NA AM λ=,NB BM μ=得A x -.(河北保定统考一模)直线交抛物线于A,B两点,过A,B作y-上.抛物线的两条切线,相交于点C,点C在直线=3(1)求证:直线l恒过定点T,并求出点T坐标;(2)以T为圆心的圆交抛物线于PQMN四点,求四边形PQMN面积的取值范围.∴()11,A x y ,()22,B x y 都满足直线方程32xm y -=-,则32xm y =+为直线AB 的方程,故直线l 恒过定点()0,3T . (2)如图,设圆T 的半径为r ,()11,M x y ,()22,N x y ,()11,Q x y -,()22,P x y -, 把24x y =代入圆T :()2223x y r +-=,整理得22290y y r -+-=,由题意知:关于y 的一元二次方程有两个不等实根,则()21221244902090r y y y y r ⎧∆=-->⎪⎪+=>⎨⎪=->⎪⎩,可得223r <<. ()1212121212122222PQMN QM PNS y y y y y y y y y y y y +=⋅-=+-=++⋅-()()()2222222944942198r r r r=+-⋅--=+--,令29r t -=,由223r <<得:01t <<,则()()24211PQMN S t t =+-,令()()()211f t t t =+-且01t <<,则()()()311f t t t '=--+,故在1(0,)3上()0f t '>,()f t 递增;在1(,1)3上()0f t '<,()f t 递减;所以132()()327f t f ≤=,又(0)1f =,(1)0f =,故f t 的取值范围是320,27⎛⎤⎥⎝⎦,综上,PQMN S 的取值范围是3230,9⎛⎤⎥ ⎝⎦.【点睛】关键点点睛:第二问,由圆T :()2223x y r +-=,联立抛物线方程,结合四边形面积公式得到关于参数r 的表达式,再应用函数思想并利用导数求面积的范围.18.(2022·河北·校联考模拟预测)已知双曲线()22:10,0x y C a b a b-=>>的左,右焦点分别为()16,0F -,()26,0F .且该双曲线过点()22,2P .(1)求C 的方程;(2)如图.过双曲线左支内一点(),0T t 作两条互相垂直的直线分别与双曲线相交于点A ,B 和点C ,D .当直线AB ,CD 均不平行于坐标轴时,直线AC ,BD 分别与直线x t =相交于P .Q 两点,证明:P ,Q 两点关于x 轴对称. 【答案】(1)22142x y -=(2)证明见解析【分析】(1)根据已知条件,建立关于,a b 的方程组,求解方程组即可得答案; (2)由题意,设直线AB 的方程为x my t =+,直线CD 的方程为1x y t m=-+,点 ()()()()11223344,,,,,,,A x y B x y C x y D x y ,联立22142x y x my t ⎧-=⎪⎨⎪=+⎩,由韦达定理可得212122224,22mt t y y y y m m --+==--,同理可得()2234342242,1212t m mt y y y y m m-+==--,由直线AC 的方程()133111y y y y x x x x --=--可得()2132131,m y y P t m y y ⎛⎫+ ⎪ ⎪+⎝⎭,同理可得()2242241,m y y Q t m y y ⎛⎫+ ⎪ ⎪+⎝⎭,然后计算0P Q y y +=即可得证.【详解】(1)解:由已知可得22226 821a b a b ⎧+=⎪⎨-=⎪⎩,解得224,2a b ==, 所以双曲线C 的方程为22142x y -=;(2)证明:由题意,设直线AB 的方程为x my t =+,直线CD 的方程为1x y t m=-+,点 ()()()()11223344,,,,,,,A x y B x y C x y D x y ,由22142x y x my t ⎧-=⎪⎨⎪=+⎩,得 ()2222240m y mty t -++-=, 则()()22222(2)424168320mt m t m t ∆=---=+->,得2224m t +>,所以212122224,22mt t y y y y m m --+==--, 同理可得()2234342242,1212t m mt y y y y m m -+==--,其中,m t 满足2224t m +>, 直线AC 的方程为()133111y y y y x x x x --=--,令x t =,得()131113y yy t x y x x -=-+-, 又11331,x my t x y t m =+=-+,所以()2121331m y y y m y y +=+,即()2132131,m y y P t m y y ⎛⎫+ ⎪ ⎪+⎝⎭, 同理可得()2242241,m y y Q t m y y ⎛⎫+ ⎪ ⎪+⎝⎭, 因为()()()()()()()2222123412341324222213241324111m m y y y y y y y y my y m y y m y y m y y m y y m y y ⎡⎤++++++⎣⎦+=++++()()()()()222222222221324442212122120m t t m mt mtm m m m m m y y m y y ⎡⎤---+⋅+⋅⎢⎥----⎢⎥⎣⎦==++,所以,P Q 两点关于x 轴对称.19.(2022·河北唐山·统考二模)已知椭圆22:12+=x E y 的右焦点为F ,椭圆()22:12x y λλΓ+=>.(1)求Γ的离心率;(2)如图:直线:1l x my =-交椭圆Γ于A ,D 两点,交椭圆E 于B ,C 两点. ①求证:AB CD =;②若5λ=,求ABF △面积的最大值..(河北保定统考二模)已知抛物线(1)直线():1l y k x =-与Ω交于A 、B 两点,O 为坐标原点.从下面的①②两个问题中任选一个作答,如果两个都作答,则按所做的第一个计分. ①证明:OA OB ⋅=②若23AOB π∠=,求2k 的值; (2)已知点()1,2P ,直线m 与Ω交于C 、D 两点(均异于点P ),且1PC PD k k +=.过P 作直线m 的垂线,垂足为Q ,试问是否存在定点M ,使得QM 为定值?若存在,求出定值;若不存在,说明理由.)1y 、()22,B x y 、OA OB ⋅,利用平面向量数量积的坐标运算可出关于)分析可设直线CD 的方程为的方程联立,列出韦达定理,利用斜率公式结合已知条件可得出的关系式,可求得直线CD 所过定点⎣因为12OA OB x x ⋅=22222k k k k+-⋅2cos3OA OB OA OB π⋅==⋅)解:若直线m 的斜率为零,则直线的方程为x ty =+21.(2022·河北·统考模拟预测)已知椭圆22:1(0)x y C a b a b +=>>的左,右焦点分别为12(1,0),(1,0)F F -,右顶点为A ,M ,N 是椭圆上关于原点对称且异于顶点的两点,记直线MA 与直线NA 的斜率分别为,MA NA k k ,且34MA NA k k ⋅=-.(1)求C 的方程;(2)若直线l 交椭圆C 于P ,Q 两点,记直线PA 与直线AQ 的斜率分别为,PA AQ k k 且1PA AQ k k +=-,证明:直线l 恒过定点.22.(2022·河北·统考模拟预测)已知椭圆22:1(0)x y C a b a b+=>>的左焦点为F ,短轴的两个顶点分别为M ,N ,FMN 为等边三角形,且FMN (1)求C 的方程;(2)若圆1C 的方程为2245x y +=,直线l 与圆1C 相切并且交C 于A ,B 两点,证明:OA OB ⊥,并求出22||||OA OB +的最大值. ,又直线与圆相切得到列出韦达定理,通过计算1OA OB x x ⋅=⋅,即可求出最大值;3b ,又2c a =FMNS=3,所以椭圆方程为21y =所以0OA OB ⋅=,即当直线l 的斜率存在,设直线方程为由直线与圆2x y +y kx m=+,则14k +所以1OA OB x x ⋅=⋅)212k x x km +⋅+所以()2max 25||||OA OB +=;23.(2022·河北唐山·统考三模)在平面直角坐标系xOy 中,动圆M 与圆2211:()24N x y +-=相内切,且与直线1y =-相切,记动圆圆心M 的轨迹为曲线C . (1)求曲线C 的方程;(2)过点(0,1)E 的直线l 与曲线C 交于A ,B 两点,分别以A ,B 为切点作曲线C 的切线12,l l ,直线12,l l 相交于点P .若()0+⋅=AB AP PB ,求直线l 的方程. 220x y 或2x +【分析】(1)利用两圆内切及直线与圆相切列式,化简即得曲线)设出直线l 的方程及1mx ,2212x ,由⎧⎪⎪⎨⎪⎪⎩则2221121212212121(11(,,,),(,)222(22(2)))x x x x x x x x x x AB x x x x AP PB ----=--==,因()0+⋅=AB AP PB ,即0⋅+⋅=AB PB AP PB ,即22222121221211221((((024)())))44x x x x x x x x x x x x x -+---+++=,化简得,2122320++=x x x ,因此,221x =,于是得点1(1,)2B 或1(1,)2B -,直线l 的斜率12k =±,所以直线l 的方程为220x y 或220x y +-=.【点睛】结论点睛:抛物线22(0)x py p =≠在点20(,)2x x p处的切线斜率0x k p =;抛物线22(0)y px p =≠在点200(,)(0)2y y y p≠处的切线斜率0p k y =.24.(2022·河北沧州·沧县中学校考模拟预测)已知椭圆2222:1(0)x y C a b a b +=>>的离心率与双曲线22:122-='x y C 的离心率互为倒数,短轴长为22.(1)求椭圆C 的标准方程;(2)设直线l 与椭圆C 相切于点A ,A 关于原点O 的对称点为点B ,过点B 作BM l ⊥,垂足为M ,求ABM 面积的最大值. 【答案】(1)22142x y += (2)2【分析】(1)先求得椭圆C 的离心率22e =,又椭圆C 的短轴长为22,可得a,b,c 的值,即得椭圆C 的标准方程;(2)利用直线上两点的距离公式212||1PQ k x x =+-算得,AM BM 的表达式,可得故ABM 面积的最大值为焦点,B ,C 是E 上的两个动点,且直线BC 经过E 的右焦点,FBC 的周长为 (1)求E 的标准方程;(2)若点D 在椭圆221248x y +=上,且满足440OB OC OD ++=(其中O 为坐标原点),证明:BCD 的面积为定值.的关系,再由FBC 的周长可得求出两根之和及两根之积,的横纵坐标与B ,C 的距离,代入三角形的面积公式可得为定值.,可得a )证明:设1(B x ,1)y ,2(C x ,440OB OC OD ++=,即有40124()x x =-+,014(y y =-+由题意显然直线BC 的斜率不为022236x my x y =++=,整理可得(3+圆内部,显然0∆>,BCDS=【点睛】结论点睛:圆锥曲线中的弦长公式:弦长11x +26.(2022·河北衡水·衡水市第二中学校考一模)已知满足PA 与PB 的斜率之积为34-.(1)求P 的轨迹C 的方程.(2)12,l l 是过C 内同一点D 的两条直线,1l 交椭圆于2,MN l 交椭圆于EF ,且MNEF 共圆,求这两条直线斜率之和.P 22145:204C x y x ++-=内切,且与圆2223:204C x y x +-+=外切,记动圆P 的圆心的轨迹为E .(1)求轨迹E 的方程;AC交轨迹E于点(2)不过圆心2C且与x轴垂直的直线交轨迹E于,A M两个不同的点,连接2B.(i)若直线MB交x轴于点N,证明:N为一个定点;⊥,求四边形ADBG面(ii)若过圆心1C的直线交轨迹E于,D G两个不同的点,且AB DG积的最小值.动圆AB DG ⊥则12DG =AB DG ⊥∴四边形(法一),0,t k t ≠∴2721112t t++时,min 288S =【点睛】本题考查了椭圆的方程,以及直线与椭圆的位置关系,综合性较强28.(2022·河北·模拟预测)已知椭圆22:1(0)x y C a b a b+=>>,其右焦点为F ,点M在圆222+=上但不在y轴上,过点M作圆的切线交椭圆于P,Q两点,当点M在x轴上x y b时,||PQ=(1)求椭圆C的标准方程;△周长的取值范围.(2)当点M在圆上运动时,试探究FPQ23km ,当且仅当 时取等号. 8,所以FPQ △周长的取值范围为本题考查了椭圆方程的求解,性很强,难度较大,解答的关键是理清解题的思路,要明确将直线和椭圆方程联立,利用根与系数的关系式进行化简,从而求得三角形周长范围,难点是计算量很大,细心.29.(2022·河北·校联考模拟预测)已知椭圆221:142x yC+=,椭圆22222:1(0,0)x yC a ba b+=>>与1C有相同的离心率,且短轴的一个端点坐标为()0,1,O是坐标原点.(1)求2C的方程;(2)若直线l与2C有且仅有一个公共点,与1C交于A,B两点,试问OAB的面积是否为定值?若是,求OAB的面积;若不是,请说明理由.(2)OAB面积为定值,【分析】(1)求出时的OAB面积,再考虑直线判别式得到2b出高,进而求出OAB的面积,综上求出答案由题意得:b=,1的离心率为,故2C的方程为:OABS=斜率存在时,设直线方程为:联立得:OABS=综上:OAB 的面积为定值,为【点睛】求解圆锥曲线相关的面积范围或定值问题,后利用韦达定理求出两根之和,注意直线方程斜率不存在的情况要单独考虑30.(2023·河北·河北衡水中学校考模拟预测)椭圆()2210x y a b a b+=>>的上、下顶点分别为A ,B . 在椭圆上任取两点C ,D ,直线CD 斜率存在且不过A ,B . BC 交AD 于1P ,AC 交BD 于2P ,直线CD 交y 轴于R ,直线AC 交x 轴于1Q ,直线BD 交x 轴于2Q .(1)若a ,b 为已知量,求1OR OP ⋅; (2)分别作1P E ,12Q F P B ⊥于E ,F ,求112112PE Q Q Q F PP ⋅⋅.结论可求得22OR OP b ⋅=,由向量数量积几何意义可得p y 212Q Q ,结合几何关系可得1212Q Q F PP E ,则有1121211121121PE Q Q PE Q Q Q F PP FQ PP ⋅⋅==⋅⋅.)由题意知,()(0,,0,A b B ,直线CD 斜率存在且不过mb ,()(112,,,C x y D x ,()12x x >,则有()0,R m .2222212121222224ab a k b m x x x x x a k b .11y byx b x ,直线AD 22y by x b x ,BC 交AD 于1P ,联立得b-(121122112bx x x b y b b x y x y b x ⎧=⋅=⎪+-++⎪⎪故1b OR OP m ⋅=⋅((1212b x kx m x kx ⎡+⎣⋅-+(1212kx x m bm b x +⋅+11y byx b x ,直线BD 22y bx b x ,AC 交BD )b -, )结论可得()2OR OP b b ⋅=-=.则有12OR OP OR OP ⋅=⋅,即1122cos ,cos ,OP OR OP OP OR OP =,即y 212Q Q . E ,12Q F P B ⊥于E ,F ,故11Q F PE . 则有1212Q Q FPP E ,1212Q Q FPP E ,则有121121Q Q Q FPP PE ,故121121112121112112112112cos ,1cos ,PE Q Q PE Q Q PE Q Q PE Q Q Q F PP FQ PP FQ PP FQ PP ⋅⋅⋅===⋅⋅⋅.【点睛】直线与圆锥曲线问题,往往借助韦达定理去表示所求问题,一般难点在于运算.。

备战2023年高考数学二轮复习专题提能 函数与导数综合问题的突破策略

备战2023年高考数学二轮复习专题提能  函数与导数综合问题的突破策略
9
二轮·数学
当 0<x≤1 时,ex+sin x-1>0,xln x≤0, 故 xln x<ex+sin x-1,即 f(x)<sin x. 当 x>1 时,令 g(x)=ex+sin x-1-xln x, 故 g′(x)=ex+cos x-ln x-1, 令 h(x)=g′(x)=ex+cos x-ln x-1, 则 h′(x)=ex-1x-sin x,
f′(x)<0=f′(0)⇔x<0.
所以 f(x)的解析式为 f(x)=ex-x+12x2,且单调递增区间为(0,+∞), 单调递减区间为(-∞ 2] 已知函数 f(x)=xln x-ex+1. (1)求曲线 y=f(x)在点(1,f(1))处的切线方程; (2)证明:f(x)<sin x 在(0,+∞)上恒成立.
10
二轮·数学
当 x>1 时,ex-1x>e-1>1, 所以 h′(x)=ex-1x-sin x>0, 故 h(x)在(1,+∞)上单调递增. 故 h(x)>h(1)=e+cos 1-1>0,即 g′(x)>0,
11
二轮·数学
所以 g(x)在(1,+∞)上单调递增, 所以 g(x)>g(1)=e+sin 1-1>0, 即 xln x<ex+sin x-1, 即 f(x)<sin x. 综上所述,f(x)<sin x 在(0,+∞)上恒成立.
14
二轮·数学
因为 x>0 时,sin x<x,所以在(0,+∞)上 f″(x)>0, 因此 f′(x)在(0,+∞)上为增函数,而 f′(0)=0, 所以在(0,+∞)上有 f′(x)>f′(0)=0. 即 f(x)在(0,+∞)内单调递增. 因而当 x>0 时,f(x)=sin x-x+x63>f(0)=0. 所以 sin x>x-x63(x>0).

2023年高考数学高考前30天30练 第6练 导数的几何意义及函数的单调性

2023年高考数学高考前30天30练 第6练 导数的几何意义及函数的单调性

f(1)=1-2=-1, 则切点坐标为(1,-1), 又f′(x)=4x3-6x2, 所以切线的斜率为 k=f′(1)=4×13-6×12=-2, 所以切线方程为y+1=-2(x-1), 即y=-2x+1.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2.(2019·全国Ⅲ)已知曲线y=aex+xln x在点(1,ae)处的切线方程为y=2x
8.(2022·新高考全国Ⅰ)若曲线y=(x+a)ex有两条过坐标原点的切线,则a 的取值范围是__(_-__∞__,__-__4_)∪__(_0_,__+__∞__)__.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
即g′(x)>0在(0,0.1]上恒成立, 所以g(x)在(0,0.1]上单调递增, 所以g(0.1)>g(0)=0·e0+ln(1-0)=0, 即g(0.1)=u(0.1)-w(0.1)>0, 所以0.1e0.1>-ln 0.9,即a>c. 综上,c<a<b.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
5.(2020·全国Ⅲ)若直线 l 与曲线 y= x和圆 x2+y2=15都相切,则 l 的方程为
A.y=2x+1
B.y=2x+12
C.y=12x+1
√D.y=12x+12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
圆 x2+y2=15的圆心为原点,半径为 55,经检验原点到选项 A,D 中的直 线 y=2x+1,y=12x+12的距离均为 55,即两直线与圆 x2+y2=15均相切, 原点到选项 B,C 中的直线 y=2x+12,y=12x+1 的距离均不是 55,即两 直线与圆 x2+y2=15均不相切,所以排除 B,C. 对于 A 选项,y=2x+1 与 y= x联立可得 2x- x+1=0,此时方程无解, 所以排除 A.

2023届新高考数学二轮复习:专题(导数解答题之恒成立与能成立问题)提分练习(附答案)

2023届新高考数学二轮复习:专题(导数解答题之恒成立与能成立问题)提分练习(附答案)

2023届新高考数学二轮复习:专题(导数解答题之恒成立与能成立问题)提分练习【总结】1、利用导数研究不等式恒成立问题的求解策略:(1)通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围; (2)利用可分离变量,构造新函数,直接把问题转化为函数的最值问题;(3)根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.2、利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.3、不等式的恒成立与有解问题,可按如下规则转化: 一般地,已知函数()y f x =,[],x a b ∈,()y g x =,[],x c d ∈.(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,有()()12f x g x <成立,则()()max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,则()()max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,则()()min max f x g x <;(4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =成立,则()f x 的值域是()g x 的值域的子集. 【典型例题】例1.(2023春ꞏ浙江ꞏ高三开学考试)已知函数()e ln()(0)x f x m mx m m m =--+>(1)当1m =时,求曲线()y f x =在点(2,(2))P f 处的切线方程; (2)若()0f x ≥恒成立,求实数m 的取值范围.例2.(2023春ꞏ河北石家庄ꞏ高三校联考开学考试)已知函数()31tan (R 3f x x x ax α=-+∈)(1)若2π216a =-,求f (x )在(π2-,0)上的极值;(2)若()0f x ≥在π[0,)2x ∈上恒成立,求实数a 的取值范围例3.(2023春ꞏ河南ꞏ高三商丘市回民中学校联考开学考试)已知函数()3ln 3a f x x ax x x =--. (1)若()f x 的导函数为()g x ,讨论()g x 的单调性;(2)若()()3ln e 03x ax f x x a x x -++≥-恒成立,求实数a 的取值范围.例4.(2023ꞏ全国ꞏ唐山市第十一中学校考模拟预测)已知n 为正整数,()()2ln 1n x f x x x =>,()()2e1xn g x x x =>.(1)求()f x 的最大值;(2)若()12212122,1,,ln e xn n x x x x x ∀∈+∞<恒成立,求正整数n 的取值的集合.(参考数据:ln 5 1.6,ln 20.69,ln 3 1.10≈≈≈)例5.(2023ꞏ全国ꞏ高三专题练习)设函数()()()21ln f x a a x x a x=-+-∈R . (1)讨论函数()f x 的单调性;(2)当1a =时,记()()21g x xf x x =++,是否存在整数t ,使得关于x 的不等式()t g x ≥有解?若存在,请求出t 的最小值;若不存在,请说明理由.例6.(2023ꞏ全国ꞏ高三专题练习)已知函数()()e sin 1xf xg x t x ==+,,设()()()h x f x g x =-.(1)若()h x 在ππ,22⎛⎫- ⎪⎝⎭上单调递增,求实数t 的取值范围;(2)求证:()0,t ∃∈+∞;对[)R,0,x a ∀∈∃∈+∞,使得()xh x a =总成立.例7.(2023ꞏ全国ꞏ高三专题练习)已知函数()()12ln a f x x a x x+=-+-. (1)讨论函数()f x 的单调性;(2)设()22e e 3x g x mx =+--,当2e 1a =-时,对任意[)11,x ∈+∞,存在[)21,x ∈+∞,使()21()g xf x ≤,求实数m 的取值范围.例8.(2023ꞏ全国ꞏ高三专题练习)函数()e sin x f x x =,()()1cos xg x x x =+.(1)求()f x 的单调递增区间;(2)对1π0,2x ⎡⎤∈⎢⎥⎣⎦∀,2π0,2x ⎡⎤∀∈⎢⎥⎣⎦,使()()12f x g x m +≥成立,求实数m 的取值范围.【过关测试】1.(2023秋ꞏ河北唐山ꞏ高三开滦第二中学校考期末)已知函数()()2ln R f x x ax x a =++∈.(1)若()y f x =在1x =处的切线与y 轴垂直,求()f x 的极值;(2)若()f x 有两个不同的极值点()1212,x x x x <,且()()12922f x f x +≥-恒成立,求a 的取值范围.2.(2023ꞏ全国ꞏ高三专题练习)已知函数22()2ln 2f x x x x ax a =-+-+,其中0a >. (1)求函数()f x '的单调区间;(2)证明:存在(0,1)a ∈,使得()0f x ≥恒成立,且方程()0f x =有唯一的实根.3.(2023秋ꞏ湖北ꞏ高三统考期末)设函数()()22cos 2sin 2f x ax x x =--. (1)当1a =时,求()f x 在π0,2⎡⎤⎢⎥⎣⎦上的最值;(2)对()0,x ∀∈+∞,不等式()π2π2cos 2x f a x ⎛⎫+>- ⎪⎝⎭恒成立,求实数a 的取值范围.4.(2023ꞏ全国ꞏ模拟预测)已知函数()e xf x x =,()2ln22xg x =+. (1)求函数()f x 的最值;(2)若关于x 的不等式()()f x g x kx -≥恒成立,求实数k 的取值范围.5.(2023ꞏ浙江ꞏ统考一模)设函数()()22ln e 12-=+---x aa f x x a x x ,0x >.(1)当0a >时,证明:()2f a ≤; (2)若()1f x x ≥+,求a 的取值范围.6.(2023ꞏ四川凉山ꞏ统考一模)已知函数()()ln 1f x x x =-+. (1)求()f x 的最小值; (2)已知*N n ∈,证明:()1111ln 123n n++++>+L ; (3)若()ln 210xx x x a x -+--≥恒成立,求a 的取值范围.7.(2023秋ꞏ山东烟台ꞏ高三统考期末)已知0a >,()()2e 2=-+xf x x a x x ,x ∈R ,()f x '为()f x 的导函数.(1)讨论函数()f x 的单调性;(2)若存在a 使得()2f x b a '≥-对任意x 恒成立,求实数b 的取值范围.8.(2023ꞏ广东广州ꞏ统考二模)已知定义在()0,∞+上的函数()e axf x =.(1)若R a ∈,讨论()f x 的单调性;(2)若0a >,且当()0,x ∈+∞时,不等式2e ln aax xx ax ⎛⎫≥ ⎪⎝⎭恒成立,求实数a 的取值范围.9.(2023秋ꞏ江西ꞏ高三校联考期末)已知函数()e xf x ax =-.(1)讨论()f x 的单调性;(2)若4a ≥,证明:对于任意[)1,x ∞∈+,()2323f x x ax >-+恒成立.(参考数据:ln10 2.3≈)10.(2023秋ꞏ广东深圳ꞏ高三统考期末)已知函数()()ln f x ax ax =+,其中a 是非零实数. (1)讨论函数()f x 在定义域上的单调性;(2)若关于x 的不等式()e x af x x -≤恒成立,求a 的取值范围.11.(2023ꞏ湖北ꞏ校联考模拟预测)已知函数2()e e,x f x mx m =+-∈R .(注:e 2.718281=…是自然对数的底数)(1)当1m =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (2)若()f x 只有一个极值点,求实数m 的取值范围;(3)若存在n ∈R ,对与任意的x ∈R ,使得()f x n ≥恒成立,求m n -的最小值.12.(2023秋ꞏ黑龙江哈尔滨ꞏ高三哈尔滨三中校考阶段练习)已知函数()()e cos xJ x x x =+∈R ,其中e 为自然对数的底,e 2.71828= .(1)求证:()2cos J x x x ≥+;(2)是否存在实数a ,使得()32J x ax x ≥++恒成立?若存在,求a 的取值集合,若不存在请说明理由.13.(2023ꞏ全国ꞏ高三专题练习)已知当x ∈R ,总有e 1x x ≥+,当且仅当0x =时,“=”成立.设()e xf x =.(1)当0x ≥时,总有()f x x m ≥+,求实数m 的取值范围; (2)当a b <时,证明:存在(,)a b ξ∈,使得()()e f a f b a bξ-=-.14.(2023ꞏ全国ꞏ高三专题练习)已知函数()ln 2f x x ax =-+,()()1e ln 1x g x x b +=-+-,其中a ∈R ,b ∈Z .(1)试讨论函数()f x 的极值;(2)当0a >时,若对任意的()10,x ∞∈+,()21,x ∈-+∞,总有()()12ln f x g x b a ≤--成立,试求b 的最大值.15.(2023秋ꞏ云南曲靖ꞏ高三曲靖一中校考阶段练习)已知函数()()2ln 0f x a x a x=+>. (1)若函数()y f x =图象上各点切线斜率的最大值为2,求函数()f x 的极值; (2)若不等式()2f x <有解,求a 的取值范围.16.(2023ꞏ全国ꞏ高三专题练习)已知函数()()21ln 12f x x ax a x =-+-,R a ∈.(1)讨论()f x 的单调性;(2)曲线()y f x =上是否存在不同两点()11,A x y 、()22,B x y ,使得直线AB 与曲线()y f x =在点1212,22x x x x f ⎛++⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线平行?若存在,求出A 、B 坐标,若不存在,请说明理由.17.(2023ꞏ全国ꞏ高三专题练习)已知0a >,函数()x f x ax xe =-. (I )求曲线()y f x =在点(0,(0))f 处的切线方程: (II )证明()f x 存在唯一的极值点(III )若存在a ,使得()f x a b ≤+对任意x ∈R 成立,求实数b 的取值范围.参考答案【总结】1、利用导数研究不等式恒成立问题的求解策略:(1)通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围; (2)利用可分离变量,构造新函数,直接把问题转化为函数的最值问题;(3)根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.2、利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.3、不等式的恒成立与有解问题,可按如下规则转化: 一般地,已知函数()y f x =,[],x a b ∈,()y g x =,[],x c d ∈.(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,有()()12f x g x <成立,则()()max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,则()()max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,则()()min max f x g x <;(4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =成立,则()f x 的值域是()g x 的值域的子集. 【典型例题】例1.(2023春ꞏ浙江ꞏ高三开学考试)已知函数()e ln()(0)x f x m mx m m m =--+>(1)当1m =时,求曲线()y f x =在点(2,(2))P f 处的切线方程; (2)若()0f x ≥恒成立,求实数m 的取值范围. 【答案解析】(1)当1m =时,()e ln(1)1x f x x =--+,所以1()e 1x f x x '=--.所以22(2)e ln(21)1e 1f =--+=+,221(2)e e 121f '=-=--, 所以曲线()y f x =在点(2,(2))P f 处的切线的斜率为2(2)e 1k f '==-,所以曲线()y f x =在点(2,(2))P f 处的切线方程为()()22e 1e 1(2)y x -+=--,即()22e 1e 3y x =--+.(2)由题易得(1,)x ∈+∞,由()0f x ≥,得:e ln()xm mx m m ≥--ln ln e ln ln(1)1e ln ln(1)1e ln ln(1)1xx m x m m x m x m x m--⇔≥+--⇔≥+--⇔-≥--ln ln ln(1)e ln ln(1)1ln e ln(1)e x m x m x x m x x x m x ---⇔+-≥-+-⇔-+≥-+, 令()e x g x x =+, 则()1e 0x g x '=+>,所以()g x 在R 上单调递增,ln ln(1)ln e ln(1)e x m x x m x ---+≥-+式等价于(ln )(ln(1))g x m g x -≥-,即ln ln(1)x m x -≥-. 所以ln ln(1)m x x ≤--,(1,)x ∈+∞, 令()ln(1),(1)h x x x x =-->,则有12()111x h x x x -'=-=--, 令()0h x '=,即201-=-x x ,解得2x =, 当12x <<时, ()0h x '<;当2x >时, ()0h x '>; 所以()h x 在(1,2)上单调递减,在(2,)+∞上单调递增, 所以min ()(2)2ln(21)2h x h ==--=; 所以只需ln 2m ≤,即20e m <≤.综上,实数m 的取值范围是(20,e ⎤⎦.例2.(2023春ꞏ河北石家庄ꞏ高三校联考开学考试)已知函数()31tan (R 3f x x x ax α=-+∈)(1)若2π216a =-,求f (x )在(π2-,0)上的极值;(2)若()0f x ≥在π[0,)2x ∈上恒成立,求实数a 的取值范围【答案解析】(1)若()223π1π2tan 216316a f x x x ⎛⎫=-=-+- ⎪⎝⎭,x ,则()2221π2cos 16f x x x =-+-',令()()g x f x '=,π,02x ⎛⎫∈- ⎪⎝⎭, 则()()3332sin cos 2sin 2cos cos x x x x g x xx x-=-=',令()3πsin cos ,,02M x x x x x ⎛⎫=-∈- ⎪⎝⎭ 则()()3222cos cos 3cos sin cos sin 3cos sin cos sin sin 3cos M x x x x x x x x x x x x x x x x '=-+=+=+π(,0),sin 0,cos 0,sin 3cos 02x x x x x x ∈-<>+<,所以()0M x '>在π(,0)2-上恒成立,()M x 在π(,0)2-上单调递增,所以()()00M x M <=,所以()0g x '<在π(,0)2-上恒成立,即g (x )在π(,0)2-上单调递减,所以f '(x )在π(,0)2-上单调递减,又π04f ⎛⎫-= ⎪⎭'⎝.所以f (x )在(π2-,π4-)上单调递增,在(π4-,0)上单调递减.又323ππ1πππππtan 214434164296f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=--⨯-+-⨯-=-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,所以f (x )的极大值是3ππ1296--(2)由(1)可知函数221cos y x x =-,在π(,0)2-上单调递减,即()221cos f x x a x=-+'在π(,0)2-上单调递减, 易知()221cos f x x a x=-+'为偶函数. 所以f '(x )在π02⎡⎫⎪⎢⎣⎭,上单调递增,又()01f a '=+当10a +≥,即1a ≥-时,()()00f x f ''≥≥,所以f (x )在 π02⎡⎫⎪⎢⎣⎭,上单调递增,所以()()00f x f ≥=,符合题意;当10+<a ,即1a <-时,()00f '<,又()2222221πtan 1tan 1cos 4f x x a x a x x a x =-+=++->++-', 存在0π02x ⎛⎫∈ ⎪⎝⎭,,使得()00f x '>,所以存在()100,x x ∈,使得()10f x '=,所以f (x )在()10x ,上单调递减,在1π2x ⎛⎫⎪⎝⎭,单调递增,故()()100f x f <=,不合题意. 综上,实数a 的取值范围是[)1,∞-+.例3.(2023春ꞏ河南ꞏ高三商丘市回民中学校联考开学考试)已知函数()3ln 3a f x x ax x x =--. (1)若()f x 的导函数为()g x ,讨论()g x 的单调性;(2)若()()3ln e 03x ax f x x a x x -++≥-恒成立,求实数a 的取值范围.【答案解析】(1)因为()2ln 1g x ax a x =---,()0,x ∈+∞,所以()21212axg x ax x x='-=-. 当0a ≤时,()0g x '≤,所以()g x 在()0,∞+上为减函数,当0a >时,()2a g x x x x ⎛=⎝'⎝,所以()g x 在⎛ ⎝⎭上为减函数,在⎫+∞⎪⎪⎝⎭上为增函数. (2)()()3ln e 03x ax f x x a x x -++≥-恒成立,即e ln 0(0)x x a x ax x --≥>恒成立.令()()e ln xh x x a x x =-+,则()()()11e 11e x x a h x x a x x x ⎛⎫⎛⎫=+-+=+- ⎪ ⎪⎝⎭⎝⎭'.当0a <时,()()0,h x h x '>在()0,∞+上单调递增, 因为()0,ln ,x x h x ∞∞→→-→-,所以0a <不满足条件.当0a =时,()e 0(0)xh x x x =≥>恒成立,0a =满足条件.当0a >时,令()0h x '=,存在00x >,使得0000e ,ln ln x ax a x x ==-, 因为10,e xax y x+>=-在()0,∞+上单调递增,所以当()00,x x ∈时,()0h x '<,当()0,x x ∈+∞时,()0h x '>, 所以()h x 在()00,x 上单调递减,在()0,x +∞上单调递增,所以()()()()()0000000ln 1e ln ln l l 0n n n l xh x h x x a x x a a a a a a a a x x -=-≥=-+=-+=≥-,()ln 1ln 0a a a a a -=-≥解得0e a <≤.综上,实数a 的取值范围为[]0,e .例4.(2023ꞏ全国ꞏ唐山市第十一中学校考模拟预测)已知n 为正整数,()()2ln 1n x f x x x =>,()()2e1xn g x x x =>.(1)求()f x 的最大值;(2)若()12212122,1,,ln e xn n x x x x x ∀∈+∞<恒成立,求正整数n 的取值的集合.(参考数据:ln 5 1.6,ln 20.69,ln 3 1.10≈≈≈)【答案解析】(1)()1221112ln ln ln (2ln )()n n n n x x nx xx n x x f x x xx -'+⋅⋅--=>= 令()0f x '>可得:21e n x <<;令()0f x '<可得:2e n x >.所以()f x 在21,e n ⎛⎫⎪⎝⎭上单调递增,在2e ,n ⎛⎫+∞ ⎪⎝⎭上单调递减.故()f x 的最大值为2222224e e e n n f n ⎛⎫ ⎪⎛⎫⎝⎭== ⎪⎝⎭. (2)因为()12212122,1,,ln ex nn x x x x x ∀∈+∞<恒成立,所以122221ln e x n n x x x <,即21()()f x g x <恒成立,所以max min ()()f x g x <.2122212e e (2)(e )x n n x x n n x nx x n g x x x-+--'==, 当1n =或2n =时,因为1x >,所以()0g x '>,所以()g x 在()1,+∞上单调递增. 因为()2(e )1>=g g x ,此时满足()2224e e≤<g x n , 故1n =或2n =满足条件. 当3n ≥时,令()0g x '>可得2n x >;令()0g x '<时,12n x <<,所以()g x 在1,2n ⎛⎫ ⎪⎝⎭上单调递减,在,2n ⎛⎫+∞ ⎪⎝⎭上单调递增.所以min ()22e n n n g x g n ⎛⎫== ⎪⎝⎭⎛⎫ ⎪⎝⎭,所以2242e e n n n n <⎛⎫ ⎪⎝⎭,所以22e 2n n n -+⎛⎫> ⎪⎝⎭,所以2(2)ln 2n n n +>-,令()(2)ln 2,32nh n n n n =---≥,令()(2)ln2,32xx x x x ϕ=---≥, 22()ln 1ln 22x x x x x x ϕ-'=+-=-,因为()x ϕ'在[)3,+∞上单调递增,3222(3)ln ln 3ln 20.4102333ϕ'=-=--≈-<,1(4)ln 202ϕ'=->,所以()x ϕ'在()3,4上存在唯一的零点0x .令()0x ϕ'>可得:0x x >;令()0x ϕ'<可得:03x x ≤<. 所以()ϕx 在[)03,x 上单调递减,在()0,x +∞上单调递增.因为*3N ,(3)ln 5 4.59,(4)2ln 26 4.622∈=-≈-=-≈-n h h ,所以(3)(4)h h >,所以min ()(4)2ln 260h n h ==-<,又9(9)7ln 1114ln 37ln 2110.4302h =-=--≈-<,(10)8ln 5120.800h =-≈>,所以2(2)ln 2nn n +>-,即()0h n <.因为*N n ∈,所以*39,N n n ≤≤∈.综上,正整数n 的取值的集合为{}1,2,3,4,5,6,7,8,9例5.(2023ꞏ全国ꞏ高三专题练习)设函数()()()21ln f x a a x x a x=-+-∈R . (1)讨论函数()f x 的单调性;(2)当1a =时,记()()21g x xf x x =++,是否存在整数t ,使得关于x 的不等式()t g x ≥有解?若存在,请求出t 的最小值;若不存在,请说明理由.【答案解析】(1)由题意得函数的定义域为()0,∞+,()()()()222222111111a a x x ax a x f x a a x x x x-++⎡⎤+-+⎣++=='⎦=- , ①当0a <时,10,x a ⎛⎫∈- ⎪⎝⎭时,()0f x ¢>,()f x 在10,a ⎛⎫- ⎪⎝⎭单调递增,1,x a ∈-+∞⎛⎫⎪⎝⎭时,()0f x '<,()f x 在1,a ∞⎛⎫-+ ⎪⎝⎭单调递减; ②当01a ≤≤时,()0f x ¢>恒成立,()f x 在()0,∞+上单调递增; ③当1a >时,10,1x a ⎛⎫∈ ⎪-⎝⎭时,()0f x ¢>,()f x 在10,1a ⎛⎫ ⎪-⎝⎭单调递增, 1,1x a ⎛⎫∈+∞ ⎪-⎝⎭时,()0f x '<,()f x 在1,1a ⎛⎫+∞ ⎪-⎝⎭单调递减; 综上,当0a <时,()f x 在10,a ⎛⎫- ⎪⎝⎭单调递增,在1,a ∞⎛⎫-+ ⎪⎝⎭单调递减;当01a ≤≤时,()0f x ¢>恒成立,()f x 在()0,∞+上单调递增; 当1a >时,()f x 在10,1a ⎛⎫ ⎪-⎝⎭单调递增,在1,1a ⎛⎫+∞⎪-⎝⎭单调递减. (2)当1a =时,()()221ln g x xf x x x x x =++=+ ,∴()2ln 1g x x x =++',∴()g x '单调递增,又12ln202g ⎛⎫=-> ⎪'⎝⎭,14ln6063g ⎛⎫=-< ⎪'⎝⎭,所以存在唯一的011,62x ⎛⎫∈ ⎪⎝⎭,使得()0002ln 10g x x x =++=',且当()00,x x ∈时,()0g x '<,()g x 单调递减; 当()0,x x ∈+∞时,()0g x '>,()g x 单调递增;所以()()()022200000000min ln 21g x g x x x x x x x x x ==+=+--=--,设()2000x x x ϕ=--,011,62x ⎛⎫∈ ⎪⎝⎭,则()0x ϕ在11,62⎛⎫ ⎪⎝⎭上单调递减,所以()01126g x ϕϕ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,即()037436g x -<<-,若关于x 的不等式()t g x ≥有解,则34t -≥,又t 为整数,所以0t ≥,所以存在整数t 满足题意,且t 的最小值为0.例6.(2023ꞏ全国ꞏ高三专题练习)已知函数()()e sin 1xf xg x t x ==+,,设()()()h x f x g x =-.(1)若()h x 在ππ,22⎛⎫- ⎪⎝⎭上单调递增,求实数t 的取值范围;(2)求证:()0,t ∃∈+∞;对[)R,0,x a ∀∈∃∈+∞,使得()xh x a =总成立.【答案解析】(1)解:由题可知()()()e sin 1xh x f x x x t g =-=--,因为()h x 在ππ,22⎛⎫- ⎪⎝⎭上单调递增,所以()e cos 0xh x t x '=-≥在ππ,22⎛⎫- ⎪⎝⎭上恒成立,因为ππ,22x ⎛⎫∈- ⎪⎝⎭时,cos 0x >,故只要e cos xt x ≤在ππ,22⎛⎫- ⎪⎝⎭上恒成立,令()e cos x F x x =,ππ,22x ⎛⎫∈- ⎪⎝⎭,因为()()2e sin co cos s x x x x F x +'=,ππ,22x ⎛⎫∈- ⎪⎝⎭,令()()2sin cos c e 0os x x x F x x=+'>,即sin cos 0x x +>,解得ππ,42x ⎛⎫∈- ⎪⎝⎭,故()F x 在ππ,42⎛⎫- ⎪⎝⎭上单增,在ππ,24⎛⎫-- ⎪⎝⎭上单减,所以()π4minπ4F x F -⎛⎫=-= ⎪⎝⎭,即实数t 的取值范围为π4-⎛⎤-∞ ⎥⎝⎦;(2)由题意, 因为0a >,所以只要找出()0,t ∈+∞,使得0x >时,()0h x >;0x <时,()0h x <即可,当0x =时,显然成立; 现证()10,2t =∈+∞,满足题意, 即证当12t =时,若0x >时,()0h x >成立, 若0x <时,()0h x <也成立, 当12t =时, 若0x >,则()1e sin 12xh x x =--,所以()1e cos 2xh x x =-',因为0x >,故1e 1cos 2xx >>, 即()1e cos 02xh x x '=->恒成立,所以()h x 在()0,∞+上单增, 故()()00h x h >=, 即0x >时,()0h x >成立; 当12t =时, 若0x <,()1e sin 12xh x x =--,由(1)知当π4t -⎛⎤∈-∞ ⎥⎝⎦时,=e sin 1x y t x --在ππ,22⎛⎫- ⎪⎝⎭上单调递增,因为πe 64<等价于π4e <,即等价于π412-<,所以()1sin 12xh x e x =--在π,02⎛⎫- ⎪⎝⎭上单调递增,故当π,02x ⎛⎫∈- ⎪⎝⎭时,()()00h x h <=,因为当π,2x ⎛⎤∈-∞- ⎥⎝⎦时,π2e e x-≤,且11sin 122x +≥, 因为πe 4>等价于π21e 2->,所以π211e esin 122xx -≤<≤+, 即当π,2x ⎛⎤∈-∞- ⎥⎝⎦时,也有()0h x <.综上,()0,t ∃∈+∞,对R x ∀∈,[)0,a ∃∈+∞,使得()xh x a =总成立. 例7.(2023ꞏ全国ꞏ高三专题练习)已知函数()()12ln a f x x a x x+=-+-. (1)讨论函数()f x 的单调性;(2)设()22e e 3x g x mx =+--,当2e 1a =-时,对任意[)11,x ∈+∞,存在[)21,x ∈+∞,使()21()g xf x ≤,求实数m 的取值范围.【答案解析】(1)()()12ln a f x x a x x+=-+-定义域为()0,∞+, ()()()2211211x x a a a f x x x x--+⎡⎤++⎣⎦'=-+=, 令()0f x '=,得1x =或1x a =+. 当10a +≤即1a ≤-时:()0,1x ∈,()0f x '<,函数()f x 在()0,1上单调递减;()1,x ∈+∞,()0f x ¢>,函数()f x 在()1+∞,单调递增; 当011a <+<,即10a -<<时:()0,1x a ∈+,()0f x ¢>,函数()f x 在()01a +,单调递增; ()1,1x a ∈+,()0f x '<,函数()f x 在()1,1a +上单调递减; ()1,x ∈+∞,()0f x ¢>,函数()f x 在()1+∞,上单调递增;当11a +=即0a =时:()0,x ∈+∞,()0f x '≥,函数()f x 在()0+∞,单调递增; 当11a +>即0a >时:()0,1x ∈,()0f x ¢>,函数()f x 在()0,1单调递增;()1,1x a ∈+,()0f x '<,函数()f x 在()1,1a +上单调递减;()1,x a ∈++∞,()0f x ¢>,函数()f x 在()1,a ∞++上单调递增;综上:当1a ≤-时,单调递减区间有()0,1,单调递增区间有()1,+∞;当10a -<<时,单调递减区间有()1,1a +,单调递增区间有()0,1a +,()1,+∞; 当0a =时,单调递增区间有()0,∞+,无单调递减区间;当0a >时,单调递减区间有()1,1a +,单调递增区间有()0,1,()1,a ∞++. (2)当2e 1a =-时,由(1)得函数()f x 在区间()21,e 上单调递减,在区间()0,1,()2e ,+∞上单调递增,从而函数()f x 在区间[)1,+∞上的最小值为()22e e 3f =--.即存在[)21,x ∈+∞,使()22e 3g x ≤--,即存在[)1,x ∞∈+,使得222e e 3e 3x mx +--≤--,即2e x m x ≤-,令()2e xh x x =-,[)1,x ∞∈+,则()max m h x ≤,由()()3e 2x x h x x='-,当()1,2x ∈时,()0f x ¢>,函数()f x 单调递增;当()2,x ∈+∞时,()0f x '<,函数()f x 单调递减, 所以()()2maxe 24h x h ==-,所以2e 4m ≤-.例8.(2023ꞏ全国ꞏ高三专题练习)函数()e sin x f x x =,()()1cos xg x x x =+.(1)求()f x 的单调递增区间;(2)对1π0,2x ⎡⎤∈⎢⎥⎣⎦∀,2π0,2x ⎡⎤∀∈⎢⎥⎣⎦,使()()12f x g x m +≥成立,求实数m 的取值范围.【答案解析】(1)因为()e sin xf x x =,所以()πsin 4x f x x ⎛⎫'=+ ⎪⎝⎭,当π2π2ππ4k x k ≤+≤+,即()π3π2π,2πZ 44x k k k ⎡⎤∈-+∈⎢⎥⎣⎦时,()0f x '≥,()f x 单调递增,等号仅在ππ,Z 4x k k =-∈时取得,综上,()f x 的单调递增区间是()π3π2π,2πZ 44k k k ⎡⎤-+∈⎢⎥⎣⎦.(2)()()12f x g x m +≥,即()()12f x m g x ≥-, 设()()t x m g x =-,则问题等价于()()min max f x t x ≥,π0,2x ⎡⎤∈⎢⎣⎦, 由(1)可知,当π0,2x ⎡⎤∈⎢⎥⎣⎦时,()0f x '≥,故()f x 在π0,2⎡⎤⎢⎥⎣⎦递增,∴()()min 00f x f ==,()()c 1o s x t x m x x =-++,()()cos s i 1n x t x x x x '=-+++,∵π0,2x ⎡⎤∈⎢⎥⎣⎦时,cos 0x x ->,()1sin 0x x +≥,故当π0,2x ⎡⎤∈⎢⎥⎣⎦时,()0t x '>,()t x 在π0,2⎡⎤⎢⎥⎣⎦递增,()π2max π2t x t m ⎛⎫== ⎪⎝⎭,故π20m +≤,即π22e m ≤,即实数m 的取值范围是π2,2e ⎛⎤-∞ ⎥⎝⎦;【过关测试】1.(2023秋ꞏ河北唐山ꞏ高三开滦第二中学校考期末)已知函数()()2ln R f x x ax x a =++∈.(1)若()y f x =在1x =处的切线与y 轴垂直,求()f x 的极值;(2)若()f x 有两个不同的极值点()1212,x x x x <,且()()12922f x f x +≥-恒成立,求a 的取值范围.【答案解析】(1)()()2ln R f x x ax x a =++∈,()f x 的定义域为()0,∞+,()()212120x ax f x x a x x x ++'=++=>,若()y f x =在1x =处的切线与y 轴垂直, 则()130,3f a a '=+==-,所以()23ln f x x x x =-+,()()()2211231x x x x f x x x---+'==, 所以()f x 在区间()()()10,,1,,0,2f x f x ⎛⎫'+∞> ⎪⎝⎭递增;在区间()()1,1,0,2f x f x ⎛⎫'< ⎪⎝⎭递减.所以()f x 的极大值为11315ln ln 224224f ⎛⎫=-+=-- ⎪⎝⎭,极小值为()11302f =-+=-.(2)若()f x 有两个不同的极值点()1212,0x x x x <<,则()2210x ax f x x ++'==有两个不同的正根12,x x ,即2210x ax ++=有两个不同的正根12,x x , 所以2Δ8004a a ⎧=->⎪⎨->⎪⎩,解得a <-12121,22a x x x x +=-=,221122210,210x ax x ax ++=++=,依题意,()()12922f x f x +≥-恒成立,()()22111222ln 22ln 2x ax x x ax x +++++()()()2211221242ln 2x ax x ax x x =++++()2112ln1x =---+21932x =--≥-恒成立,2132x ≤恒成立,即104a x <≤<-恒成立,所以2210224a a⎧⎫⎪⨯+⨯+≤⎪⎪⎪⎝⎭<-,解得a <-.故a的取值范围为{a a <-2.(2023ꞏ全国ꞏ高三专题练习)已知函数22()2ln 2f x x x x ax a =-+-+,其中0a >. (1)求函数()f x '的单调区间;(2)证明:存在(0,1)a ∈,使得()0f x ≥恒成立,且方程()0f x =有唯一的实根.【答案解析】(1)由题意,()f x 的定义域为(0,)+∞,1()2(ln )22f x x x x a x '=-+⋅+-2ln 222x x a =-+--,设()2ln 222g x x x a =-+--,则22(1)()2x g x x x -'=-+=,令()0g x '>,得1x >,令()0g x '<,得01x <<, 故()f x '的单调递增区间为(1,)+∞,单调递减区间为(0,1). (2)由()2(1ln )0f x x x a '=---=,解得1ln a x x =--, 令22()2ln 2(1ln )(1ln )u x x x x x x x x x =-+---+--, 则(1)10u =>,(e)2(2e)0u =-<, 所以存在0(1,e)x ∈,使得0()0u x =,令0001ln a x x =--0()x ϕ=,其中()1ln (1)x x x x ϕ=--≥, 由1()10x xϕ'=-≥,可得函数()ϕx 在[1,)+∞上为增函数, 所以000(1)()(e)e 21a x ϕϕϕ=<=<=-<,即0(0,1)a ∈, 当0a a =时,有0()0f x '=,00()()0f x u x ==, 再由(1)可知,()f x '在(1,)+∞上为增函数,当0(1,)x x ∈时,()0f x '<,所以()f x 在0(1,)x 上为减函数,所以0()()0f x f x >=, 当00(,)x x ∈+∞时,()0f x '>,所以()f x 在0(,)x +∞上为增函数,所以0()()0f x f x >=,又当(0,1]x ∈时,20()()2ln 0f x x a x x =-->,故当,()0x ∈+∞时,()0f x ≥恒成立.综上所述:存在(0,1)a ∈,使得()0f x ≥恒成立,且方程()0f x =有唯一的实根.3.(2023秋ꞏ湖北ꞏ高三统考期末)设函数()()22cos 2sin 2f x ax x x =--. (1)当1a =时,求()f x 在π0,2⎡⎤⎢⎥⎣⎦上的最值;(2)对()0,x ∀∈+∞,不等式()π2π2cos 2x f a x ⎛⎫+>- ⎪⎝⎭恒成立,求实数a 的取值范围.【答案解析】(1)当1a =时,()()22cos 2sin 2f x x x x =--,π0,2x ⎡⎤∈⎢⎥⎣⎦,设2x t =,[]0,πt ∈,即()()2cos sin 2cos sin g t t t t t t t t =--=--,所以()2cos sin cos 22cos sin 0g t t t t t t t t '=-+-=-+>, 所以()g t 在[]0,π上单调递增,所以()()min 00g t g ==,()()()max ππ2cos πsin π3πg t g ==--=, 即()min 0f x =,()max 3πf x =.(2)由()π2π2cos 2x f a x ⎛⎫+>- ⎪⎝⎭,即()()2π2cos sin 2π2cos 2x a x x a x ⎛⎫+-->- ⎪⎝⎭,即()2cos sin 0ax x x -->,对于()0,x ∈+∞恒成立, 设()()2cos sin h x ax x x =--,()00h =, 当1a ≥时,()()2cos sin h x x x x ≥--,由(1)知[]0,πx ∈时,()2cos sin 0x x x --≥,所以()0h x ≥, 当()π,x ∈+∞时,()()2cos sin 1cos sin 0x x x x x x x --=-+->.当0a ≤时,()()2cos sin h x ax x x =--,π0,2x ⎛⎫∈ ⎪⎝⎭时,()0h x <,不符合题意.当01a <<时,()()2cos sin cos 2cos sin cos h x a a x x x x a a x ax x x '=---=-+-, 即()01h a '=-,设()2cos sin cos n x a a x ax x x =-+-, 则()()21sin cos n x a x ax x '=++,当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0n x '>,即()h x '在π0,2⎛⎫⎪⎝⎭单调递增,又ππ2022h a ⎛⎫⎛⎫'=+> ⎪ ⎪⎝⎭⎝⎭,()010h a '=-<,所以存在0π0,2x ⎛⎫∈ ⎪⎝⎭使得()00h x '=,当()00,x x ∈时,()0h x '<,所以()h x 在()00,x 单调递减,此时()()00h x h <=,不合题意 综上所述,a 的取值范围为[)1,+∞.4.(2023ꞏ全国ꞏ模拟预测)已知函数()e xf x x =,()2ln22xg x =+.(1)求函数()f x 的最值;(2)若关于x 的不等式()()f x g x kx -≥恒成立,求实数k 的取值范围.【答案解析】(1)因为()e xf x x =,所以()e e (1)e x x x f x x x '=+=+,令()(1)e 0x f x x '=+>解得1x >-,令()(1)e 0xf x x '=+<解得1x <-,所以()e xf x x =在(),1-∞-单调递减,在()1,-+∞单调递增,所以当=1x -时,()f x 有最小值为1(1)f e-=-,无最大值.(2)由()2ln22xg x =+的定义域可得()0,x ∈+∞, ()()f x g x kx -≥即e 2ln 22x xx kx --≥,等价于22e ln (0)2xx k x x x≤-->恒成立,令22()e ln 2xx h x x x =--,所以222222e 2ln 22222()e ln e ln 22x x x xx x x h x x x x x x +⎡⎤⎛⎫'=--++=+= ⎪⎢⎥⎝⎭⎣⎦,令2()e 2ln ,02xx F x x x =+>,所以()2()2e 02xxF x x x '=++>在()0,x ∈+∞恒成立, 所以2()e 2ln ,2xx F x x =+单调递增,1(1)e ln 40,(ln16024F F =->=->,所以存在唯一01,12x ⎛⎫∈ ⎪⎝⎭,使得0()0F x =,即0200e 2ln 02xx x +=,所以当()000,x x ∈时,()0<F x ,即()0h x '<,()h x 单调递减, ()00,x x ∈+∞时,()0F x >,即()0h x '>,()h x 单调递增,所以00min 00022()()e ln ,2x x h x h x x x ==-- 由0200e 2ln 02x x x +=得00002e ln 02x x x x +=,也即002ln 002e ln e x x x x =,即002()(lnf x f x =,由(1)知()f x 在()1,-+∞单调递增,所以002lnx x =,00002e ,ln 2x x x x =-=, 所以000min 00000022222()()e ln ln 222x x x g x g x x x x x x ==--=--=, 所以2k ≤.5.(2023ꞏ浙江ꞏ统考一模)设函数()()22ln e 12-=+---x aa f x x a x x ,0x >.(1)当0a >时,证明:()2f a ≤; (2)若()1f x x ≥+,求a 的取值范围. 【答案解析】(1)解:由题知()()22ln e12-=+---x aa f x x a x x ,故()()22ln 112a a f a a a a =+---l 1n a a a ≤+-,记()1ln g a a a a =+-,所以()ln g a a '=-, 所以()0,1x ∈时,()0g a '>,()g a 单调递增,()1,x ∞∈+上,()0g a '<,()g a 单调递减,所以()()12g a g ≤=,即l 1n 2a a a +-≤,故()()1l 2n f a a a g a a =+-≤≤,得证; (2)由题,不妨记()()22e11ln 2x ax a h x a x -=----,因为()11e 10ah -=-≥,故1a ≤;当0<a 时,()()22e11ln 2x ax a h x a x -=----l e n 1x a a x -≤--,令()1ln e x ag x a x -=--,取1e 1ea ax --=,因为0<a ,所以110,e1,aa -->>11e 1e10,0,a aa----><故1e 10e1a a--<<,111e 1e 1e 1e e =e eln 1a aa aaaag a -------⎛⎫-- ⎪ ⎪⎝⎭()11e e 110a a --<---=,故()1ln ex ag x a x -=--有小于零的函数值,因为()()h x g x ≤,所以存在0x 使得()010n e l x ah a x x -≤--<,故不符合题意舍,下证01a ≤≤符合题意:①若0a =,()e 10xh x =-≥;②若01a <≤,令()e 1xF x x =--,所以()e 1x F x '=-,当0x >时,()0F x '>,所以()F x 单调递增, 当0x <时,()0F x '<,所以()F x 单调递减, 故()()min 00F x F ==,即e 1x x ≥+,将ln x 替换x 代入上不等式可有:ln 1≤-x x ,当01x <≤时,()()22ln e 112x ax a h x a x -=----()22ln 12x x a a a x ---≥-()2ln 12a ax a a x x ----≥()21112ln x a x x ⎡⎤----⎢⎣=⎥⎦,记()()21ln 112p x x x x =-++-, ()()211110x p x x x x-'=-+-=≥,故()p x 单调递增, 则(]0,1x ∈时,()()10p x p ≤=,又有01a <≤, 故()()0h x a p x ≥⋅≥成立, 当1x >时,因为01a <≤, 所以()()22e11ln 2x ax a h x a x -=----()()()221e 1112a x a a x x -≥-----,记()21e 12xq x x x =---,所以()()e 10x q x x F x '=--=≥, 所以()q x 在[)0,∞+单调递增,则()()00q x q ≥=,因为01a <≤,1x >,所以()10a x ->,故()()()100a x q q ≥-=, 即()()()10q a x h x -≥≥, 综上所述:[]a 0,1∈.6.(2023ꞏ四川凉山ꞏ统考一模)已知函数()()ln 1f x x x =-+. (1)求()f x 的最小值; (2)已知*N n ∈,证明:()1111ln 123n n ++++>+L ;(3)若()ln 210xx x x a x -+--≥恒成立,求a 的取值范围.【答案解析】(1)因()()()ln 1,1,f x x x x =-+∈-+∞, 则()11(1)11xf x x x x =-=>-+'+, 令()0f x '=,得0x =,又()1,0x ∈-时,()0f x '<,函数()f x 在()1,0x ∈-上单调递减;()0,x ∈+∞时()0f x ¢>,,函数()f x 在()0,x ∈+∞上单调递增;即函数()f x 在0x =处取最小值,即()()00f x f ≥= 所以()f x 的最小值为0.(2)由(1)小题结论可知()ln 1x x ≥+,当且仅当0x =时等号成立, 则*N n ∈时11ln 1n n ⎛⎫≥+ ⎪⎝⎭,即11ln n n n +≥ 所以()1112312311ln ln ln ln ln 1231212n n n n n n ++⎛⎫++++>+++=⋅=+ ⎪⎝⎭ 所以不等式成立.(3)由题可知0x >,()ln 210xx x x a x -+--≥恒成立等价于不等式ln 21x x x x x a x-+-≥恒成立,令()ln 21x x x x x h x x-+-=,则命题等价于()0,x ∈+∞,min ()h x a ≥由(1)知,()ln 1x x ≥+,即有e 1x x ≥+,当且仅当0x =时等号成立,所以()ln e ln 21ln 1ln 212x x x x x x x x x x h x x x -+-+-+-=≥=当ln 0x x =,即1x =时能取等号,所以min ()2h x =,即2a ≤ a 的取值范围为(],2-∞.7.(2023秋ꞏ山东烟台ꞏ高三统考期末)已知0a >,()()2e 2=-+xf x x a x x ,x ∈R ,()f x '为()f x 的导函数.(1)讨论函数()f x 的单调性;(2)若存在a 使得()2f x b a '≥-对任意x 恒成立,求实数b 的取值范围.【答案解析】(1)()2e 2x f x x ax ax =--,则()()()1e 2xf x x a '=+-,当0a >时,方程e 20x a -=的根为()ln 2x a =, 当()ln 21a >-,即12ea >时,当(),1x ∈-∞-和()()ln 2,x a ∈+∞时,()0f x ¢>, ()f x 单调递增,当()()1,ln 2x a ∈-时,()0f x '<,()f x 单调递减, 当()ln 21a <-,即102ea <<,当()(),ln 2x a ∈-∞和()1,x ∈-+∞时,()0f x ¢>, ()f x 单调递增,当()()ln 2,1x a ∈-时,()0f x '<,()f x 单调递减, 当()ln 21a =-,即12ea =时,0y '≥恒成立,函数在R 上单调递增, 综上所述,当102ea <<时,()f x 在()(),ln 2a -∞,()1,-+∞上单调递增,在()()ln 2,1a -上单调递减;当12e a =时,()f x 在R 上单调递增,当12ea >时,()f x 在(),1-∞-,()()ln 2,a +∞上单调递增,在()()1,ln 2a -上单调递减;(2)存在实数a 使得()2f x b a '≥-对任意x 恒成立,即e e 2x x b x ax ≤+-恒成立,令()e e 2x xg x x ax =+-,则()min b g x ≤,因为()()2e 2xg x x a '=+-,当2x ≤-时,()0g x '<恒成立;当2x >-时,()()3e 0x g x x ''=+>,函数()g x '在()2,-+∞上单调递增,且()220g a '-=-<,()()2222e 20a g a a a '=+->,所以,存在()02,2x a ∈-,使得()00g x '=,且()g x 在()02,x -上单调递减,在()0,x +∞上单调递增,所以()()()0000min 1e 2xg x g x x ax ==+-, 于是,原命题可转化为存在a 使得()0001e 2xb x ax ≤+-在()2,-+∞上成立,又因为()()0002e 20xg x x a '=+-=,所以()0022e x a x =+,所以存在()02,x ∈-+∞,使得()()()00022000001e 2e e 1x x x b x x x x x ≤+-+=--+成立,令()()2e 1x h x x x =--+,()2,x ∈-+∞,则()()2e 3x h x x x '=--,所以当()2,0x ∈-时,()0h x '>,()h x 单调递增,当()0,x ∈+∞时,()0h x '<,()h x 单调递减, 所以()()max 01h x h ==,所以1b ≤.8.(2023ꞏ广东广州ꞏ统考二模)已知定义在()0,∞+上的函数()e axf x =.(1)若R a ∈,讨论()f x 的单调性;(2)若0a >,且当()0,x ∈+∞时,不等式2e ln aax xx ax ⎛⎫≥ ⎪⎝⎭恒成立,求实数a 的取值范围.【答案解析】(1)函数()e axf x =,0x >,求导得:()e e eax ax axf x '=+=, 当0a ≥时,()0f x '>,函数()f x 在()0,∞+上单调递增, 当a<0时,由()0f x '>得102x a <<-,由()0f x '<得12x a >-,则()f x 在1(0,)2a -上递增,在1(,)2a-+∞上递减,所以当0a ≥时,函数()f x 的递增区间是()0,∞+; 当a<0时,函数()f x 的递增区间是1(0,)2a -,递减区间是1(,)2a-+∞. (2)因为0a >,且当()0,x ∈+∞时,不等式2e ln ()ax a xx ax ≥恒成立,当01x <≤时,0a ∀>,2e ln (0ax a xx ax>≥恒成立,因此0a >,当1x >时,2e ln ()2ln e 2ln ln(ln )ln()ax a ax xa a x x ax x ax ≥⇔-≥-2ln e ln(ln e )2ln ln(ln )ax ax a a x x ⇔+≥+,令()2ln g x ax x =+,原不等式等价于(ln e )(ln )ax g g x ≥恒成立, 而1()20g x a x'=+>,即函数()g x 在(1,)+∞上单调递增,因此1,ln e ln ax x x ∀>≥, 即ln 1,ln x x ax x a x ∀>≥⇔≥,令ln (),1x h x x x =>,21ln ()xh x x -'=,当1e x <<时,()0h x '>,当e x >时,()0h x '<,函数()h x 在(1,e)上单调递增,在(e,)+∞上单调递减, max 1()(e)eh x h ==,因此1e a ≥,综上得1ea ≥,所以实数a 的取值范围是1[,)e+∞.9.(2023秋ꞏ江西ꞏ高三校联考期末)已知函数()e xf x ax =-.(1)讨论()f x 的单调性;(2)若4a ≥,证明:对于任意[)1,x ∞∈+,()2323f x x ax >-+恒成立.(参考数据:ln10 2.3≈)。

高考数学二轮复习数学导数及其应用多选题的专项培优练习题(及答案

高考数学二轮复习数学导数及其应用多选题的专项培优练习题(及答案

高考数学二轮复习数学导数及其应用多选题的专项培优练习题(及答案一、导数及其应用多选题1.对于定义城为R 的函数()f x ,若满足:①(0)0f =;②当x ∈R ,且0x ≠时,都有()0xf x '>;③当120x x <<且12||||x x <时,都有12()()f x f x <,则称()f x 为“偏对称函数”.下列函数是“偏对称函数”的是( ) A .()321f x x x =-+B .()21xf x e x =--C .()3ln 1,0()2,0x x f x x x ⎧-+≤=⎨>⎩D .4()sin f x x x =【答案】BC 【分析】运用新定义,分别讨论四个函数是否满足三个条件,结合奇偶性和单调性,以及对称性,即可得到所求结论. 【详解】解:经验证,1()f x ,2()f x ,3()f x ,4()f x 都满足条件①;0()0()0x xf x f x >⎧'>⇔⎨'>⎩,或0()0x f x <⎧⎨'<⎩;当120x x <<且12||||x x <时,等价于21120x x x x -<<<-<,即条件②等价于函数()f x 在区间(,0)-∞上单调递减,在区间(0,)+∞上单调递增; A 中,()321f x x x =-+,()2132f x x x '=-+,则当0x ≠时,由()()321232230x x x x f x x =-+=-≤',得23x ≥,不符合条件②,故1()f x 不是“偏对称函数”;B 中,()21xf x e x =--,()21xf x e '=-,当0x >时,e 1x >,()20f x '>,当0x <时,01x e <<,()20f x '<,则当0x ≠时,都有()20xf x '>,符合条件②, ∴函数()21xf x e x =--在(),0-∞上单调递减,在()0,∞+上单调递增,由2()f x 的单调性知,当21120x x x x -<<<-<时,()2122()f x f x <-, ∴22212222222()()()()2x x f x f x f x f x e e x --<--=-++,令()2x x F x e e x -=-++,0x >,()220x x F x e e -'=--+≤-=, 当且仅当x x e e -=即0x =时,“=”成立,∴()F x 在[0,)+∞上是减函数,∴2()(0)0F x F <=,即2122()()f x f x <,符合条件③, 故2()f x 是“偏对称函数”; C 中,由函数()3ln 1,0()2,x x f x x x ⎧-+≤=⎨>⎩,当0x <时,31()01f x x =<-',当0x >时,3()20f x '=>,符合条件②,∴函数3()f x 在(),0-∞上单调递减,在()0,∞+上单调递增, 有单调性知,当21120x x x x -<<<-<时,()3132()f x f x <-, 设()ln(1)2F x x x =+-,0x >,则1()201F x x '=-<+, ()F x 在(0,)+∞上是减函数,可得()(0)0F x F <=,∴1222()()()()f x f x f x f x -<--()()222ln 1()0F x x f x =+-=<, 即12()()f x f x <,符合条件③,故3()f x 是“偏对称函数”;D 中,4()sin f x x x =,则()44()sin ()f x x x f x -=--=,则4()f x 是偶函数,而4()sin cos f x x x x '=+ ()x ϕ=+(tan x ϕ=),则根据三角函数的性质可知,当0x >时,4()f x '的符号有正有负,不符合条件②,故4()f x 不是“偏对称函数”; 故选:BC . 【点睛】本题主要考查在新定义下利用导数研究函数的单调性与最值,考查计算能力,考查转化与划归思想,属于难题.2.已知函数()f x 对于任意x ∈R ,均满足()()2f x f x =-.当1x ≤时()ln ,01,0x x x f x e x <≤⎧=⎨≤⎩,若函数()()2g x m x f x =--,下列结论正确的为( )A .若0m <,则()g x 恰有两个零点B .若32m e <<,则()g x 有三个零点 C .若302m <≤,则()g x 恰有四个零点 D .不存在m 使得()g x 恰有四个零点 【答案】ABC 【分析】设()2h x m x =-,作出函数()g x 的图象,求出直线2y mx =-与曲线()ln 01y x x =<<相切以及直线2y mx =-过点()2,1A 时对应的实数m 的值,数形结合可判断各选项的正误. 【详解】由()()2f x f x =-可知函数()f x 的图象关于直线1x =对称. 令()0g x =,即()2m x f x -=,作出函数()f x 的图象如下图所示:令()2h x m x =-,则函数()g x 的零点个数为函数()f x 、()h x 的图象的交点个数,()h x 的定义域为R ,且()()22h x m x m x h x -=--=-=,则函数()h x 为偶函数,且函数()h x 的图象恒过定点()0,2-,当函数()h x 的图象过点()2,1A 时,有()2221h m =-=,解得32m =. 过点()0,2-作函数()ln 01y x x =<<的图象的切线, 设切点为()00,ln x x ,对函数ln y x =求导得1y x'=, 所以,函数ln y x =的图象在点()00,ln x x 处的切线方程为()0001ln y x x x x -=-, 切线过点()0,2-,所以,02ln 1x --=-,解得01x e=,则切线斜率为e , 即当m e =时,函数()y h x =的图象与函数()ln 01y x x =<<的图象相切. 若函数()g x 恰有两个零点,由图可得0m ≤或m e =,A 选项正确; 若函数()g x 恰有三个零点,由图可得32m e <<,B 选项正确; 若函数()g x 恰有四个零点,由图可得302m <≤,C 选项正确,D 选项错误. 故选:ABC. 【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.3.已知函数()1ln f x x x x=-+,()()1ln x x x x g --=,则下列结论正确的是( ) A .()g x 存在唯一极值点0x ,且()01,2x ∈ B .()f x 恰有3个零点C .当1k <时,函数()g x 与()h x kx =的图象有两个交点D .若120x x >且()()120f x f x +=,则121=x x 【答案】ACD 【分析】根据导数求得函数()g x '在(0,)+∞上为单调递减函数,结合零点的存在性定,可判定A 正确;利用导数求得函数 ()f x 在(,0)-∞,(0,)+∞单调递减,进而得到函数 ()f x 只有2个零点,可判定B 不正确;由()g x kx =,转化为函数()()1ln x x x ϕ-=和 ()(1)m x k x =-的图象的交点个数,可判定C 正确;由()()120f x f x +=,化简得到 ()121()f x f x =,结合单调性,可判定D 正确. 【详解】由函数()()1ln x x x x g --=,可得 ()1ln ,0g x x x x '=-+>,则()2110g x x x''=--<,所以()g x '在(0,)+∞上为单调递减函数,又由 ()()110,12ln 202g g '=>=-+<, 所以函数()g x 在区间(1,2)内只有一个极值点,所以A 正确; 由函数()1ln f x x x x=-+, 当0x >时,()1ln f x x x x=-+,可得 ()221x x f x x -+-'=,因为22131()024x x x -+-=---<,所以 ()0f x '<,函数()f x 在(0,)+∞单调递减;又由()10f =,所以函数在(0,)+∞上只有一个零点, 当0x <时,()1ln()f x x x x =--+,可得 ()221x x f x x -+-'=,因为22131()024x x x -+-=---<,所以 ()0f x '<,函数()f x 在(,0)-∞单调递减; 又由()10f -=,所以函数在(,0)-∞上只有一个零点,综上可得函数()1ln f x x x x=-+在定义域内只有2个零点,所以B 不正确; 令()g x kx =,即()1ln x x x kx --=,即 ()1ln (1)x x k x -=-, 设()()1ln x x x ϕ-=, ()(1)m x k x =-, 可得()1ln 1x x x ϕ'=+-,则 ()2110x x xϕ''=+>,所以函数()x ϕ'(0,)+∞单调递增, 又由()01ϕ'=,可得当(0,1)x ∈时, ()0x ϕ'<,函数()x ϕ单调递减, 当(1,)x ∈+∞时,()0x ϕ'>,函数 ()x ϕ单调递增, 当1x =时,函数()x ϕ取得最小值,最小值为()10ϕ=, 又由()(1)m x k x =-,因为1k <,则 10k ->,且过原点的直线,结合图象,即可得到函数()()1ln x x x ϕ-=和 ()(1)m x k x =-的图象有两个交点,所以C 正确;由120x x >,若120,0x x >>时,因为 ()()120f x f x +=,可得()()12222222211111ln ln 1f x f x x x f x x x x x ⎛⎫⎛⎫=-=--+=+-= ⎪ ⎪⎝⎭⎝⎭,即()121()f x f x =,因为()f x 在(0,)+∞单调递减,所以 121x x =,即121=x x , 同理可知,若120,0x x <<时,可得121=x x ,所以D 正确. 故选:ACD.【点睛】函数由零点求参数的取值范围的常用方法与策略:1、分类参数法:一般命题情境为给出区间,求满足函数零点个数的参数范围,通常解法为从()f x 中分离参数,然后利用求导的方法求出由参数构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数的取值范围;2、分类讨论法:一般命题情境为没有固定的区间,求满足函数零点个数的参数范围,通常解法为结合函数的单调性,先确定参数分类标准,在每个小范围内研究零点的个数是否符合题意,将满足题意的参数的各个小范围并在一起,即可为所求参数的范围.4.设函数()()()1f x x x x a =--,则下列结论正确的是( ) A .当4a =-时,()f x 在11,2⎡⎤-⎢⎥⎣⎦上的平均变化率为194B .当1a =时,函数()f x 的图像与直线427y =有2个交点 C .当2a =时,()f x 的图像关于点()1,0中心对称D .若函数()f x 有两个不同的极值点1x ,2x ,则当2a ≥时,()()120f x f x +≤ 【答案】BCD 【分析】运用平均变化率的定义可分析A ,利用导数研究()f x 的单调性和极值,可分析B 选项,证明()()20f x f x +-=可分析C 选项,先得出1x ,2x 为方程()23210x a x a -++=的两个实数根,结合韦达定理可分析D 选项. 【详解】对于A ,当4a =-时,()()()14f x x x x =-+,则()f x 在11,2⎡⎤-⎢⎥⎣⎦上的平均变化率为()()()119123192221412⎛⎫⨯-⨯--⨯-⨯ ⎪⎝⎭=---,故A 错误;对于B ,当1a =时,()()23212f x x x x x x =-=-+,()()()2341311f x x x x x '=-+=--,可得下表:因为327f ⎛⎫= ⎪⎝⎭,()10f =,()42227f =>,结合()f x 的单调性可知,方程()427f x =有两个实数解,一个解为13,另一个解在()1,2上,故B 正确; 对于C ,当2a =时,()()()()()()()231211111f x x x x x x x x ⎡⎤=--=---=---⎣⎦,则有()()()()()()33211110f x f x x x x x +-=---+---=,故C 正确; 对于D ,()()()1f x x x x a =--,()()()()()2121321f x x x a x x a x a x a '=--+--=-++,令()0f x '=,可得方程()23210x a x a -++=,因为()()22412130a a a ∆=-+=-+>,且函数()f x 有两个不同的极值点1x ,2x ,所以1x ,2x 为方程()23210x a x a -++=的两个实数根,则有()12122132x x a a x x ⎧+=+⎪⎪⎨⎪=⎪⎩,则()()()()()()1211122211f x f x x x x a x x x a +=--+--()()()()33221212121x x a x x a x x =+-++++()()()()()22212112212121212x x x x x x a x x x x a x x ⎡⎤=+-++++-++⎣⎦()()()22211221212221233a x x x x x x x x a ⎡⎤=+-+-+++⎢⎥⎣⎦ ()()()()()21242212113327a a a x x a a --⎡⎤=+-++=-+⋅⎢⎥⎣⎦因为2a ≥,所以()()120f x f x +≤,故D 正确; 故选:BCD . 【点睛】关键点点睛:本题考查利用导数研究函数的单调性,平均变化率,极值等问题,本题的关键是选项D ,利用根与系数的关系,转化为关于a 的函数,证明不等式.5.定义在R 上的函数()f x ,若存在函数()g x ax b =+(a ,b 为常数),使得()()f x g x ≥对一切实数x 都成立,则称()g x 为函数()f x 的一个承托函数,下列命题中正确的是( )A .函数()2g x =-是函数ln ,0()1,0x x f x x >⎧=⎨⎩的一个承托函数B .函数()1g x x =-是函数()sin f x x x =+的一个承托函数C .若函数()g x ax = 是函数()x f x e =的一个承托函数,则a 的取值范围是[0,]eD .值域是R 的函数()f x 不存在承托函数 【答案】BC 【分析】由承托函数的定义依次判断即可. 【详解】解:对A ,∵当0x >时,()ln (,)f x x =∈-∞+∞, ∴()()2f x g x ≥=-对一切实数x 不一定都成立,故A 错误;对B ,令()()()t x f x g x =-,则()sin (1)sin 10t x x x x x =+--=+≥恒成立, ∴函数()1g x x =-是函数()sin f x x x =+的一个承托函数,故B 正确; 对C ,令()xh x e ax =-,则()xh x e a '=-, 若0a =,由题意知,结论成立, 若0a >,令()0h x '=,得ln x a =,∴函数()h x 在(,ln )a -∞上为减函数,在(ln ,)a +∞上为增函数, ∴当ln x a =时,函数()h x 取得极小值,也是最小值,为ln a a a -, ∵()g x ax =是函数()x f x e =的一个承托函数, ∴ln 0a a a -≥, 即ln 1a ≤, ∴0a e <≤,若0a <,当x →-∞时,()h x →-∞,故不成立,综上,当0a e 时,函数()g x ax =是函数()xf x e =的一个承托函数,故C 正确;对D ,不妨令()2,()21f x x g x x ==-,则()()10f x g x -=≥恒成立, 故()21g x x =-是()2f x x =的一个承托函数,故D 错误. 故选:BC . 【点睛】方法点睛:以函数为载体的新定义问题,是高考命题创新型试题的一个热点,常见的命题形式有新概念、新法则、新运算等,这类试题中函数只是基本的依托,考查的是考生创造性解决问题的能力.6.已知()2sin x f x x x π=--.( )A .()f x 的零点个数为4B .()f x 的极值点个数为3C .x 轴为曲线()y f x =的切线D .若()12()f x f x =,则12x x π+=【答案】BC 【分析】首先根据()0f x '=得到21cos xx π-=,分别画出21xy π=-和cos y x =的图像,从而得到函数的单调性和极值,再依次判断选项即可得到答案. 【详解】()21cos xf x x π'=--,令()0f x '=,得到21cos xx π-=.分别画出21xy π=-和cos y x =的图像,如图所示:由图知:21cos xx π-=有三个解,即()0f x '=有三个解,分别为0,2π,π. 所以(),0x ∈-∞,()21cos 0xf x x π'=-->,()f x 为增函数,0,2x π⎛⎫∈ ⎪⎝⎭,()21cos 0x f x x π'=--<,()f x 为减函数,,2x ππ⎛⎫∈ ⎪⎝⎭,()21cos 0x f x x π'=-->,()f x 为增函数,(),x π∈+∞,()21cos 0xf x x π'=--<,()f x 为减函数.所以当0x =时,()f x 取得极大值为0,当2x π=时,()f x 取得极小值为14π-,当x π=时,()f x 取得极大值为0,所以函数()f x 有两个零点,三个极值点,A 错误,B 正确.因为函数()f x 的极大值为0,所以x 轴为曲线()y f x =的切线,故C 正确. 因为()f x 在(),0-∞为增函数,0,2π⎛⎫⎪⎝⎭为减函数, 所以存在1x ,2x 满足1202x x π<<<,且()()12f x f x =,显然122x x π+<,故D 错误.故选:BC 【点睛】本题主要考查导数的综合应用,考查利用导数研究函数的零点,极值点和切线,属于难题.7.已知函数()21,0log ,0kx x f x x x +≤⎧=⎨>⎩,下列是关于函数()1y f f x =+⎡⎤⎣⎦的零点个数的判断,其中正确的是( ) A .当0k >时,有3个零点B .当0k <时,有2个零点C .当0k >时,有4个零点D .当0k <时,有1个零点【答案】CD 【分析】令y =0得()1f f x =-⎡⎤⎣⎦,利用换元法将函数分解为f (x )=t 和f (t )=﹣1,作出函数f (x )的图象,利用数形结合即可得到结论. 【详解】令()10y f f x =+=⎡⎤⎣⎦,得()1f f x =-⎡⎤⎣⎦,设f (x )=t ,则方程()1f f x =-⎡⎤⎣⎦等价为f (t )=﹣1,①若k >0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有两个根其中t 2<0,0<t 1<1,由f (x )=t 2<0,此时x 有两解,由f (x )=t 1∈(0,1)知此时x 有两解,此时共有4个解, 即函数y =f [f (x )]+1有4个零点.②若k <0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有一个根t 1,其中0<t 1<1,由f (x )=t 1∈(0,1),此时x 只有1个解,即函数y =f [f (x )]+1有1个零点. 故选:CD .【点睛】本题考查分段函数的应用,考查复合函数的零点的判断,利用换元法和数形结合是解决本题的关键,属于难题.8.下列命题正确的有( ) A .已知0,0a b >>且1a b +=,则1222a b -<< B .3412a b ==2a bab+= C .323y x x x =--的极大值和极小值的和为6-D .过(1,0)A -的直线与函数3y x x =-有三个交点,则该直线斜率的取值范围是1(,2)(2,)4-+∞ 【答案】ACD【分析】由等式关系、指数函数的性质可求2a b -的范围;利用指对数互化,结合对数的运算法求a b ab+;利用导数确定零点关系,结合原函数式计算极值之和即可;由直线与3y x x =-有三个交点,即可知2()h x x x k =--有两个零点且1x =-不是其零点即可求斜率范围.【详解】A 选项,由条件知1b a =-且01a <<,所以21(1,1)a b a -=-∈-,即1222a b -<<;B 选项,34a b ==log a =4log b =1212112(log 3log 4)2a b ab a b+=+=+=; C 选项,2361y x x '=--中>0∆且开口向上,所以存在两个零点12,x x 且122x x +=、1213x x =-,即12,x x 为y 两个极值点, 所以2212121212121212()[()3]3[()2]()6y y x x x x x x x x x x x x +=++--+--+=-; D 选项,令直线为(1)y k x =+与3y x x =-有三个交点,即2()()(1)g x x x k x =--+有三个零点,所以2()h x x x k =--有两个零点即可 ∴140(1)20k h k ∆=+>⎧⎨-=-≠⎩,解得1(,2)(2,)4k ∈-+∞ 故选:ACD【点睛】本题考查了指对数的运算及指数函数性质,利用导数研究极值,由函数交点情况求参数范围,属于难题.。

高考总复习优化设计二轮用书数学解答题专项6 导数的综合应用

高考总复习优化设计二轮用书数学解答题专项6  导数的综合应用
所以 φ(x)≤φ(1)=0,故当 x∈(0,+∞)时,ln
(+5)(-1)
x≤
恒成立,则
4+2
1 1
1
1
1 (6+)·
1
h(n)-h(n+1)=(n+ )ln(1+ )-1≤(n+ )· 2 -1=
2

2 2(3+ )
4(3+2)
1
1
所以 h(2)-h(3)< × 112
2
1 1
1
h(n-1)-h(n)<12 ( − ),
故 h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,
1
从而 h(x)在(0,+∞)上的最大值为 h(1)=-e.
2
综上,当 x>0 时,H(x)>h(x),即 f(x)+ >g(-x).
e
x>xe
-x
2
- .
e
增分技巧1.若直接通过求导求函数的最值比较复杂或无从下手时,可将待
证式进行变形,构造两个函数,从而找到可以传递的中间量,达到证明的目
则-h(n)<12 1-1
1
1
3
1
1
3
< ln 2-1+ < ,故
所以 h(1)-h(n)< ln 2-1+ 16
12
2
12
2
-1
1
5
5
综上,6<h(n)≤1,即6<ln(n!)- + 2 ln n+n≤1.
5
h(n)> (n≥3).
6

2023届新高考数学复习:专项(等高线问题)经典题提分练习(附答案)

2023届新高考数学复习:专项(等高线问题)经典题提分练习(附答案)

2023届新高考数学复习:专项(等高线问题)经典题提分练习一、单选题1.(2023ꞏ全国ꞏ高三专题练习)设函数()22,0ln ,0x x x f x x x ⎧--≤⎪=⎨>⎪⎩①若方程()f x a =有四个不同的实根1x ,2x ,3x ,4x ,则1234x x x x ⋅⋅⋅的取值范围是()0,1②若方程()f x a =有四个不同的实根1x ,2x ,3x ,4x ,则1234x x x x +++的取值范围是()0,∞+③若方程()f x ax =有四个不同的实根,则a 的取值范围是10,e ⎛⎫⎪⎝⎭④方程()()2110f x a f x a ⎛⎫-++= ⎪⎝⎭的不同实根的个数只能是1,2,3,6四个结论中,正确的结论个数为( )A .1B .2C .3D .42.(2023ꞏ全国ꞏ高三专题练习)已知函数()()221,0log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若方程()f x a =有四个不同的解1234,,,,x x x x 且1234x x x x <<<,则()3122341x x x x x ⋅++⋅的取值范围是( )A .(]1,1-B .[]1,1-C .[)1,1-D .()1,1-3.(2023秋ꞏ四川泸州ꞏ高一四川省泸县第四中学校考阶段练习)已知函数()32log ,031108,333x x f x x x x ⎧<≤⎪=⎨-+>⎪⎩,若方程()f x m =有四个不同的实根1x ,2x ,3x ,4x ,满足1234x x x x <<<,则()()341233x x x x --的取值范围是( )A .()0,3B .(]0,4C .(]3,4D .()1,34.(2023ꞏ全国ꞏ高三专题练习)已知函数f (x )=11,1211,12xx x x ⎧⎛⎫-⎪ ⎪⎪⎝⎭⎨⎪-+>⎪⎩…,若互不相等的实数x 1,x 2,x 3满足f (x 1)=f (x 2)=f (x 3),则123111222x x x⎛⎫⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭+⎭⎝的取值范围是( )A .(95,42)B .(1,4)C .4)D .(4,6)5.(2023ꞏ全国ꞏ高三专题练习)已知定义域为()0,6的函数()y f x =的图象关于3x =对称,当(]0,3x ∈时,()ln f x x =,若方程()f x t =有四个不等实根1x ,2x ,3x ,()41234x x x x x <<<时,都有()223412190k x x x x -++-≥成立,则实数k 的最小值为( )A .724 B .13C .12D .1136.(2023ꞏ全国ꞏ高三专题练习)已知函数()22,0,()2,0xx x f x g x x x e x >⎧==-+⎨≤⎩(其中e 是自然对数的底数),若关于x 的方程(())0g f x m -=恰有三个不等实根123,,x x x ,且123x x x <<,则21322x x x --的最小值为( ) A .ln 33-B .3ln 22-C .ln 23-D .1-7.(2023ꞏ吉林长春ꞏ东北师大附中校考模拟预测)已知函数3e ,0()3,0x x f x x x ⎧≤=⎨>⎩,()22g x x x=-+(其中e 是自然对数的底数),若关于x 的方程()(())F x g f x m =-恰有三个不同的零点123,,x x x ,且123x x x <<,则12333x x x -+的最大值为( )A .31ln 4+B .41ln 3+C .3ln 3-D .3ln 3+8.(2023ꞏ全国ꞏ高三专题练习)已知函数()22322,,log ,,x mx m x m f x x x m ⎧-++≤⎪=⎨>⎪⎩,其中01m <<,若存在实数a ,使得关于x 的方程()f x a =恰有三个互异的实数解,则实数m 的取值范围是( ) A .1,14⎛⎫⎪⎝⎭B .1,19⎛⎫ ⎪⎝⎭C .10,4⎛⎫ ⎪⎝⎭D .10,9⎛⎫ ⎪⎝⎭9.(2023ꞏ全国ꞏ高三专题练习)已知函数lg ,0()lg(),0x x g x x x ⎧>⎪=⎨--<⎪⎩,若关于x 的方程()()5222g x g x -+=有四个不等根1234,,,x x x x ,则()()()()12341234x x x x g x g x g x g x +++++++的值是( )A .0B .2C .4D .810.(2023秋ꞏ宁夏ꞏ高三宁夏大学附属中学校考阶段练习)已知函数22,0(){|log |,0x x f x x x +≤=>,若关于x 的方程()()f x a a R =∈有四个不同实数解1234,,,x x x x ,且1234x x x x <<<,则1234x x x x +++的取值范围为 ( ) A .1(2,4-B .1[2,]4-C .[2,)-+∞D .(2,)-+∞11.(2023秋ꞏ湖北武汉ꞏ高一期末)已知函数()()2242,1,log 1,1,x x x f x x x ⎧++≤⎪=⎨->⎪⎩,若关于x 的方程()f x t =有四个不同的实数解1x ,2x ,3x ,4x ,且1234x x x x <<<,则)1234122x x x x ++的最小值为( ) A .72B .8C .92D .1212.(2023秋ꞏ河南郑州ꞏ高一新密市第一高级中学校考阶段练习)已知函数()()22log 1,131255,322x x f x x x x ⎧+-<≤⎪=⎨-+>⎪⎩,若关于x 的方程()f x m =有四个不同的实数解1234,,,x x x x ,且满足1234x x x x <<<,则下列结论正确的是( )A .121x x =-B .[]3421,25x x ∈C .3422x x +=D .12111x x +=- 13.(2023秋ꞏ江西上饶ꞏ高一统考期末)已知函数()()221,0log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若方程()f x a =有四个不同的实数解1x ,2x ,3x ,4x 且1234x x x x <<<,则()3122342x x x x x -+的取值范围是( ) A .()4,5 B .(]4,5C .()4,+∞D .[)4,+∞14.(2023春ꞏ全国ꞏ高三校联考专题练习)已知函数11()||||f x x a x b xa x=++-+--有五个不同的零点,且所有零点之和为52,则实数b 的值为( )A .1B .3C .5D .7二、多选题15.(2023秋ꞏ云南昆明ꞏ高一统考期末)已知函数ln(2),(2,0]()(2),(0,2]x x f x f x x ⎧+∈-=⎨-∈⎩,函数()y f x m =-有四个不同的零点,且从小到大依次为1x ,2x ,3x ,4x ,则下列结论正确的是( )A .121=x xB .1201≤<x xC .341x x =D .2410-<≤x x16.(2023ꞏ全国ꞏ高三专题练习)已知函数()e ,0,lg ,010,11,10,x x x f x x x x x ⎧⋅≤⎪=<<⎨⎪-+≥⎩,若22()3()()2g x f x mf x m =--有6个不同的零点分别为123456,,,,,x x x x x x ,且()()()123456345,x x x x x x f x f x f x <<<<<==,则下列说法正确的是( )A .当0x ≤时,()10ef x -≤≤B .34x x +的取值范围为1012,10⎛⎫⎪⎝⎭C .当0m <时,()()()()1234563f x f x f x x x f x +++的取值范围为1,0e ⎛⎫- ⎪⎝⎭D .当0m >时,()()()()1234563f x f x f x x x f x +++的取值范围为20,3e ⎛⎫⎪⎝⎭17.(2023ꞏ全国ꞏ高三专题练习)设函数22,0()ln ,0x x x f x x x ⎧--⎪=⎨>⎪⎩…,则下列命题中正确的是( )A .若方程()f x a =有四个不同的实根1x ,2x ,3x ,4x ,则1234x x x x ⋅⋅⋅的取值范围是(0,1)B .若方程()f x a =有四个不同的实根1x ,2x ,3x ,4x ,则1234x x x x +++的取值范围是(0,)+∞C .若方程()f x ax =有四个不同的实根,则a 的取值范围是10,e ⎛⎫⎪⎝⎭D .方程21()()()10f x a f x a-++=的不同实根的个数只能是1,2,3,618.(2023秋ꞏ辽宁大连ꞏ高一育明高中校考期末)已知函数()()22log 2,241617,42x x f x x x x ⎧-<≤⎪=⎨-+>⎪⎩,若方程()f x m =有四个不同的实根1234,,,x x x x ,满足1234x x x x <<<,则下列说法正确的是( )A .()121242x x x x +=+B .3412x x +=C .()3432,34x x ∈D .函数()()()()21g x f x m f x m =+--的零点为12346,,,,x x x x19.(2023秋ꞏ山西太原ꞏ高一古交市第一中学校校考阶段练习)已知函数22log ,02()813,2x x f x x x x ⎧<<=⎨-+≥⎩,若f (x )=a 有四个不同的实数解x 1,x 2,x 3,x 4,且满足x 1<x 2<x 3<x 4,则下列命题正确的是( ) A .0<a <1B.12922x x ⎡⎫+∈⎪⎢⎣⎭C .12342110,2x x x x ⎛⎫+++∈ ⎪⎝⎭D.)122x x ⎡+∈⎣20.(2023秋ꞏ重庆铜梁ꞏ高一校考期中)已知奇函数()f x 的定义域为R ,()3f x +为偶函数,且()f x 在[]0,3上单调递减.若关于x 的方程()f x a =在区间[]12,12-上有4个不同的根1234,,,x x x x ,则( ) A .()()6f x f x =+B .()f x 的图象关于直线3x =对称C .1234x x x x +++的值可能为12-D .1234x x x x +++的值可能为1221.(2023ꞏ全国ꞏ高三专题练习)设函数()2101,0lg ,0x x x f x x x ⎧++≤⎪=⎨>⎪⎩,若关于x 的方程()()f x a a R =∈有四个实数解1234,,,x x x x ,且1234x x x x <<<,则()()1234x x x x +-的值可能是( ) A .0B .1C .99D .100三、填空题22.(2023秋ꞏ石河子一中校考阶段练习)已知函数()2e ,0ln ,>0x x x f x x x ⎧-≤⎪=⎨⎪⎩,若函数()y f x b=-有四个不同的零点1x 、2x 、3x 、4x ,且1234x x x x <<<,则以下结论正确的是_____.①22342x x +>;②20eb <<; ③122x x +=-; ④()13422x x x x +<-.23.(2023ꞏ贵州贵阳ꞏ校联考模拟预测)已知函数()()22log 1,13,1910,3,22x x f x x x x ⎧-<≤⎪=⎨-+>⎪⎩若方程()f x m =有四个不同的实根1234,,,x x x x ,满足1234x x x x <<<,则()()()()34121111x x x x ----的取值范围是______.24.(2023秋ꞏ河南郑州ꞏ高一郑州市第七中学校考期末)已知函数()()2121xx f x f x x ⎧≤⎪=⎨->⎪⎩,,,若方程()f x a =有四个不相等的实数根1x ,2x ,3x ,4x ,则22222341x x x x +++的取值范围为__________.25.(2023春ꞏ广东揭阳ꞏ高一校考阶段练习)已知函数()()ln ,036,36x x f x f x x ⎧<≤⎪=⎨-<<⎪⎩,若当方程()f x m =有四个不等实根()12341234,,,x x x x x x x x <<<时,不等式22341230kx x x x k ++≤+恒成立,则实数k 的最大值为____________.26.(2023秋ꞏ江西宜春ꞏ高一江西省丰城中学校考阶段练习)设()()ln ,024,24x x f x f x x ⎧<≤⎪=⎨-<<⎪⎩若方程()f x m =有四个不相等的实根()1,2,3,4i x i =,且1234x x x x <<<,则()2221234x x x x +++的取值范围为___________.27.(2023秋ꞏ湖北ꞏ高一赤壁一中校联考阶段练习)()22log ,0269,2x x f x x x x ⎧<<=⎨-+≥⎩,若关于x 的方程()()()()222100f x t f x t t t -+++=≤有且仅有四个不相等的实数根1x 、2x 、3x 、()41234x x x x x <<<,则1234x x x x t +++的取值范围为__________.28.(2023ꞏ江苏ꞏ高一期末)已知函数22122,0()2log ,0x x x f x x x ⎧++≤⎪=⎨⎪>⎩,若关于x 的方程 f (x ) =a 有四个不同的解1234,,,x x x x ,且1234x x x x <<<,则212344x x x x x ++的取值范围是 _________ 29.(2023秋ꞏ河南濮阳ꞏ高三濮阳南乐一高校考阶段练习)已知函数()()()333322f x x a x b x a x =++-+--有五个不同的零点,且所有零点之和为52,则实数b 的值为______.30.(2023秋ꞏ福建福州ꞏ高一福州四中校考期末)已知函数22sin (10)()44(01)log (1)x x f x x x x x x π-<⎧⎪=-<⎨⎪-⎩………,若()()h x f x a =-有5个零点,则这五个零点之和的取值范围是____________. 四、双空题31.(2023秋ꞏ江西抚州ꞏ高二校联考阶段练习)已知函数ln ,02()(4),24x x f x f x x ⎧<≤=⎨-<<⎩,若当方程()f x m =有四个不等实根1x 、2x 、3x 、4x ,(1x <2x <3x <4x ) 时,不等式22341211kx x x x k ⋅++≥+恒成立,则x 1ꞏx 2=________,实数k 的最小值为___________.32.(2023秋ꞏ天津和平ꞏ高三耀华中学校考阶段练习)设()()ln ,024,24x x f x f x x ⎧<≤⎪=⎨-<<⎪⎩,若方程() f x m =恰有三个不相等的实根,则这三个根之和为________;若方程() f x m =有四个不相等的实根()1,2,3,4i x i =,则()2221234x x x x +++的取值范围为______. 33.(2023ꞏ全国ꞏ高三专题练习)已知函数()12,011,04x e x f x x x x -⎧>⎪=⎨--+≤⎪⎩ ,若函数3()()2g x f x =-有4个零点1x ,2x ,3x ,4x ,则1234x x x x +++=____________;若关于x 的方程25()()02f x f x a -+= ()a R ∈有8个不相等的实数根,则a 的取值范围是____________. 34.(2023秋ꞏ广东汕头ꞏ高一统考期末)设函数()22122,02log ,0x x x f x x x ⎧++≤⎪=⎨⎪>⎩,若关于x 的方程()f x m =有四个不同的解,1x ,2x ,3x ,4x ,且1234x x x x <<<,则m 的取值范围是_____,1234244x x x x x ++的取值范围是__________.参考答案一、单选题1.(2023·全国·高三专题练习)设函数()22,0ln ,0x x x f x x x ⎧--≤⎪=⎨>⎪⎩①若方程()f x a =有四个不同的实根1x ,2x ,3x ,4x ,则1234x x x x ⋅⋅⋅的取值范围是()0,1②若方程()f x a =有四个不同的实根1x ,2x ,3x ,4x ,则1234x x x x +++的取值范围是()0,∞+ ③若方程()f x ax =有四个不同的实根,则a 的取值范围是10,e ⎛⎫⎪⎝⎭④方程()()2110f x a f x a ⎛⎫-++= ⎪⎝⎭的不同实根的个数只能是1,2,3,6四个结论中,正确的结论个数为( ) A .1 B .2C .3D .4【答案】B【过程解析】对于①:作出()f x 的图像如下:若方程()f x a =有四个不同的实根1x ,2x ,3x ,4x ,则01a <<,不妨设1234x x x x <<<, 则1x ,2x 是方程220x x a ---=的两个不等的实数根,3x ,4x 是方程|ln |x a =的两个不等的实数根,所以12x x a =,34ln ln x x -=,所以43ln ln 0x x +=,所以341x x =, 所以1234(0,1)x x x x a =∈,故①正确;对于②:由上可知,122x x +=-,34ln ln x x a -==,且01a <<, 所以341x x =,所以31,1ex ⎛⎫∈ ⎪⎝⎭,4e (1,)x ∈,所以344411(2,e ex x x x +=+∈+, 所以12341(0,e e2)x x x x +++∈+-,故②错误;对于③:方程()f x ax =的实数根的个数,即为函数()y f x =与y ax =的交点个数,因为y ax =恒过坐标原点,当0a =时,有3个交点,当a<0时最多2个交点,所以0a >, 当y ax =与ln (1)y x x =>相切时,设切点为()00,ln x x , 即1y x '=,所以0000ln 1|x x x y x x ='==,解得0e x =,所以0e 1|x x y ='=,所以1ea =,所以当y ax =与ln (1)y x x =>相切时, 即1ea =时,此时有4个交点,若()f x ax =有4个实数根,即有4个交点,当1e>a 时由图可知只有3个交点,当10e a <<时,令()ln g x x ax =-,()1,x ∈+∞,则()11ax g x a x x-'=-=,则当11x a <<时()0g x '>,即()g x 单调递增,当1x a>时()0g x '<,即()g x 单调递减, 所以当1x a =时,函数取得极大值即最大值,()max 1ln 10g x g a a ⎛⎫==--> ⎪⎝⎭, 又()10g a =-<及对数函数与一次函数的增长趋势可知,当x 无限大时()0g x <,即()g x 在11,a ⎛⎫ ⎪⎝⎭和1,a ⎛⎫+∞ ⎪⎝⎭内各有一个零点,即()f x ax =有5个实数根,故③错误; 对于④:21()(()10f x a f x a -++=,所以1[()][()]0f x a f x a--=, 所以()f x a =或1()f x a =, 由图可知,当1m >时,()f x m =的交点个数为2, 当1m =,0时,()f x m =的交点个数为3, 当01m <<时,()f x m =的交点个数为4, 当0m <时,()f x m =的交点个数为1,所以若1a >时,则1(0,1)a∈,交点的个数为246+=个, 若1a =时,则11a=,交点的个数为3个,若01a <<,则11a>,交点有426+=个, 若a<0且1a ≠-时,则10a<且1a a ≠,交点有112+=个,若11a a=-=,交点有1个,综上所述,交点可能有1,2,3,6个,即方程不同实数根1,2,3,6,故④正确; 故选:B .2.(2023·全国·高三专题练习)已知函数()()221,0log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若方程()f x a =有四个不同的解1234,,,,x x x x 且1234x x x x <<<,则()3122341x x x x x ⋅++⋅的取值范围是( ) A .(]1,1- B .[]1,1-C .[)1,1-D .()1,1-【答案】A【过程解析】21log 12x x =-⇒=. 先作()f x 图象,由图象可得12343121,1.2x x x x x ⎡⎫+=-=∈⎪⎢⎣⎭,,因此()31232343112x x x x x x x ⋅++=-+⋅为1,12⎡⎫⎪⎢⎣⎭单调递减函数, 11121,2111212-⨯+=-⨯+=-, 从而()(]31223411,1x x x x x ⋅++∈-⋅. 故选:A3.(2023秋·四川泸州·高一四川省泸县第四中学校考阶段练习)已知函数()32log ,031108,333x x f x x x x ⎧<≤⎪=⎨-+>⎪⎩,若方程()f x m =有四个不同的实根1x ,2x ,3x ,4x ,满足1234x x x x <<<,则()()341233x x x x --的取值范围是( )A .()0,3B .(]0,4C .(]3,4D .()1,3【答案】A【过程解析】作出函数()32log ,031108,333x x f x x x x ⎧<≤⎪=⎨-+>⎪⎩的图象,如图所示:方程()f x m =有四个不同的实根1x ,2x ,3x ,4x ,满足1234x x x x <<<, 则01m <<,()33,4x ∈3log x m =即:3231log ,log x m x m ==-,所以3231log log 0x x +=, 321log 0x x =,所以211x x =,根据二次函数的对称性可得:3410x x +=,()()()()341212343423333391*********x x x x x x xx x x x x x x --==-+--=-+-+,()33,4x ∈考虑函数()21021,3,4y x x x =-+-∈单调递增,3,0x y ==,4,3x y ==所以()33,4x ∈时2331021x x -+-的取值范围为()0,3.故选:A4.(2023·全国·高三专题练习)已知函数f (x )=11,1211,12xx x x ⎧⎛⎫-⎪ ⎪⎪⎝⎭⎨⎪-+>⎪⎩…,若互不相等的实数x 1,x 2,x 3满足f (x 1)=f (x 2)=f (x 3),则123111222x x x⎛⎫⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭+⎭⎝的取值范围是( )A .(95,42)B .(1,4)C .4)D .(4,6)【答案】A【过程解析】画出分段函数f (x )=11,1211,12xx x x ⎧⎛⎫-⎪ ⎪⎪⎝⎭⎨⎪-+>⎪⎩…的图像如图:令互不相等的实数x 1,x 2,x 3满足f (x 1)=f (x 2)=f (x 3)=t ,t ∈(0,12), 则x 1∈22(log ,0)3,x 2∈(0,1),x 3∈(1,2), 则123111222xxx⎛⎫⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭+⎭⎝=1+t +1﹣t +22t ﹣2=2+22t ﹣2, 又t ∈(0,12),∴123111222x x x⎛⎫⎛⎫⎛⎫+ ⎪ ⎪ ⎪⎝⎭⎝⎭+⎭⎝∈(95,42).故选:A .5.(2023·全国·高三专题练习)已知定义域为()0,6的函数()y f x =的图象关于3x =对称,当(]0,3x ∈时,()ln f x x =,若方程()f x t =有四个不等实根1x ,2x ,3x ,()41234x x x x x <<<时,都有()223412190k x x x x -++-≥成立,则实数k 的最小值为( )A .724 B .13C .12D .113【答案】A【过程解析】作出函数()f x 的图象,如图,作直线y t =,它与()f x 图象的四个交点的横坐标依次为1x ,2x ,3x ,()41234x x x x x <<<,因为函数()y f x =的图象关于3x =对称,所以32416,6x x x x =-=-,12ln ln x x -=,即121=x x ,且213x <<,显然341x x >,不等式()223412190k x x x x -++-≥变形为2212349()1x x k x x -+≥-,3421121212(6)(6)366()376()x x x x x x x x x x =--=-++=-+,222212121212()2()2x x x x x x x x +=+-=+-,所以222121234129()11()1366()x x x x x x x x -+-+=--+,由勾形函数性质知12221x x x x +=+在2(1,3)x ∈时是增函数,所以12221102,3x x x x ⎛⎫+=+∈ ⎪⎝⎭, 令12t x x =+,则102,3t ⎛⎫∈ ⎪⎝⎭,211()6(6)t g t t -=-2116(6)t t -=-,22(6)25()6(6)t g t t --'=-,当102,3t ⎛⎫∈ ⎪⎝⎭时,()0g t '<,()g t 单调递减,所以7()(2)24g t g <=,所以724k ≥,即k 的最小值是724. 故选:A .6.(2023·全国·高三专题练习)已知函数()22,0,()2,0xx x f x g x x x e x >⎧==-+⎨≤⎩(其中e 是自然对数的底数),若关于x 的方程(())0g f x m -=恰有三个不等实根123,,x x x ,且123x x x <<,则21322x x x --的最小值为( )A .ln 33-B .3ln 22-C .ln 23-D .1-【答案】A【过程解析】由题意设()f x t =,根据方程(())0g f x m -=恰有三个不等实根, 即2()20g t t t m =-+-=必有两个不相等的实根12,t t ,不妨设12t t <122t t ∴+=,则212t t =-,作出()f x 的图象,函数y t =与()f x 三个不等实根123,,x x x ,且123x x x <<,那么1221xx e t ==,可得312x t =-,101t <≤,所以21311223ln 4x x x t t --=--,构造新函数1()3ln 4(01),()3h t t t t h t t'=--<≤=-当()0h t '<时,10,,()3t h t ⎛⎫∈∴ ⎪⎝⎭在10,3⎛⎫⎪⎝⎭单调递减;当()0h t '>时,1,1,()3t h t ⎛⎫∈∴ ⎪⎝⎭在1,13⎛⎫ ⎪⎝⎭单调递增;∴当13t =时,(t)h 取得最小值为ln 33-,即21322x x x --的最小值为ln 33-; 故选:A7.(2023·吉林长春·东北师大附中校考模拟预测)已知函数3e ,0()3,0x x f x x x ⎧≤=⎨>⎩,()22g x x x =-+(其中e 是自然对数的底数),若关于x 的方程()(())F x g f x m =-恰有三个不同的零点123,,x x x ,且123x x x <<,则12333x x x -+的最大值为( )A .31ln 4+B .41ln 3+C .3ln 3-D .3ln 3+【答案】A【过程解析】由()f x 过程解析式,在(,0]-∞上()f x 单调递增且值域为(0,1],在(0,)+∞上()f x 单调递增且值域为(0,)+∞, 函数()f x 图象如下:所以,()f x 的值域在(0,1]上任意函数值都有两个x 值与之对应,值域在(1,)+∞上任意函数值都有一个x 值与之对应,要使()(())F x g f x m =-恰有三个不同的零点123,,x x x ,则()g x 与y m =的交点横坐标一个在(0,1]上,另一个在(1,)+∞上,由2()2g x x x =-+开口向下且对称轴为1x =,由上图知:01m <<,此时12()()g t g t m ==且12012t t <<<<,122t t +=,结合()f x 图象及123x x x <<有1321e 3xx t ==,323x t =,则112123ln ,,333t t tx x x ===, 所以11123121433ln ln 233t tx x x t t t -+=-+=-+,且101t <<, 令4()ln 23h x x x =-+且01x <<,则1434()33xh x x x -=='-,当3(0,4x ∈时()0h x '>,()h x 递增;当3(,1)4x ∈时()0h x '<,()h x 递减;所以max 33()()ln 144h x h ==+,故12333x x x -+最大值为3ln 14+.故选:A8.(2023·全国·高三专题练习)已知函数()22322,,log ,,x mx m x m f x x x m ⎧-++≤⎪=⎨>⎪⎩,其中01m <<,若存在实数a ,使得关于x 的方程()f x a =恰有三个互异的实数解,则实数m 的取值范围是( ) A .1,14⎛⎫⎪⎝⎭B .1,19⎛⎫ ⎪⎝⎭C .10,4⎛⎫ ⎪⎝⎭D .10,9⎛⎫ ⎪⎝⎭【答案】D【过程解析】因为01m <<, 所以()f x 的大致图象,如图所示:当x m ≤时,()()222f x x m =-+≥,因为存在实数a ,使得关于x 的方程()f x a =恰有三个互异的实数解, 所以3log 2m >,又01m <<, 解得109m <<, 故选:D9.(2023·全国·高三专题练习)已知函数lg ,0()lg(),0x x g x x x ⎧>⎪=⎨--<⎪⎩,若关于x 的方程()()5222g x g x -+=有四个不等根1234,,,x x x x ,则()()()()12341234x x x x g x g x g x g x +++++++的值是( )A .0B .2C .4D .8【答案】A【过程解析】由方程()()5222g x g x -+=可得()1g x =±, 因为函数lg ,0()lg(),0x x g x x x ⎧>⎪=⎨--<⎪⎩, 设0x >,则0x -<,则()()|lg |(|lg ()|)|lg ||lg |0g x g x x x x x +-=+---=-=, 所以()g x 为奇函数且1x ,2x ,3x ,4x 是()1g x =±的根, 所以12340x x x x +++=,不妨有12()()1g x g x ==-,34()()1g x g x ==, 所以1234()()()()0g x g x g x g x +++=.故12341234()()()()x x x x g x g x g x g x +++++++的值是0. 故选:A .10.(2023秋·宁夏·高三宁夏大学附属中学校考阶段练习)已知函数22,0(){|log |,0x x f x x x +≤=>,若关于x 的方程()()f x a a R =∈有四个不同实数解1234,,,x x x x ,且1234x x x x <<<,则1234x x x x +++的取值范围为 ( ) A .1(2,4-B .1[2,]4-C .[2,)-+∞D .(2,)-+∞【答案】A【过程解析】作出函数()f x 的图象,如图,作直线y a =,当02a <≤时,直线y a =与函数()f x 图象有四个交点,由图象知124x x +=-,2324log log x x -=,即341x x =,(0)2f =, 2log 2x -=,14x =,所以3114x ≤<, 所以12343314x x x x x x +++=-++,由对勾函数性质知函数3314y x x =-++在31,14x ⎡⎫∈⎪⎢⎣⎭上是减函数,所以31,14x ⎡⎫∈⎪⎢⎣⎭时,331142,4y x x ⎛⎤=-++∈- ⎥⎝⎦.故选:A .11.(2023秋·湖北武汉·高一期末)已知函数()()2242,1,log 1,1,x x x f x x x ⎧++≤⎪=⎨->⎪⎩,若关于x 的方程()f x t =有四个不同的实数解1x ,2x ,3x ,4x ,且1234x x x x <<<,则)1234122x x x x ++的最小值为( ) A .72B .8C .92D .12【答案】D【过程解析】函数图像如图所示,()17f =,(]0,7t ∈,1234212x x x x <-<≤<<<,124x x +=-,由()()()()()()333433434log 1log 1log 110111x x x x x x --=-⇒--=⇒--=,∴()()34342112122251x x x x =-+++-5922≥=, 当且仅当343,32x x ==时,等号成立,此时1t =;)()2212121212422x x x x x x x x ⎛⎫+⎛⎫-=-≥-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭,当且仅当1222x x =-=-+1t =.所以)1234122x x x x ++的最小值为91422-=. 故选:D12.(2023秋·河南郑州·高一新密市第一高级中学校考阶段练习)已知函数()()22log 1,131255,322x x f x x x x ⎧+-<≤⎪=⎨-+>⎪⎩,若关于x 的方程()f x m =有四个不同的实数解1234,,,x x x x ,且满足1234x x x x <<<,则下列结论正确的是( )A .121x x =-B .[]3421,25x x ∈C .3422x x +=D .12111x x +=- 【答案】D【过程解析】作函数()y f x =和y m =的图象,如图所示:当1m =时,()()2122log 1log 1x x +=+,即()()2122log 11,log 11x x +=-+=,解得121,12x x =-=,此时1212x x =-,故A 错误;结合图象知,02m <<,当3x >时,可知34,x x 是方程()2125522f x x x m =-+=,即2102520x x m -+-=的二根,故3410x x +=,()3425221,25x x m =-∈,端点取不到,故BC错误;当13x -<≤时,()()2122log 1log 1x x +=+,即()()2122log 1log 1x x -+=+, 故()2221log log 111x x =++,即21111x x =++,所以()()21111x x ++=, 故1212x x x x +=-,即12121x x x x +=-,所以12111x x +=-,故D 正确. 故选:D.13.(2023秋·江西上饶·高一统考期末)已知函数()()221,0log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若方程()f x a=有四个不同的实数解1x ,2x ,3x ,4x 且1234x x x x <<<,则()3122342x x x x x -+的取值范围是( )A .()4,5B .(]4,5C .()4,+∞D .[)4,+∞【答案】B【过程解析】作出函数()221,0()log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩的图象如下:因为方程()f x a =有四个不同的解1x ,2x ,3x ,4x ,且1234x x x x <<<, 所以有122x x +=-,341x x =, 故3123234322()2x x x x x x x -+=+, 再由2log 1x =可得2x =或12x =,即3112x <≤, 令2()2g x x x =+,(112x ≤<), 任取12112x x ≤<<,则120x x -<,12110x x ->, 所以()12121212122211()()2222g x g x x x x x x x x x ⎛⎫⎛⎫⎛⎫-=+-+=-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()12121210x x x x ⎛⎫=--< ⎪⎝⎭,即12()()<g x g x , 所以函数2()2g x x x =+在1,12⎡⎫⎪⎢⎣⎭上单调递减, 又152g ⎛⎫= ⎪⎝⎭,4(1)g =,所以()(4,5]g x ∈.即3122342()x x x x x -+的取值范围是(4,5]. 故选:B.14.(2023春·全国·高三校联考专题练习)已知函数11()||||f x x a x b x a x=++-+--有五个不同的零点,且所有零点之和为52,则实数b 的值为( ) A .1 B .3 C .5 D .7【答案】C【过程解析】因为11()||||f x x a x b x a x =++-+--,11()||||()f a x a x x b f x a x x-=-+++-=-,所以函数()f x 的图象关于直线2ax =对称, 设五个零点分别为12345,,,,x x x x x ,且12345x x x x x <<<<, 则15243,,2a x x a x x a x +=+==, 所以1234555222a a x x x x x a a ++++=++==,所以1a =, 则312x =,由3333311()|||1|01f x x x b x x =++-+-=-,可得11|2||12|22b ++-+=,则5b =.故选:C. 二、多选题15.(2023秋·云南昆明·高一统考期末)已知函数ln(2),(2,0]()(2),(0,2]x x f x f x x ⎧+∈-=⎨-∈⎩,函数()y f x m =-有四个不同的零点,且从小到大依次为1x ,2x ,3x ,4x ,则下列结论正确的是( )A .121=x xB .1201≤<x xC .341x x =D .2410-<≤x x【答案】BCD【过程解析】因为ln(2),(2,0]()(2),(0,2]x x f x f x x ⎧+∈-=⎨-∈⎩,所以当(2,0]x ∈-时,()ln(2)f x x =+, 当2(]0,x ∈时,()(2)f x f x =-,所以2(2,0]x -∈-时,(2)ln(22)ln f x x x -=-+=, 所以ln(2),(2,0]()ln ,(0,2]x x f x x x ⎧+∈-⎪=⎨∈⎪⎩, 作出()f x 的图象如图所示,若()f x m =有4个解,则()y f x =与y m =的图象有4个交点,如图(0,ln 2]m ∈,所以1113,1,()ln(2)2x f x x ⎡⎫∈--=-+⎪⎢⎣⎭,(]2221,0,()ln(2)x f x x ∈-=+,由12()()f x f x =,得12ln(2)ln(2)x x -+=+, 即12ln(2)ln(2)0x x +++=,所以12ln[(2)(2)]0x x ++=,所以12(2)(2)1x x ++=, 所以12122()30x x x x +++=,当20x =时,120x x =; 当20x <时,由基本不等式可得12x x +<-所以1230x x ->,解得01<<3>(舍); 所以12[0,1)x x ∈, 所以A 错误,B 正确,对于C ,3331,1,()ln 2x f x x ⎡⎫∈=-⎪⎢⎣⎭,(]4441,2,()ln x f x x ∈=,因为34()()f x f x =,所以34ln ln x x -=,所以34ln ln 0x x +=,即()34ln 0x x =, 所以341x x =,所以C 正确,对于D ,因为2424(1,0],(1,2],2x x x x ∈-∈+=,所以()()224222211(1,0]x x x x x =+=+-∈-,所以D 正确. 故选:BCD16.(2023·全国·高三专题练习)已知函数()e ,0,lg ,010,11,10,x x x f x x x x x ⎧⋅≤⎪=<<⎨⎪-+≥⎩,若22()3()()2g x f x mf x m =--有6个不同的零点分别为123456,,,,,x x x x x x ,且()()()123456345,x x x x x x f x f x f x <<<<<==,则下列说法正确的是( )A .当0x ≤时,()10ef x -≤≤B .34x x +的取值范围为1012,10⎛⎫⎪⎝⎭C .当0m <时,()()()()1234563f x f x f x x x f x +++的取值范围为1,0e ⎛⎫- ⎪⎝⎭D .当0m >时,()()()()1234563f x f x f x x x f x +++的取值范围为20,3e ⎛⎫⎪⎝⎭【答案】AC【过程解析】当0x ≤时,()e x f x x =⋅,此时()(1)e x f x x '=+⋅,令()0f x '>,解得10-<≤x ,令()0f x '<,解得1x <-,可得()f x 在(,1)-∞-上单调递减,在(1,0)-上单调递增,且1(1),(0)0ef f -=-=,∴当0x ≤时,1()0ef x -≤≤,故A 正确; 作出如图所示图像:由22()3()()2g x f x mf x m =--有6个不同的零点, 等价于223()()20f x mf x m --=有6个不同的实数根, 解得()f x m =或2()3m f x =-, ∵341x x ⋅=,∴若343311012,10x x x x ⎛⎫+=+∈ ⎪⎝⎭,可得31110x <<,而当0m >时,120e 3m -<-<,可得302e m <<,而3112e 10f ⎛⎫<= ⎪⎝⎭;当0m <时,10e m -<<,可得22033e m <-<而2113e 10f ⎛⎫<= ⎪⎝⎭, 故3x 的范围为1,110⎛⎫ ⎪⎝⎭的子集,34x x +的取值范围不可能为1012,10⎛⎫⎪⎝⎭,故B 选项错误;该方程有6个根,且()()()345f x f x f x ==,知341x x ⋅=且()()()126f x f x f x ==,当0m <时,()()()1261,0e f x f x f x m ⎛⎫===∈- ⎪⎝⎭,()()()3452(0,1)3m f x f x f x ===-∈,联立解得1,0e m ⎛⎫∈- ⎪⎝⎭, ()()()()()()12345615133332,0e f x f x f x x x f x f x f x m m m ⎛⎫+++=+=-=∈- ⎪⎝⎭,故C 正确;当0m >时,()()()12621,03e m f x f x f x ⎛⎫===-∈- ⎪⎝⎭, ()()()345(0,1)f x f x f x m ===∈,联立解得30,2e m ⎛⎫∈ ⎪⎝⎭,()()()()()()123456153333230,2e f x f x f x x x f x f x f x m m m ⎛⎫+++=+=-+=∈ ⎪⎝⎭.故D 错误.故选:AC.17.(2023·全国·高三专题练习)设函数22,0()ln ,0x x x f x x x ⎧--⎪=⎨>⎪⎩…,则下列命题中正确的是( )A .若方程()f x a =有四个不同的实根1x ,2x ,3x ,4x ,则1234x x x x ⋅⋅⋅的取值范围是(0,1)B .若方程()f x a =有四个不同的实根1x ,2x ,3x ,4x ,则1234x x x x +++的取值范围是(0,)+∞C .若方程()f x ax =有四个不同的实根,则a 的取值范围是10,e ⎛⎫⎪⎝⎭D .方程21()()()10f x a f x a -++=的不同实根的个数只能是1,2,3,6【答案】AD【过程解析】对于A :作出()f x 的图像如下:若方程()f x a =有四个不同的实根1x ,2x ,3x ,4x ,则01a <<,不妨设1234x x x x <<<, 则1x ,2x 是方程220x x a ---=的两个不等的实数根,3x ,4x 是方程|ln |x a =的两个不等的实数根,所以12x x a =,34ln ln x x -=,所以43ln ln 0x x +=,所以341x x =, 所以1234(0,1)x x x x a =∈,故A 正确;对于B :由上可知,122x x +=-,34ln ln x x a -==,且01a <<, 所以341x x =,所以31,1ex ⎛⎫∈ ⎪⎝⎭,4e (1,)x ∈,所以344411(2,1)e x x x x +=+∈+,所以12341(0,1)ex x x x +++∈+,故B 错误;对于C :方程()f x ax =的实数根的个数,即可函数()y f x =与y ax =的交点个数,因为y ax =恒过坐标原点,当0a =时,有3个交点,当a<0时最多2个交点,所以0a >, 当y ax =与ln (1)y x x =>相切时,设切点为()00,ln x x , 即1y x '=,所以0000ln 1|x x x y x x ='==,解得0e x =,所以0e 1|x x y ='=,所以1ea =,所以当y ax =与ln (1)y x x =>相切时, 即1ea =时,此时有4个交点,若()f x ax =有4个实数根,即有4个交点,当1e>a 时由图可知只有3个交点,当10e a <<时,令()ln g x x ax =-,()1,x ∈+∞,则()11ax g x a x x-'=-=,则当11x a <<时()0g x '>,即()g x 单调递增,当1x a >时()0g x '<,即()g x 单调递减,所以当1x a =时,函数取得极大值即最大值,()max 1ln 10g x g a a ⎛⎫==--> ⎪⎝⎭,又()10g a =-<及对数函数与一次函数的增长趋势可知,当x 无限大时()0g x <,即()g x 在11,a ⎛⎫ ⎪⎝⎭和1,a ⎛⎫+∞ ⎪⎝⎭内各有一个零点,即()f x ax =有5个实数根,故C 错误; 对于D :21()()()10f x a f x a -++=,所以1[()][()]0f x a f x a--=,所以()f x a =或1()f x a=, 由图可知,当1m >时,()f x m =的交点个数为2, 当1m =,0时,()f x m =的交点个数为3, 当01m <<时,()f x m =的交点个数为4, 当0m <时,()f x m =的交点个数为1,所以若1a >时,则1(0,1)a∈,交点的个数为246+=个, 若1a =时,则11a=,交点的个数为3个, 若01a <<,则11a>,交点有426+=个, 若a<0且1a ≠-时,则10a<且1a a ≠,交点有112+=个,若11a a=-=,交点有1个,综上所述,交点可能由1,2,3,6个,即方程不同实数根1,2,3,6,故D 正确; 故选:AD .18.(2023秋·辽宁大连·高一育明高中校考期末)已知函数()()22log 2,241617,42x x f x x x x ⎧-<≤⎪=⎨-+>⎪⎩,若方程()f x m =有四个不同的实根1234,,,x x x x ,满足1234x x x x <<<,则下列说法正确的是( )A .()121242x x x x +=+B .3412x x +=C .()3432,34x x ∈D .函数()()()()21g x f x m f x m =+--的零点为12346,,,,x x x x【答案】BCD【过程解析】由过程解析式可得()f x 图象如下图所示:若()f x m =有四个不同的实数根,则()f x 与y m =有四个不同的交点, 由图象可知:123423468x x x x <<<<<<<<,01m <<; 对于A ,()()12f x f x = ,即()()2122log 2log 2x x -=-,()()2122log 2log 2x x ∴--=-,()22211log log 22x x ∴=--,()()12221x x ∴--=, 整理可得:()1212412x x x x +=++,A 错误;对于B ,()()34f x f x = ,3x ∴与4x 关于直线6x =对称,3412x x ∴+=,B 正确; 对于C ,3x 与4x 是方程()2161702x m f m x x -+-==-的两根, ()34217342x x m m ∴=-=-,又01m <<,()3432,34x x ∴∈,C 正确;对于D ,()()()()()()211g x f x m f x m f x m f x =+--=-+⎡⎤⎡⎤⎣⎦⎣⎦,由()0g x =得:()f x m =或()1f x =-,()f x m =的根为1234,,,x x x x ;()1f x =-的根为6,()g x ∴的零点为12346,,,,x x x x ,D 正确.故选:BCD.19.(2023秋·山西太原·高一古交市第一中学校校考阶段练习)已知函数22log ,02()813,2x x f x x x x ⎧<<=⎨-+≥⎩,若f (x )=a 有四个不同的实数解x 1,x 2,x 3,x 4,且满足x 1<x 2<x 3<x 4,则下列命题正确的是( )A .0<a <1B.12922x x ⎡⎫+∈⎪⎢⎣⎭C .12342110,2x x x x ⎛⎫+++∈ ⎪⎝⎭D.)122x x ⎡+∈⎣【答案】ACD 【过程解析】函数()f x 的图象如上所示,方程()f x a =的解可以转化为函数()f x 与y a =图象交点的横坐标,由图可知01a <<,故A 正确;由题意可知2122log log x x -=,即212log 0x x =,解得121=x x ,由图可知212x <<,所以1222122x x x x +=+,令2212=+y x x ,则函数2212=+y x x 在()1,2上单调递增,当21x =时,3y =,22x =时,92y =,所以122xx +的范围为93,2⎛⎫⎪⎝⎭,故B 错;函数2813y x x =-+的对称轴为4x =,所以348x x +=,又121=x x ,所以12342218x x x x x x +++=++,函数()22218g x x x =++在()1,2上单调递增,()110g =,()2122g =,所以12342110,2x x x x ⎛⎫+++∈ ⎪⎝⎭,故C 正确;122222x x x x +=+,函数()2222h x x x =+在(上单调递减,)2上单调递增,h=,()13h =,()23h =,所以)122x x ⎡+∈⎣,故D 正确.故选:ACD.20.(2023秋·重庆铜梁·高一校考期中)已知奇函数()f x 的定义域为R ,()3f x +为偶函数,且()f x 在[]0,3上单调递减.若关于x 的方程()f x a =在区间[]12,12-上有4个不同的根1234,,,x x x x ,则( )A .()()6f x f x =+B .()f x 的图象关于直线3x =对称C .1234x x x x +++的值可能为12-D .1234x x x x +++的值可能为12【答案】BCD【过程解析】()()()()()12939366f x f x f x f x f x +=++=--+=--=-+()()()()3333f x f x f x f x =-++=---+=--=.所以()()12f x f x =+,A 错误.因为()()33f x f x +=-+,所以()f x 的图象关于直线3x =对称,B 正确. 画出()f x 的一种可能图象,如图所示,不妨假设1234x x x x <<<.根据对称性有: 当()03a f <<-时,126x x +=-,3418x x +=,123412x x x x +++=,C 正确. 当()30f a <<时,1218x x +=-,346x x +=,123412x x x x +++=-,D 正确. 故选:BCD21.(2023·全国·高三专题练习)设函数()2101,0lg ,0x x x f x x x ⎧++≤⎪=⎨>⎪⎩,若关于x 的方程()()f x a a R =∈有四个实数解1234,,,x x x x ,且1234x x x x <<<,则()()1234x x x x +-的值可能是( )A .0B .1C .99D .100【答案】BC【过程解析】如图所示:因为关于x 的方程()()f x a a R =∈有四个实数解1234,,,x x x x ,且1234x x x x <<<,所以01a <≤.2101y x x =++的对称轴为5x =-,所以1210x x +=-. 因为34lg lg x x =,所以34lg lg 0x x +=,即341x x =,431x x =. 因为3lg 1x ≤,所以31110x ≤<. 所以()()123433110x x x x x x ⎛⎫+-=-- ⎪⎝⎭, 因为110y x x ⎛⎫=-- ⎪⎝⎭,1110x ≤<为减函数,所以()()(]1234330110,99x x x x x x ⎛⎫∈ ⎪⎭-⎝+-=-.故选:BC 三、填空题22.(2023秋·石河子一中校考阶段练习)已知函数()2e ,0ln ,>0xx x f x x x ⎧-≤⎪=⎨⎪⎩,若函数()y f x b=-有四个不同的零点1x 、2x 、3x 、4x ,且1234x x x x <<<,则以下结论正确的是_____.①22342x x +>;②20eb <<; ③122x x +=-; ④()13422x x x x +<-. 【答案】①②④【过程解析】设()2e xg x x =-,其中x ∈R ,则()()21e xg x x '=-+,当1x <-时,()0g x ¢>,此时函数()g x 单调递增, 当1x >-时,()0g x ¢<,此时函数()g x 单调递减, 所以,函数()g x 的极大值为()21eg -=,且当0x <时,()0g x >, 作出函数()f x 、y b =的图象如下图所示:。

2023年高考数学二轮复习(新高考版) 第1部分 专题突破 第3讲 导数的几何意义及函数的单调性

2023年高考数学二轮复习(新高考版) 第1部分 专题突破  第3讲 导数的几何意义及函数的单调性


a>2e
时,f(x)在-∞,ln
2a上单调递增,在ln
2a,-1上单调递减,在
(-1,+∞)上单调递增.
规律方法
(1)讨论函数的单调性是在函数的定义域内进行的,千万 不要忽视了定义域的限制; (2)在能够通过因式分解求出不等式对应方程的根时,依 据根的大小进行分类讨论; (3)在不能通过因式分解求出根的情况时,根据不等式对 应方程的判别式进行分类讨论.

f(x)在-∞,ln
2a上单调递增,在ln
2a,-1上单调递减,在(-1,+∞)
上单调递增.
综上,当a≤0时,f(x)在(-∞,-1)上单调递增,在(-1,+∞)上单
调递减;

0<a<2e
时,f(x)在(-∞,-1)上单调递增,在-1,ln
2a上单调递减,
在ln∞,+∞)上单调递增;
易错提醒 求曲线的切线方程要注意“过点P的切线”与“在点P处 的切线”的差异,过点P的切线中,点P不一定是切点, 点P也不一定在已知曲线上,而在点P处的切线,必以点P 为切点.
跟踪演练1 (1)(2022·新高考全国Ⅱ)曲线y=ln|x|过坐标原点的两条切线的方 程为__y_=__1e_x__,_y_=__-__1e_x__.
C.b>a>0
D.b>0>a
∵9m=10,∴m∈(1,2), 令f(x)=xm-(x+1),x∈(1,+∞), ∴f′(x)=mxm-1-1, ∵x>1且1<m<2, ∴xm-1>1,∴f′(x)>0, ∴f(x)在(1,+∞)上单调递增, 又9m=10,∴9m-10=0,即f(9)=0, 又a=f(10),b=f(8), ∴f(8)<f(9)<f(10),即b<0<a.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2023届河北省新高考数学复习 专题6 导数解答题30题专项提分计划1.(2022·河北·模拟预测)已知函数()()2e 2xm f x x m =+∈R . (1)若存在0x >,使得()0f x <成立,求m 的取值范围;(2)若函数()()2e e x F x xf x =+-有三个不同的零点,求m 的取值范围.2.(2022·河北石家庄·石家庄二中校考模拟预测)已知函数f x x ax bx =-++.(1)当0,1a b ==时,证明:当()1,x ∈+∞时,()ln f x x <;(2)若2b a =,函数()f x 在区间()1,2上存在极大值,求a 的取值范围.3.(2022·河北沧州·统考二模)已知函数(),R f x a x=∈. (1)求()f x 的单调区间;(2)证明:()e xxf x a -+>-.0a 、a<0讨论可得)()11f =得1x ,不等式1x--,利用的单调性可得答案,定义域为()1,f x x '=0a 时,)f x '单调递增;a<0时,)0,a --时,()0,f x 单调递减;)+∞时,f 综上,当0a 时,f 时,()f x 的单调递减区间为)知,当a =-)()11f =,1x +, ln x x a x-=,所以不等式等价于ln x e 1x-+-,则在0x >时恒成立,0时,(g x 1x ,所以1e x x x x ---+故ln e 0x x x -+>,即()e xxf x a -+>-.【点睛】本题关键点是讨论导数的正负判断函数的单调性,以及转化求出函数的最值证明不等式,考查了学生分析问题、解决问题能力.4.(2022·河北邯郸·统考模拟预测)设函数()()3ln 1f x x x =++(1)求曲线()y f x =在()0,0处的切线方程; (2)证明:当n *∈N 且2n 时,()3121ln 1827n n n-+>++⋅⋅⋅+. 20x ,再换元,令)显然,(x ∈-()(00f '-=(3ln x x ++13x 0x 时,0g x,(g x ()()00g x g =,即当0x 时,()32ln 10x x x ++-1x n =,得21ln 10⎛> ⎝ ()31ln 1ln n n -+->由此可得,ln 20-= 1ln 2>-2n ,其中,a b ∈(1)若1a =,曲线()y f x =在2x =处的切线与直线210x y ++=平行,求()f x 的极值; (2)当1,1b a =≤-时,证明:2()e x f x x-≥. 1b ,进而得a +,由于函数1b ,111xx x--=的变化情况如下表,(2)解:当1,1b a =≤-,()ln f x x x a =++, 因为222()e ee ln ln e ex x x x f x x x x x a x a x --≥⇔≥++⇔≥+,所以只需证明2e ln e exx x x a ≥+成立即可.令e ,0x y x x >=,则()'1e 0,0xy x x =+>>,所以,函数e ,0x y x x >=在()0,∞+上单调递增,即e 0x y x =>. 令e ,0xx t t =>,则22e ln e ln e ex x x tx a t a ≥+⇔≥+,令()2ln ,0e t t g t a t -->=,则()2'2211e e et t t t g --==, 所以,当()20,e t ∈时,()'0g t <,()g t 单调递减,当()2e ,t ∈+∞时,()'0g t >,()g t 单调递增,所以,()()22e 1ln e1a a g g t ≥=--=--,因为1a ≤-,所以10a --≥,即()0g t ≥, 所以2ln e tt a ≥+成立, 所以2()e xf x x-≥成立,证毕. 6.(2022·河北保定·统考二模)已知函数()1e ln ln ln xf x x x a a -=--+.(1)若1a =,证明:()1f x ≥.(2)当[)1,x ∞∈+时,()1f x ≥恒成立,求a 的取值范围.7.(2022·河北秦皇岛·统考二模)已知函数()2si cos n 2f x x x a x x =-++. (1)当1a =-时,求曲线()y f x =在点()()0,0f 处的切线方程; (2)若函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,求a 的取值范围.0,1,cos00=,处的切线的斜率为(0)k f '=0,1处的切线的斜率切线方程为10+=.8.(2022·河北·模拟预测)已知函数()1e xf x a=-+,0a ≠. (1)当1a =时,①求曲线()y f x =在0x =处的切线方程; ②求证:()f x 在(0,)+∞上有唯一极大值点; (2)若()f x 没有零点,求a 的取值范围.0(2)()e e x x ax af x a--=+,令()e x h x a ax =+-,则()e xh x a '=-.①若a<0,则()0h x '>,()h x 在R 上是增函数.因为11e 10a h a a ⎛⎫⎛⎫=-+< ⎪ ⎪⎝⎭⎝⎭,()1 e > 0h =,所以()h x 恰有一个零点0x . 令0e 0x a +=,得0ln()x a =-.代入0()0h x =,得()ln 0a a a a -+--=, 解得1a =-.所以当1a =-时,()h x 的唯一零点为0,此时()f x 无零点,符合题意. ②若0a >,此时()f x 的定义域为R .当ln x a <时,()0h x '<,()h x 在区间(,ln )a -∞上是减函数; 当ln x a >时,()0h x '>,()h x 在区间(ln ,+)a ∞上是增函数. 所以min ()(ln )2ln h x h a a a a ==-. 又()010h a =+>,由题意,当2ln 0a a a ->,即20e a <<时,()f x 无零点,符合题意. 综上,a 的取值范围是{}()210,e -⋃.【点睛】导数的应用主要有:(1)利用导函数几何意义求切线方程;(2)利用导数研究原函数的单调性,求极值(最值); (3)利用导数求参数的取值范围.9.(2022·河北沧州·沧县中学校考模拟预测)已知函数()e ln =-xx f x a a.(1)当1a =时,求曲线()y f x =在点(1,(1))f 处的切线方程;(2)若对任意的,()0x ∈+∞,总有()0f x ≥成立,试求正数a 的最小值.10.(2022·河北·模拟预测)已知函数()e x f x ax =-,R a ∈. (1)求()f x 的极值;(2)令()()sin 1F x f x ax x bx =++--,当12b <时,讨论()F x 零点的个数.【答案】(1)当0a ≤时,()f x 无极值;当0a >时,()f x 有极小值()1ln a a -,无极大值 (2)2个零点【分析】(1)根据题意,求出函数的导函数,对导函数的正负进行分类讨论即可求解; (2)先对函数()F x 求导,令()()g x F x '=,对x 的取值范围分类讨论,利用导数的正负求出()F x 的单调性,由零点存在性定力判断零点个数即可.【详解】(1)()f x 的定义域为R ,且()e x f x a '=-.①当0a ≤时,()0f x '≥恒成立,()f x 在R 上单调递增,无极值, ②当0a >时,令0fx,得ln x a >;令()0f x '<,得ln x a <,所以()f x 在(),ln a ∞-上单调递减;在()ln ,a ∞+上单调递增;()f x 在ln x a =处取极小值()()ln 1ln f a a a =-,无极大值.综上所知,当0a ≤时,()f x 无极值;当0a >时,()f x 有极小值()1ln a a -,无极大值.(2)因为()()e sin 1xF x x bx x R =+--∈,所以()e cos x F x x b =+-', 令()()e cos x g x F x x b '==+-,则()e sin xg x x '=-.①当x π≤-时,由12b ≤<,得bx b ππ-≥≥,所以()e sin 1110xF x x ππ≥++->-->故()F x 在(],∞π--上无零点.②当[)0,x ∈+∞时,()e sin 1sin 0xg x x x ≥-'=-≥,()F x '在[)0,∞+上单调递增;()()020F x F b ≥=-'>',()F x 在[)0,∞+上单调递增,()()00F x F ≥=,()F x ∴在[)0,∞+上有唯一零点0x =,③当(),0x π∈-时,()sin 0,e sin 0xx g x x <=->',()F x '∴在(),0π-上单调递增,()()020,e 10F b F b ππ-=->-=--'<',∴存在(),0t π∈-,使()0F t '=,当(),x t π∈-时,()F x 单调递减; 当(),0x t ∈时,()F x 单调递增;又()()()e 10,00F b F t F πππ--=+-><=;()F x ∴在(),t π-上有唯一零点,在(),0t 上无零点,即()F x 在(),0π-上有1个零点. 综上,当12b ≤<时,函数()F x 有2个零点.11.(2022·河北衡水·衡水市第二中学校考一模)已知函数()()[]πsin ,0,πf x x x x =-∈ (1)求()f x 在()0,0处的切线方程;(2)若()f x a =在定义域上有两解12,x x ,求证: ①2a <;②12ππa x x a -≤--.12.(2023·河北石家庄·统考模拟预测)已知函数1ef x ax=+.f x+>;(1)当1a=时,求证:()10f x≤恒成立,求a的取值范围.(2)当a<0时,不等式()1【答案】(1)证明见解析(2){}1-0fx,∴f )211e 2=->-,即)由已知得()(1f x a '=++0f x,解得1,1a ⎫-∞--⎪⎭上单调递增,(1e a -⎛⎫=-13.(2022·河北邯郸·统考二模)已知函数()ln ex x f x a x =-,0a ≠.(1)若1ea =,分析f (x )的单调性;(2)若f(x)在区间(1,e)上有零点,求实数a的取值范围.14.(2022·河北唐山·统考三模)已知函数2()ln f x ax x x =--. (1)当1a =时,求()f x 的单调区间;(2)若函数()f x 在定义域内有两个不相等的零点12,x x . ①求实数a 的取值范围;②证明:()()12122ln +>-+f x x x x .15.(2022·河北·统考模拟预测)已知()(2)e f x x ax =--为R 上的增函数.(1)求a ;(2)证明:若122x x +>,则()()121f x f x +>-.16.(2022·河北唐山·统考二模)已知函数()3f x x =+,()sin g x b x =,曲线()y f x =和()y g x =在原点处有相同的切线l .(1)求b 的值以及l 的方程;(2)判断函数()()()h x f x g x =-在()0,∞+上零点的个数,并说明理由.【点睛】本题考查导数几何意义、函数的零点、用导数研究函数的单调性以及零点存在性定理,知识考查较为综合,对学生是一个挑战,属于难题.17.(2022·河北·校联考模拟预测)已知函数()()1eln f x ax =-,()()0ag x a x=>. (1)求函数()()()F x f x g x =-在()0,∞+上的极值;(2)当1a =时,若直线l 既是曲线()y f x =又是曲线()y g x =的切线,试判断l 的条数. )()0,+∞的根的个数,令的根的个数.)1eln x =-变化时,(F x 所以当e a x =时,()F x 取得极大值,12e ln e F a ⎛⎫=- ⎪⎝⎭,无极小值. (2)()1eln f x x =-,()e f x x '=-,()1g x x =,()21g x x '=-所以曲线()y f x =在点(),1eln t t -处的切线方程为,即()()e1eln y t x t t--=--,即eeln e 1y x t t=--++.同理可得曲线在点1,b b ⎛⎫⎪⎝⎭处的切线方程为()211y x b b b -=--,即212y x b b =-+.若曲线()y f x =与曲线()y g x =有公切线,则()2e 1,(i)2e ln e 1,ii t b t b ⎧-=-⎪⎪⎨⎪-++=⎪⎩,由(i )得2e t b =,代入(ii )得22eln 10b b+-=,所以问题转化为判断关于b 的方程22eln 10b b+-=在()(),00,∞-+∞的根的个数.因0b ≠,当0b >时,令()()22eln 10h x x x x =+->,即()222e 22e 2x h x x x x -'=-=, 令()0h x '=,得1e x =.所以当10,e ⎛⎫∈ ⎪⎝⎭x 时,()0h x '<,()h x 单调递减;当1,e x ⎛⎫∈+∞ ⎪⎝⎭时,()0h x '>,()h x 单调递增;所以()max 110e h x h ⎛⎫==-< ⎪⎝⎭.因为()()2214e 2e 12e e 210,110e h h ⎛⎫=-+-=-->=> ⎪⎝⎭,所以()21110,10e e e h h h h ⎛⎫⎛⎫⎛⎫⋅<⋅< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以函数()()22eln 10h x x x x =+->在()0,∞+上有两个零点,即22eln 10b b+-=在()0,∞+上有两个不相等的正实数根; 当0b <时,令()()22eln 1k x x x =-+-,则()22e 2k x x x'=-,显然(),0x ∈-∞时,()0k x '<,则()k x 在(),0∞-上单调递减, 因为()()2e 2e 10,130ek k -=-->-=-<,所以()()22eln 1k x x x =-+-在(),0∞-上有唯一一个零点,即方程()22eln 10b b-+-=在(),0∞-上有唯一一个负实数根.所以曲线()y f x =与曲线()y g x =的公切线l 有3条.【点睛】本题考查利用导数研究含参数的极值,导数的几何意义,利用导数研究函数的零点个数等,考查运算求解能力,分类讨论思想,是难题.本题第二问解题的关键在于分别求出曲线()(),f x g x 在某点处的切线方程,进而根据公切线将问题转化为求解函数2()2eln 1(0)h x x x x=+->的零点个数,再利用导数研究函数的零点即可.18.(2022·河北沧州·统考模拟预测)已知函数()1ln 1xf x x x-=+. (1)求()f x 的单调区间;(2)当()()()1212f x f x x x =≠时,证明:122x x +>.0fx;当x ∈f x 的单调递增区间为,单调递减区间为(2)由(1)知:若)x ≠,则0x <要证x x +101x <<又()f x 在()1f x =19.(2022·河北衡水·河北衡水中学校考一模)已知函数. (1)证明:当()0,x π∈时,()0f x >;(2)记函数()()g x f x x =-,判断()g x 在区间()2,2ππ-上零点的个数. ,f x 在(1-,()sin g π=①当x ⎛∈ ⎝()h x ∴在上单调递减,00h xh ,又cos x -即()g x 在sin cos x x x +,()2cos g x '''=上单调递减,又102g π⎛⎫''=> ⎪⎝⎭,(g π''()0g x '>()'∴g x 在当2x π⎛∈ ⎝()g x ∴在()1g x g >③当(x ∈()g x ∴<综上所述:()g x -=()g x ∴在()g x ∴在【点睛】思路点睛;导函数的形式,区间内的单调性,结合零点存在定理确定零点个数.20.(2022·河北邯郸·统考一模)已知函数()()22e 1ln 22x f x a x a x =+--+.(1)讨论()f x 的单调性; (2)若()0f x ≥,求a 的取值范围.21.(2022·河北石家庄·统考模拟预测)已知函数()()()()2e 1x f x x a x a =-+-∈R . (1)若12a =-,求()f x 的极值;(2)当a<0时,证明:()f x 不存在两个零点.0fx,(f x 0<,()f x 在时取极大值()0f =-0fx,(f x 0,结合上述单调性可知,0fx,(f x()f x 的极大值为()()()()()(){}22ln 2ln 222ln 21ln 2210f a a a a a a a ⎡⎤⎡⎤-=--⋅-+--=--⎡⎤⎣⎦⎣⎦+⎦<⎣, 结合上述单调性可知,()f x 不存在两个零点. 所以当a<0时,()f x 不存在两个零点.22.(2023·河北衡水·衡水市第二中学校考模拟预测)已知函数()ln ,11ln ,01xx x af x x x x a⎧-≥⎪⎪=⎨⎪+<<⎪⎩,其中1a >(1)求()f x 的单调区间(2)求方程()()1e ln xf f x a -=+的零点个数.0f x,[)1,+∞0,()0,1是单调23.(2022·河北石家庄·石家庄二中校考模拟预测)已知函数()()3e 3xf x x a x x =--,0a >.(1)讨论函数()f x 极值点的个数;(2)设0m >,若1a =且()))e 2ln 1xf m fx x ≥--对任意的()0,x ∈+∞恒成立,求m 的取值范围.0fx ;f x 在上单调递增,f x 有且仅有一个极值点②当(ln3g (11,ln3x ∴∃∈)()12,x x 时,)()2,x +∞时,0fx;f x 在)1,(1,x x ()2,x +∞上单调递增, f x 有、1x x =和综上所述:当2e 3a <≤时,有且仅有一个极值点;当2e 3a >(2)ln ex =令12t x =-令()2h t =∴当ln t ⎡∈⎢()()()()3e ln3,ln 203ex x a x f x a g x f x a x +=+-=++≠+.(1)当1a =时,求()g x 的单调性; (2)若()f x 恒大于0,求a 的取值范围.25.(2023·河北衡水·河北衡水中学校考模拟预测)已知函数()()ln 0f x a x x x x=++>. (1)若()f x 有唯一零点,设满足条件的a 值为1a 与2a ()12a a ≠证明:①1a 与2a ()12a a ≠互为相反数;②15843a >>; (2)设()()g x xf x =.若()g x 存在两个不同的极值点1x 、2x ,证明12x x a +>-. 参考数据:ln20.7≈,ln3 1.1≈ 0fx,上为增函数,)()1,+∞有且只有两个零点,且它们互为倒数,0001x x x ++)()1,+∞有且只有两个零点26.(2022·河北秦皇岛·统考三模)已知定义在[)0,∞+上的函数()e sin ,e 6xf x m x π⎛⎫=-- ⎪⎝⎭为自然对数的底数.(1)当1m =时,证明:()32f x ≥; (2)若()f x 在20,3π⎛⎫⎪⎝⎭上存在极值,求实数m 的取值范围;(3)在(1)的条件下,若()2cos 16f x x tx π⎛⎫+--≥ ⎪⎝⎭'恒成立,求实数t 的取值范围.27.(2022·河北张家口·统考三模)已知函数()()()2ln 222g x a x a x x a =--+∈R 在1x =处取得极值.(1)求a 的值及函数()g x 的极值;(2)设()()f x g x t =-有三个不同的零点1x ,2x ,3x ()123x x x <<,证明:314x x <+.由()1知()()()3226g x g x g x =<-,且()g x 在()3,+∞上单调递增, ∴236x x ->②,∴结合①②得1362x x +>+,所以314x x <+.【点睛】该试题主要考查函数的导数与单调性、函数的导数与不等式等,主要考查了学生的运算思想、转化思想、构造思想和抽象推理,其中构造出()()()2H x g x g x =--()0,1x ∈和函数()()()6h x g x g x =--()1,3x ∈是解题的关键,属于难题. 28.(2022·河北·统考模拟预测)已知函数(1)ln (),()|ln |1x xf xg x x x -==+.(1)若()()(1,1)f m g n m n =>>,证明:m n >;(2)设函数()(1)ln (1)F x x x a x =--+,若()0F x =有两个不同的实数根12,x x ,且12x x <,证明:221e ax x >⋅.又2222(1)ln ()ln e ln e =(e )1a a a x x f x a g x -====+,即22()=(e )(1,e 1)a a f x g x >>,由(1)可得2e a x >⋅⋅⋅①,又由1()f x a =得1111111111(1)ln (1)ln 1()()ln e ln e =(e )111a a a x x x x f f x a g x x x --======++,即1111()=(e )(1,e 1)a a f g x x >>,由(1)可得11e a x >⋅⋅⋅②,①②相乘可得221e a x x >,即221e a x x >⋅. 【点睛】函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点. 29.(2022·河北衡水·统考二模)已知函数()()f x a x=∈R . (1)当1a =时,求函数()f x 的极值;(2)若曲线()y f x x =-有1x ,()212x x x <两个零点. (i )求a 的取值范围;(ii )证明:存在一组m ,n (0n m >>),使得()f x 的定义域和值域均为[],m n . 【答案】(1)极大值为1,无极小值 (2)(i )ln 2122a >+;(ii )证明见解析【分析】(1)求出导函数,求出的根,列表确定的正负,()f x 的单调性与极值;(2)(i )转化为2ln 0x x a -+=有两解,设()2ln g x x x a =-+,利用导数确定()g x 的单调性与极值,最大值大于0,确定有小于0的函数值(需引入新函数,再利用导数确定单调性得f x 的极大值为11f =,无极小值;(2)(i )解:由题意可知,ln 0x ax x+-=有两解,即2ln 0x x a -+=有两解,设()2ln g x x x a =-+,则,令,解得x =(,列表可知,()max ln 2122g x g a ==--+⎝⎭, 因为()g x 有两个零点,所以()max 0g x >,解得ln 2122a >+, 当0e a x -<<时,有ln 0x a +<,可得()ln 0g x x a <+<,令()21ln 2x x x ϕ=-,有,01x <<时,()0x ϕ'>.1x >时,()0x ϕ'<,可得函数()x ϕ的减区间为()1,+∞,增区间为()0,1,有()()1102x ϕϕ=-<≤,可得21ln 02x x -<,当x >时,()2221111ln 202222g x x x a x a x a a ⎛⎫⎛⎫=-+-<-<-⨯= ⎪ ⎪⎝⎭⎝⎭.所以存在1x <,2x >,使得()()120g x g x ==,所以ln 2122a >+; (ii )证明:因为()21ln a xf x x--'=,令,解得1e a x -=, 列表可知,()f x 在()10,e a -上单调递增,在()1e ,a -+∞上单调递减,①若1e a m n -<≤,则()f x 在[,]m n 上单调递增,因此()f m m =,()f n n =,由上可知取1mx ,2n x =,此时()()1222e 1e 0a a g g x --=-≤=,ln 21122a +<≤,所以当ln 21122a +<≤时,存在一组m ,n 符合题意;②若1e a m n -≤<,则()f x 在[],m n 上单调递减,所以()ln m af m n m+==,()ln n af n m n+==, 所以ln ln m a n a mn +=+=,即m n =,不符题意;③若1e a m n -<<, ()f x 在)1,e a m -⎡⎣上单调递增,在()1e ,a -+∞上单调递减, 所以()()11max 1e eaaf x f n --===,由111e ea a-->得1a >,又因为()()11e 21e a af n a m --=->>,所以()()min f x f m m ==,即1mx ,11ean -=,所以当1a >时,存在一组m ,n 符合题意;综上,存在一组m ,n 符合题意.【点睛】本题考查用导数求函数的极值,研究方程的根与函数零点分布,研究函数的值域.难点有两个:第一个是由零点个数确定参数范围时,零点的存在性一般与零点存在定理结合,因此需要在某个区间的两个端点处函数值符号相反才能得出,本题中需要引入新函数,由函数的性质得出,第二个是确定函数值域问题,需对参数进行分类,一定要注意分类标准的确定,需要有统一标准,本题是按区间[,]m n 与函数的最大值点的关系分类,然后求出对应参数a 的取值范围,它们正好相适应,从而得出结论.本题对学生的逻辑能力,运算求解能力,分析问题解决问题的能力要求较高,属于困难题.30.(2022·河北·石家庄二中校联考模拟预测)已知函数()()e ln 0mx f x x x x m =+-≥.(1)当m =1时,求f (x )在[1,e]上的值域;(2)设函数f (x )的导函数为()'f x ,讨论()'f x 零点的个数.所以()'e ln e ln 0mx x f x m x x =-≥->,()'f x 没有零点.当01m <<时:令()()()'e ln 0mxg x f x m x x ==->,()()'23211e ,e 0mx mx g x m g x m x x'=-=+>',所以()'g x 在()0,∞+上递增,由2e mx y m =与1y x=的图象可知,在区间()0,∞+上,存在唯一0x ,使0201e mx m x =①, 即()0'2001e 0mx g x m x =-=.所以()g x 在区间()()()'00,,0,x g x g x <递减;在区间()()()'0,,0,x g x g x +∞>递增, 所以当0x x =时,()f x 取得极小值也即是最小值()000e ln mxg x m x =-,由①得0201emx m x =,所以()0001ln g x x mx =-;。

相关文档
最新文档