江苏高三高中数学月考试卷带答案解析

合集下载

江苏省扬州中学2023-2024学年高三上学期10月月考数学试题及参考答案

江苏省扬州中学2023-2024学年高三上学期10月月考数学试题及参考答案

一、单选题1. sin1050︒=高三江苏省扬州中学2023-2024学年高三上学期10月月考数学试题( )A.12B. 12-C.D. 2. 已知集合{}210xA x =->,{}2230B x x x =+-<,则A B = ( ) A. ()0,3 B. ()0,1C. ()3,-+∞D. ()1,-+∞3.已知()f x =,则()f x '=( )A.B.C.D.4. 已知函数()()sin R f x ax x a =-∈,则“1a =”是“()f x 在区间π,2⎛⎫+∞ ⎪⎝⎭上单调递增”的( )A. 充要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件5. 阻尼器是一种以提供阻力达到减震效果的专业工程装置.我国第一高楼上海中心大厦的阻尼器减震装置,被称为“定楼神器”,如图1.由物理学知识可知,某阻尼器的运动过程可近似为单摆运动,其离开平衡位置的位移()m y 和时间()s t 的函数关系为()()sin 0,πy t ωϕωϕ=+><,如图2,若该阻尼器在摆动过程中连续三次到达同一位置的时间分别为1t ,2t ,()31230t t t t <<<,且122t t +=,235t t +=,则在一个周期内阻尼器离开平衡位置的位移大于0.5m 的总时间为( )A.1s 3B.2s 3C. 1sD.4s 36. 已知α为锐角,若π4cos 65α⎛⎫+= ⎪⎝⎭,则7πsin 212α⎛⎫+ ⎪⎝⎭的值为( )A.B.C.D.7. 已知函数()cos f x x =,函数()g x 的图象可以由函数()f x 的图象先向右平移6π个单位长度,再将所得函数图象保持纵坐标不变,横坐标变为原来的1(0)ωω>倍得到,若函数()g x 在3(,22ππ上没有零点,则ω的取值范围是( )A. 4(0,]9B. 48[,]99C. 48(,99D. 8(0,]98. 已知函数()f x 及其导函数()f x '的定义域均为R ,且满足()2(6)f x f x =--,()2(4)f x f x ''=--,(3)1f '=-,若()(3)5g x f x =-+,则()181k g k ='=∑( )A. 18-B. 20-C. 88D. 90二、多选题9. 下列求解结果正确的是( )A.3= B. ()22lg 2lg 5lg 20lg 2lg 50lg 256+++= C. 不等式(10x -≥的解集为[)1,+∞ D. 若sin 1cos 12αα=--,则1cos 1sin 2αα+= 10. 在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则下列说法中正确的是( ) A. 若sin sin A B >,则A B >B. 若tan tan tan 0A B C ++>,则ABC 锐角三角形C. 若10a =,8b =,60A =︒,则符合条件的ABC 有两个D. 对任意ABC ,都有cos cos 0A B +>11. 同学们,你们是否注意到,自然下垂的铁链;空旷的田野上,两根电线杆之间的电线;峡谷的上空,横跨深洞的观光索道的钢索.这些现象中都有相似的曲线形态.事实上,这些曲线在数学上常常被称为悬链线.悬链线的相关理论在工程、航海、光学等方面有广泛的应用.在恰当的坐标系中,这类函数的表达式可以为()e e x x f x a b -=+(其中a ,b 是非零常数,无理数e 2.71828=⋅⋅⋅),对于函数()f x 以下结论正确的是( )A. a b =是函数()f x 为偶函数的充分不必要条件;是B. 0a b +=是函数()f x 为奇函数充要条件;C. 如果0ab <,那么()f x 为单调函数;D. 如果0ab >,那么函数()f x 存在极值点.12. 在ABC 中,角A ,B ,C 对边分别是a ,b ,c ,已知sin sin sin A B C =,则下列说法正确的是( )A. 2222tan 2b c a A a+-= B. 212ABC S a = C.sin sin sin sin B CC B +有最大值 D. 245a bc ≤三、填空题13. 若函数()2lg 1)f x x mx -+=(的值域为R ,则实数m 的取值范围是________________.14. 定义在R 上的奇函数()f x ,当0x ≥时,()22x x f x a -=-⋅,当0x <时,()f x =________. 15. 已知lg lg lg 5a b c a b c =,lg lg lg b c a a b c =,则abc 的值为___________.16. 在锐角ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,3b =,sin sin A a B +=,则ABC 周长的取值范围为______.四、解答题17. 已知0x >,0y >,且21x y +=. (1)求xy 的最大值; (2)求21x y+的最小值. 18. 已知函数()e 1e xxa f x -=+奇函数. (1)求a 的值;(2)若存在实数t ,使得()()22220f t t f t k -+->成立,求k 的取值范围. 19.在①2sin sin 2sin cos A B C B -=,②()()()sin sin sin a c A C B a b +-=-,③()1sin sin sin 2ABC S c a A b B c C =+-△这三个条件中任选一个,补充到下面的问题中并作答. 问题:在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且____. (1)求角C ;的的为(2)若2c =,求2a b -取值范围. 20. 已知函数()()sin cos 2sin 22f x x x b x =++-,(R a ∈,R b ∈)(1)若1a =,0b =,证明:函数()()12g x f x =+在区间π0,4⎡⎤⎢⎥⎣⎦上有且仅有1个零点; (2)若对于任意的R x ∈,()0f x ≤恒成立,求a b +的最大值和最小值.21. 铰链又称合页,是用来连接两个固体并允许两者之间做相对转动的机械装置.铰链由可移动的组件构成,或者由可折叠的材料构成,合页主要安装与门窗上,而铰链更多安装与橱柜上,如图所示,,OA OC 就是一个合页的抽象图,AOC ∠可以在[]0,π上变化,其中28OC OA cm ==,正常把合页安装在家具门上时,AOC ∠的变化范围是π,π2⎡⎤⎢⎥⎣⎦,根据合页的安装和使用经验可知,要使得安装的家具门开关并不受影响,在以AC 为边长的正三角形ABC 区域内不能有障碍物.(1)若π2AOC ∠=使,求OB 的长; (2)当AOC ∠为多少时,OBC △面积取得最大值?最大值是多少? 22. 已知函数sin ()2cos xf x ax x=-+.(1)当1a =时,讨论()f x 的单调性;(2)若0x ∀>都有()0f x >,求a 的取值范围.的高三数学10月考试一、单选题1. sin1050︒=( )A.12B. 12-C.D. 【答案】B 【解析】【分析】利用诱导公式化简,即可计算得结果. 【详解】()1sin1050sin 336030sin 302︒︒︒︒=⨯-=-=-.故选:B【点睛】本题考查诱导公式的化简求值,属于基础题.2. 已知集合{}210xA x =->,{}2230B x x x =+-<,则A B = ( ) A. ()0,3 B. ()0,1C. ()3,-+∞D. ()1,-+∞【答案】B 【解析】【分析】先将集合A 和集合B 化简,再利用集合的交集运算可得答案. 【详解】210x -> ,即0212x >=, 由指数函数的单调性可得,0x >,{}0A x x ∴=>,由2230x x +-<,解得31x -<<,{}31B x x ∴=-<<, {}()010,1A B x x ∴⋂=<<=.故选:B.3. 已知()f x =,则()f x '=( )A.B.C.D.【答案】D 【解析】【分析】根据已知条件,结合导数的求导法则,即可求解.【详解】()()124f x x ==+,则()()12142f x x -'=+=. 故选:D4. 已知函数()()sin R f x ax x a =-∈,则“1a =”是“()f x 在区间π,2⎛⎫+∞ ⎪⎝⎭上单调递增”的( ) A. 充要条件 B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件【答案】B 【解析】【分析】利用导数求出参数的取值范围,再根据充分条件、必要条件的定义判断即可.【详解】当1a =时,()sin x x x f -=,()1cos 0f x x '=-≥,∴()f x 在R 上单调递增,故充分性成立, 当()f x 在π,2⎛⎫+∞⎪⎝⎭单调递增,∴()cos 0x a x f '=-≥,即cos a x ≥,∴1a ≥,故必要性不成立, 所以“1a =”是“()f x 在区间π,2⎛⎫+∞ ⎪⎝⎭上单调递增”的充分不必要条件. 故选:B5. 阻尼器是一种以提供阻力达到减震效果的专业工程装置.我国第一高楼上海中心大厦的阻尼器减震装置,被称为“定楼神器”,如图1.由物理学知识可知,某阻尼器的运动过程可近似为单摆运动,其离开平衡位置的位移()m y 和时间()s t 的函数关系为()()sin 0,πy t ωϕωϕ=+><,如图2,若该阻尼器在摆动过程中连续三次到达同一位置的时间分别为1t ,2t ,()31230t t t t <<<,且122t t +=,235t t +=,则在一个周期内阻尼器离开平衡位置的位移大于0.5m 的总时间为( )A.1s 3B.2s 3C. 1sD.4s 3【答案】C 【解析】【分析】先根据周期求出2π3ω=,再解不等式2πsin 0.53t ϕ⎛⎫+>⎪⎝⎭,得到t 的范围即得解. 【详解】因为122t t +=,235t t +=,31t t T -=,所以3T =,又2πT ω=,所以2π3ω=, 则2πsin 3y t ϕ⎛⎫=+ ⎪⎝⎭,由0.5y >可得2πsin 0.53t ϕ⎛⎫+> ⎪⎝⎭, 所以π2π5π2π2π636k t k ϕ+<+<+,Z k ∈, 所以13533342π42πk t k ϕϕ+-<<-+,Z k ∈,故531333142π42πk k ϕϕ⎛⎫⎛⎫+--+-= ⎪ ⎪⎝⎭⎝⎭,所以在一个周期内阻尼器离开平衡位置的位移大于0.5m 的总时间为1s. 故选:C.6. 已知α为锐角,若π4cos 65α⎛⎫+= ⎪⎝⎭,则7πsin 212α⎛⎫+ ⎪⎝⎭的值为( )A.B.C.D.【答案】D 【解析】【分析】根据α为锐角,π4cos 65α⎛⎫+= ⎪⎝⎭,得到πsin 6α⎛⎫+ ⎪⎝⎭,再利用二倍角公式得到πsin 23α⎛⎫+ ⎪⎝⎭,πcos 23α⎛⎫+ ⎪⎝⎭,然后再由7πππsin 2sin 21234αα⎡⎤⎛⎫⎛⎫+=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦求解. 【详解】αQ 为锐角,ππ2ππ4,cos 66365αα⎛⎫<+<+= ⎪⎝⎭, π3sin 65α⎛⎫∴+= ⎪⎝⎭,πππ24sin 22sin cos 36625ααα⎛⎫⎛⎫⎛⎫∴+=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,且2ππ7cos 22cos 13625αα⎛⎫⎛⎫+=+-= ⎪ ⎪⎝⎭⎝⎭.故7πππsin 2sin 21234αα⎡⎤⎛⎫⎛⎫+=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, ππππsin 2cos cos 2sin 3434αα⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,2472525=+=, 故选:D .7. 已知函数()cos f x x =,函数()g x 的图象可以由函数()f x 的图象先向右平移6π个单位长度,再将所得函数图象保持纵坐标不变,横坐标变为原来的1(0)ωω>倍得到,若函数()g x 在3(,22ππ上没有零点,则ω的取值范围是( )A. 4(0,]9B. 48[,]99C. 48(,99D. 8(0,]9【答案】A 【解析】【分析】由函数()cos f x x =,根据三角函数的图象变换得到()cos 6g x x πω⎛⎫=-⎪⎝⎭,令()cos 06g x x πω⎛⎫=-= ⎪⎝⎭,结合函数零点存在的条件建立不等式求解即可.【详解】函数()cos f x x =,向右平移6π个单位长度,得cos 6y x π⎛⎫=- ⎪⎝⎭,再将所得函数图象保持纵坐标不变,横坐标变为原来的1(0)ωω>倍得到()cos 6g x x πω⎛⎫=- ⎪⎝⎭,令()cos 06g x x πω⎛⎫=-= ⎪⎝⎭, 得62x k ππωπ-=+,所以123x k ππω⎛⎫=+ ⎪⎝⎭, 若函数()g x 在3(,)22ππ上没有零点,则需3222T πππ>-=,所以22ππω>,所以01ω<<, 若函数()g x 在3(,)22ππ上有零点,则123232k ππππω⎛⎫<+< ⎪⎝⎭, 当k =0时,得123232ω<<,解得4493ω<<,当k =1时,得153232ω<<,解得101093ω<<, 综上:函数()g x 在3(,22ππ上有零点时,4493ω<<或101093ω<<, 所以函数()g x 在3(,22ππ上没有零点,409ω<≤. 所以ω的取值范围是4(0,]9.故选:A【点睛】本题主要考查三角函数的图象变换及函数零点问题,还考查了转化求解问题的能力,属于难题. 8. 已知函数()f x 及其导函数()f x '的定义域均为R ,且满足()2(6)f x f x =--,()2(4)f x f x ''=--,(3)1f '=-,若()(3)5g x f x =-+,则()181k g k ='=∑( )A. 18-B. 20-C. 88D. 90【答案】B 【解析】【分析】根据复合函数导数运算求得正确答案.【详解】由()2(6)f x f x =--得()()()266f x f x f x ''''=--=-⎡⎤⎣⎦,()()6f x f x ''=-①,则()f x '关于直线3x =对称.另外()2(4),()(4)2f x f x f x f x ''''=--+-=②,则()f x '关于点()2,1对称. 所以()()()()()4244226f x f x f x f x ''''+=--+=--=-+()()()()()()22462628f x f x f x f x ⎡⎤''''=---+=--=---=+⎣⎦,所以()()4f x f x ''=+,所以()f x '是周期为4的周期函数.()(3)5g x f x =-+,()(3)g x f x ''=--,则(0)(3)1g f ''=-=,由②,令2x =,得()()222,21f f ''==. 所以()()121g f ''=-=-,由②,令1x =,得(1)(3)2,(1)2(3)3f f f f ''''+==-=; 所以(2)(1)3g f ''=-=-,由①,令4x =,得()()421f f ''==;令5x =,得()()513f f ''==. 由②,令0x =,得(0)(4)2,(0)1f f f '''+==;令=1x -,得(1)(5)2,(1)2(5)1f f f f ''''-+=-=-=-, 则(3)(0)1g f ''=-=-,()()411g f '=--=;()()()5221g f f '''=--=-=-,()()()6313g f f '''=--=-=-,以此类推, ()g x '是周期为4的周期函数.所以()()()181131141320k g k ='=---+⨯+--=-∑.故选:B【点睛】函数的对称性有多种呈现方式,如()()f a x f a x +=-,则()f x 关于直线x a =对称;如()()2f a x f x +=-,则()f x 关于直线x a =对称;如()()f a x f a x +=--,则()f x 关于点(),0a 对称;如()()2f a x f a x b +=--+,则()f x 关于点(),a b 对称.二、多选题9. 下列求解结果正确的是( )A.3= B. ()22lg 2lg 5lg 20lg 2lg 50lg 256+++=C. 不等式(10x -≥的解集为[)1,+∞D. 若sin 1cos 12αα=--,则1cos 1sin 2αα+= 【答案】AD 【解析】【分析】对于A 选项:把根式化为分数指数幂,利用幂的运算法则求值可判断A 选项;对于B 选项:利用对数的运算法则化简求值可判断B 选项;对于C 选项:根据根式的定义域和值域,求不等式的解集可判断C 选项;对于D 选项:分子和分母同时乘sin α,再利用同角三角函数关系化简可判断D 选项.【详解】对于A 111111126363223243243232-⎛⎫=⨯⨯=⨯⨯⨯ ⎪⎝⎭()5151121106636622=33222332332--⨯=⨯=⨯⨯⨯⨯⨯=,所以A 选项正确;对于B 选项:()()()()2222lg 2lg 5lg 20lg 2lg 50lg 252lg 2lg 5lg 210lg 2lg 510lg 5+++=+⨯+⨯+ ()()()22lg 2lg 5lg 21lg 2lg 512lg 5=+++++ ()22lg 22lg 2lg 5lg 23lg 5=+++()()2lg 2lg 2lg 5lg 2lg 52lg 5=++++ ()2lg 2lg 513=++=,所以B 选项错误;对于C 选项:因为0y =≥且2x ≥-,当2x =-时取等号,则(10x -≥,即210x x >-⎧⎨-≥⎩或2x =-,解得:1x ≥或2x =-,所以不等式(10x -≥的解集为{}[)21,-+∞ ,所以C 选项错误; 对于D 选项:若sin 1cos 12αα=--,则cos 1α≠且sin 0α≠,即()()()()()221cos 1cos sin 1cos 1cos 1sin cos 1sin cos 1sin cos 1sin 2αααααααααααα-+-+===-=----,所以1cos 1sin 2αα+=,所以D 选项正确.故选:AD.10. 在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,则下列说法中正确的是( ) A. 若sin sin A B >,则A B >B. 若tan tan tan 0A B C ++>,则ABC 是锐角三角形C. 若10a =,8b =,60A =︒,则符合条件的ABC 有两个D. 对任意ABC ,都有cos cos 0A B +> 【答案】ABD 【解析】【分析】由正弦定理边角转化可判断A ;根据两角和的正切公式结合三角形内角和定理可判断B ;由正弦定理及三角形性质可判断C ;由三角形内角性质及余弦函数单调性可判断D. 【详解】对于A 选项,由sin sin A B >,根据正弦定理得22a br r>,(r 为ABC 外接圆半径),即a b >,则A B >, 故A 正确;对于B ,()()tan tan tan tan πtan 1tan tan A BC A B A B A B+=-+=-+=-⎡⎤⎣⎦-,所以()tan tan tan tan tan 1A B C A B +=-,所以()tan tan tan 1tan tan tan tan 0tan tan tan A B C A B C A C B C +-=++=>, 所以tan ,tan ,tan A B C 三个数有0个或2个为负数,又因,,A B C 最多一个钝角, 所以tan 0,tan 0,tan 0A B C >>>,即,,A B C 都是锐角, 所以ABC 一定为锐角三角形,故B 正确;对于C ,由正弦定理得sin sin a b A B=,则sin sin 1b A B a ===<, 又b a <,则60B A <= ,知满足条件的三角形只有一个,故C 错误;对于D ,因为πA B +<,所以0ππA B <<-<,又函数cos y x =在()0,π上单调递减, 所以()cos cos πcos A B B >-=-,所以cos cos 0A B +>,故D 正确; 故选:ABD11. 同学们,你们是否注意到,自然下垂的铁链;空旷的田野上,两根电线杆之间的电线;峡谷的上空,横跨深洞的观光索道的钢索.这些现象中都有相似的曲线形态.事实上,这些曲线在数学上常常被称为悬链线.悬链线的相关理论在工程、航海、光学等方面有广泛的应用.在恰当的坐标系中,这类函数的表达式可以为()e e x x f x a b -=+(其中a ,b 是非零常数,无理数e 2.71828=⋅⋅⋅),对于函数()f x 以下结论正确的是( )A. a b =是函数()f x 为偶函数的充分不必要条件;B. 0a b +=是函数()f x 为奇函数的充要条件;C. 如果0ab <,那么()f x 为单调函数;D. 如果0ab >,那么函数()f x 存在极值点. 【答案】BCD 【解析】【分析】根据奇偶函数的定义、充分条件和必要条件的定义即可判断AB ;利用导数,分类讨论函数的单调性,结合极值点的概念即可判断CD.【详解】对于A ,当a b =时,函数()f x 定义域为R 关于原点对称,()()e e =x x f x a b f x --=+,故函数()f x 为偶函数;当函数()f x 为偶函数时,()()=0f x f x --,故()()0e e x xa b b a --+-=,即()()2e =xa b a b --,又2e 0x >,故a b =,所以a b =是函数()f x 为偶函数的充要条件,故A 错误; 对于B ,当0a b +=时,函数()f x 定义域为R 关于原点对称,()()=e e ()()=0x x f x f x a b a b -+-+++,故函数()f x 为奇函数,当函数()f x 为奇函数时,()()=e e ()()=0xxf x f x a b a b -+-+++,因为e 0x >,e 0x ->,故0a b +=.所以0a b +=是函数()f x 为奇函数的充要条件,故B 正确; 对于C ,()=e exxa f xb --',因为0ab <,若0,0a b ><,则()e e 0=xxa xb f -->'恒成立,则()f x 为单调递增函数,若0,0a b <>则()e e 0=x xa xb f --<'恒成立,则()f x 为单调递减函数,故0ab <,函数()f x 为单调函数,故C 正确;对于D ,()2e e e ==ex xxxa ba b f x ---', 令()=0f x '得1=ln 2bx a,又0ab >,若0,0a b >>, 当1,ln 2b x a ⎛⎫∈-∞ ⎪⎝⎭,()0f x '<,函数()f x 为单调递减. 当1ln ,2b x a ⎛⎫∈+∞⎪⎝⎭,()0f x ¢>,函数()f x 为单调递增.函数()f x 存在唯一的极小值. 若0,0a b <<, 当1ln2b x a ⎛⎫∈-∞ ⎪⎝⎭,,()0f x ¢>,函数()f x 为单调递增. 当1ln ,2b x a ⎛⎫∈+∞ ⎪⎝⎭,()0f x '<,函数()f x 为单调递减.故函数()f x 存在唯一的极大值.所以函数存在极值点,故D 正确. 故答案为:BCD.12. 在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知sin sin sin A B C =,则下列说法正确的是( )A. 2222tan 2b c a A a+-= B. 212ABC S a = C.sin sin sin sin B CC B +有最大值 D. 245a bc ≤【答案】BCD 【解析】【分析】由条件及正弦定理得,2sin a bc A=,再由正、余弦定理,三角形的面积公式,三角函数的最值等知识逐一判断选项即可.【详解】由sin sin sin A B C =及正弦定理sin sin sin a b c A B C ==得:2sin a bc A=, 对于A 选项:22222222cos 2cos cos sin tan 222sin a A b c a bc A A A Aa a a A+-===≠,故A 错误; 对于B 选项:22111sin sin 22sin 2ABCa S bc A A a A ==⨯⨯= ,故B 正确; 对于C 选项:222sin sin 2cos sin sin B Cbc b c a bc AC B c b bc bc+++=+==sin 2cos sin 2cos )bc A bc A A A A bcϕ+==+=+,其中sin ϕϕ==∴sin sin sin sin B CC B+,故C 正确; 对于D 选项:因为2sin a bc A =,222b c bc +≥,当且仅当b c =时取等号.所以222sin cos 1022b c a AA bc +-=≥->,两边平方得:22sin cos 1sin 4AA A ≥+-,又22cos 1sin A A =-,化简得:sin (5sin 4)0A A -≤,且(0,π)A ∈,sin (0,1]A ∈, 解得4sin 0,5A ⎛⎤∈ ⎥⎝⎦,所以24sin 5sin bc A a bc bc A ==≤,即245a bc ≤成立,故D 正确.故选:BCD .三、填空题13. 若函数()2lg 1)f x x mx -+=(的值域为R ,则实数m 的取值范围是________________.【答案】(][),22,-∞-+∞U 【解析】【分析】根据对数函数值域列不等式,从而求得m 的取值范围. 【详解】依题意,函数()2lg 1)f x x mx -+=(的值域为R ,所以240m ∆=-≥,解得(][),22,m ∈-∞-⋃+∞. 故答案为:(][),22,-∞-+∞U14. 定义在R 上的奇函数()f x ,当0x ≥时,()22x x f x a -=-⋅,当0x <时,()f x =________. 【答案】22x x -- 【解析】【分析】先根据奇函数性质求a ,然后设0x <,利用奇函数定义和已知条件求解可得. 【详解】因为函数()f x 为奇函数,所以00(0)220f a =-⋅=,解得1a =.的设0x <,则0x ->,所以()22x x f x --=-, 又()f x 为奇函数,所以()()22x x f x f x -=--=-, 即当0x <时,()22x x f x -=-. 故答案为:22x x --15. 已知lg lg lg 5a b c a b c =,lg lg lg b c a a b c =,则abc 的值为___________.【答案】10或110【解析】【分析】对已知等式左右同时取对数,结合对数运算法则化简可得()2lg 1abc =,由此可求得结果. 【详解】由lg lg lg 5a b c a b c =得:()()()222lg lg lg lg lg lg lg lg lg lg 5a b c a b c a b c ++=++=,由lg lg lg b c a a b c =lg lg lg 1lg lg lg lg lg lg lg lg lg lg 22bc a ab c a b b c a c ++=++==,2lg lg 2lg lg 2lg lg lg 2a b b c a c ∴++=,()()()()2222lg lg lg 2lg lg 2lg lg 2lg lg lg lg lg a b c a b b c a c a b c ∴+++++=++()2lg lg 5lg 21abc ==+=,lg 1abc ∴=或lg 1abc =-,10abc ∴=或110abc =. 故答案为:10或110. 16. 在锐角ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,3b =,sin sin A a B +=,则ABC 周长的取值范围为______.【答案】+【解析】【分析】由正弦定理及已知可得sin A =,结合锐角三角形得π3A =、ππ62B <<,再由正弦边角关系、三角恒等变换得912tan 2a b c B ++=,即可求范围.【详解】由sin sin a bA B=,则sin sin a B b A =,故sin sin 4sin A b A A +==所以sin A =,又ABC 为锐角三角形,则π3A =,且π022ππ032B C B ⎧<<⎪⎪⎨⎪<=-<⎪⎩,则ππ62B <<,而sin sin sin a b c A B C ==,则sin sin b A a B ==,2π3sin()sin 3sin sin B b C c B B -==32=+,所以22cos 91cos 99122sin 222sin cos tan 222B B a b c B B BB +++===+, 又ππ1224B <<,且ππtan tanπππ34tan tan()2ππ12341tan tan 34-=-==+所以tan (22B ∈-,则912tan 2a b c B ++=+∈+.故答案为:+.【点睛】关键点睛:本题的关键是利用正弦定理以及三角恒等变换得912tan 2a b c B ++=,再求出角B 的范围,利用正切函数的值域即可得到答案.四、解答题17. 已知0x >,0y >,且21x y +=. (1)求xy 的最大值; (2)求21x y+的最小值. 【答案】(1)18(2)8 【解析】【分析】(1)由基本不等式得到2x y +≥,从而求出18xy ≤; (2)利用基本不等式“1”的妙用求出最小值.小问1详解】【因为0x >,0y >,由基本不等式得2x y +≥,即1≥18xy ≤, 当且仅当11,24x y ==时,等号成立,故xy 的最大值为18; 【小问2详解】因为0x >,0y >,21x y +=,故()212142448y x x y x y x y x y ⎛⎫+=++=++≥+= ⎪⎝⎭, 当且仅当4y x x y =,即11,24x y ==时,等号成立,故21x y +的最小值为8. 18. 已知函数()e 1exxa f x -=+为奇函数. (1)求a 的值;(2)若存在实数t ,使得()()22220f t t f t k -+->成立,求k 的取值范围.【答案】(1)1 (2)1,3⎛⎫-+∞ ⎪⎝⎭【解析】【分析】(1)根据奇函数的性质)00f =求解即可.(2)首先利用根据题意得到()()2222f t t f t k ->-+,利用单调性定义得到()f x 是R 上的减函数,再利用单调性求解即可. 【小问1详解】因()f x 定义域为R ,又因为()f x 为奇函数,所以()00f =,即102a -=,得1a = 当1a =时,()1e 1e xx f x -=+, 所以()()1e e 11e e 1x x xx f x f x -----===-++,所以1a = 【小问2详解】()()22220f t t f t k -+->可化为()()2222f t t f t k ->--,因为()f x 是奇函数,所以()()()2222f t t f t k->-+*为又由(1)知()1e 211e 1ex x xf x -==-+++, 设12,x x ∈R ,且12x x <,则()()()()()211212122e e 221e 1e 1e 1e x x x x x x f x f x --=-=++++, 因为12x x <,所以21e e 0x x ->,11e 0x +>,21e 0x +>,所以()()120f x f x ->,即()()12f x f x >故()f x 是R 上的减函数, 所以(*)可化为2222t t t k -<-+.因为存在实数t ,使得2320t t k --<成立, 所以4120k ∆=+>,解得13k >-.所以k 的取值范围为1,3⎛⎫-+∞ ⎪⎝⎭19.在①2sin sin 2sin cos A B C B -=,②()()()sin sin sin a c A C B a b +-=-,③()1sin sin sin 2ABC S c a A b B c C =+-△这三个条件中任选一个,补充到下面的问题中并作答. 问题:在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且____. (1)求角C ;(2)若2c =,求2a b -的取值范围. 【答案】(1)π3(2)()2,4- 【解析】【分析】(1)选①利用三角形内角和定理与两角和的正弦公式求出π3C =,选②利用正弦定理和余弦定理求出π3C =,选③利用面积公式和余弦定理求出π3C =.(2)利用正弦定理得,a A b B ==,再利用两角差的正弦公式以及角的范围计算求得结果.【小问1详解】若选①:2sin sin 2sin cos A B C B -=, 则()2sin sin 2sin cos B C B C B +-=,∴2sin cos 2cos sin sin 2sin cos B C B C B C B +-= ∴2sin cos sin 0B C B -=∵()0,πB ∈,sin 0B ≠, ∴1cos 2C =,∵()0,πC ∈,∴π3C =.若选②:()()()sin sin sin a c A C B a b +-=-, 由正弦定理得()()()a c a c b a b +-=-, ∴222a b c ab +-=,∴2221cos 22a b c C ab +-==,∵()0,πC ∈,∴π3C =. 若选③:()1sin sin sin 2ABC S c a A b B c C =+-△, 则()sin sin sin 12s n 12i C A B b c a b C a c =+-,由正弦定理得()2221122abc c a b c =+-,∴∴222a b c ab +-=,∴2221cos 22a b c C ab +-==,∵()0,πC ∈,∴π3C =. 【小问2详解】由正弦定理得sin sin sin a b c A B C ===,,a A b B ==,则π23A B A A a b ⎛⎫=-=-+ ⎪⎝⎭, π2cos 4sin 6A A A ⎛⎫=-=- ⎪⎝⎭,∵2π0,3A ⎛⎫∈ ⎪⎝⎭,πππ,662A ⎛⎫-∈- ⎪⎝⎭,π16sin ,12A ⎛⎫⎛⎫∈ ⎪- ⎝⎭⎝-⎪⎭, ∴()22,4a b -∈-.20. 已知函数()()sin cos 2sin 22f x x x b x =++-,(R a ∈,R b ∈)(1)若1a =,0b =,证明:函数()()12g x f x =+在区间π0,4⎡⎤⎢⎥⎣⎦上有且仅有1个零点; (2)若对于任意的R x ∈,()0f x ≤恒成立,求a b +的最大值和最小值.【答案】(1)证明见解析(2)最小值为2-,最大值为1【解析】【分析】(1)代入,a b 的值,化简()f x ,即可求得()g x ,根据()g x 单调性即可求解;(2)令sin cos t x x =+,问题转化为t ⎡∈⎣时,()()22120t b t ϕ=+--≤,要求a b +的最值,则需要a 和b 的系数相等进行求解.【小问1详解】证明:当1a =,0b =时, ())sin cos 2f x x x =+-2x x ⎫=-⎪⎪⎭π2sin 24x ⎛⎫=+- ⎪⎝⎭, 则()()132sin 22π4g x f x x ⎛⎫=+=+- ⎪⎝⎭, ()3002g =< ,0π142g ⎛⎫=> ⎪⎝⎭,且()g x 是一个不间断的函数, ()g x ∴在π0,4x ⎡⎤∈⎢⎥⎣⎦上存在零点, π0,4x ⎡⎤∈⎢⎥⎣⎦,∴πππ,442x ⎡⎤+∈⎢⎥⎣⎦,∴()g x 在π0,4⎡⎤⎢⎥⎣⎦上单调递增, ()g x ∴在π0,4⎡⎤⎢⎥⎣⎦上有且仅有1个零点. 【小问2详解】由(1)知,令πsin cos 4t x x x ⎛⎫=+=+ ⎪⎝⎭,则t ⎡∈⎣, ∴()22sin22sin cos sin cos 11x x x x x t =⋅=+-=-,∵对于任意的x ∈R ,()0f x ≤()22120b t +--≤恒成立.令()()2212 t b tϕ=+--,则t⎡∈⎣时,()0tϕ≤恒成立()22120t b+--≤,()221t=-,解得t=或.当t=时,解得1a b+≤,取1a=,0b=成立,则()220tϕ=-≤=恒成立,∴()max1a b+=,当t=时,解得2a b+≥-,取43a=-,23b=-成立,则()()224412033t t tϕ⎛=---=-≤⎝恒成立.∴()min2a b+=-,综上,a b+的最小值为2-,a b+的最大值为1.【点睛】方法点睛:不等式恒成立问题,从以下几个角度分析:(1)赋值法和换元法的应用;(2)三角函数图像和性质的应用;(3)转化化归思想的应用.21. 铰链又称合页,是用来连接两个固体并允许两者之间做相对转动的机械装置.铰链由可移动的组件构成,或者由可折叠的材料构成,合页主要安装与门窗上,而铰链更多安装与橱柜上,如图所示,,OA OC 就是一个合页的抽象图,AOC∠可以在[]0,π上变化,其中28OC OA cm==,正常把合页安装在家具门上时,AOC∠的变化范围是π,π2⎡⎤⎢⎥⎣⎦,根据合页的安装和使用经验可知,要使得安装的家具门开关并不受影响,在以AC为边长的正三角形ABC区域内不能有障碍物.(1)若π2AOC∠=使,求OB的长;(2)当AOC∠为多少时,OBC△面积取得最大值?最大值是多少?.【答案】(1)BO =(2)5π6AOC ∠=,(16+cm 3 【解析】【分析】(1)根据题意利用三角比可得AC AB ==,在OAB 中,由余弦定理知2222cos BO AO AB AO AB OAB =+-⋅⋅∠即可得解;(2)设AOC α∠=,ACO β∠=,BC AC x ==,利用正余弦定理换算可得28064cos x α=-,248cos 16x xβ+=,代入整理可得=BOC S 16πsin 3a ⎛⎫- ⎪⎝⎭,利用α的范围即可得解. 【小问1详解】如图所示,因为28cm OC OA ==,π2AOC ∠=,易知sin ∠==OAC ,cos OAC ∠=,AC AB ==,在OAB 中,由余弦定理易知2222cos BO AO AB AO AB OAB =+-⋅⋅∠, 且π3OAB OAC ∠=∠+,πππcos cos cos cos sin sin 333⎛⎫∠=∠+=∠-∠ ⎪⎝⎭OAB OAC OAC OAC12==, 在OAB 中,由余弦定理可得:所以((222424165BO =+-⨯⨯=+,解得BO =;【小问2详解】设AOC α∠=,ACO β∠=,BC AC x ==,在AOC 中,由余弦定理易知,2222cos AC AO OC AO OC α=+-⋅⋅,即22248248cos x α=+-⨯⨯⨯,28064cos x α=-①,222cos 2AC OC AO ACO AC OC+-∠=⋅,即248cos 16x x β+=②, 由正弦定理易知4sin sin x αβ=③, 将①②③代入下列式子中:21sin 2sin cos 8sin 23πBOC BC CO x S βββα⎛⎫⋅⋅⋅+=+=++ ⎪⎝⎭=△)8sin 8064cos a α=+-8sin 16si πn 3a a α⎛⎫=+-=- ⎪⎝⎭, 则当5π6ADC ∠=时,BDC S △取最大值,最大值为(216cm +. 【点睛】思路点睛:第二问中由余弦定理得28064cos x α=-,248cos 16x x β+=,由正弦定理得4sin sin x αβ=,三式代入面积公式BOC S ,考查了学生思维能力及运算能力. 22. 已知函数sin ()2cos x f x ax x=-+. (1)当1a =时,讨论()f x 的单调性;(2)若0x ∀>都有()0f x >,求a 的取值范围.【答案】(1)函数()f x 是R 上的增函数;(2)13a ≥. 【解析】【分析】(1)把1a =代入,求出函数()f x 的导数,再判断导数值正负作答.(2)求出函数()f x 的导数,再分析导函数值的情况,分类探讨即可作答.【小问1详解】当1a =时,函数sin ()2cos x f x x x=-+的定义域为R , 的2222cos (2cos )sin 32cos cos ()10(2cos )(2cos )x x x x x f x x x ++++'=-=>++, 所以函数()f x 是R 上的增函数.【小问2详解】 函数sin ()2cos x f x ax x=-+,0x >, 求导得22212cos 32111()3()(2cos )(2cos )2cos 2cos 33x f x a a a x x x x +'=-=-+=-+-++++, 当13a ≥时,()0f x '≥,即函数()f x 在(0,)+∞上单调递增,0x ∀>,()(0)0f x f >=,因此13a ≥; 当103a <<时,令()sin 3,0h x x ax x =->,求导得()cos 3h x x a '=-, 函数()cos 3h x x a '=-在π(0,)2上单调递减,π(0)130,()302h a h a ''=->=-<, 则存在0π(0,)2x ∈,使得0()0h x '=,当00x x <<时,()0h x '>,()h x 在0(0,)x 上单调递增, 当0(0,)x x ∈时,()(0)0h x h >=,即sin 3x ax >,因此当0(0,)x x ∈时,sin sin 2cos 3x x ax x >>+,即sin ()02cos x f x ax x =-<+,不符合题意; 当0a ≤时,ππ1(0222f a =-<,不符合题意, 综上得13a ≥, 所以a 的取值范围是13a ≥. 【点睛】思路点睛:涉及函数不等式恒成立问题,可以借助分段讨论函数的导函数,结合函数零点探讨函数值正负,以确定单调性推理作答.。

江苏高三高中数学月考试卷带答案解析

江苏高三高中数学月考试卷带答案解析

江苏高三高中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、填空题1.已知实数满足则的最大值是_____.2.已知集合,则集合__________.3.复数,其中是虚数单位,则复数的虚部是__________.4.在平面直角坐标系中,双曲线的离心率为__________.5.一架飞机向目标投弹,击毁目标的概率为,目标未受损的概率为,则目标受损但未完全击毁的概率为__________.6.阅读下面的流程图,如果输出的函数的值在区间内,那么输入的实数的取值范围是__________.7.设是等差数列的前项的和,若则的值为__________.8.在平面直角坐标系中,已知过点的直线与圆相切,且与直线垂直,则实数__________.9.一个长方体的三条棱长分别为若在该长方体上面钻一个圆柱形的孔后其表面积没有变化,则圆孔的半径为__________.10.已知正数满足则的最小值为__________.11.若,则__________.12.已知函数若关于的方程恰有三个不同的实数解,则满足条件的所有实数的取值集合为__________.13.已知是半径为的圆上的三点,为圆的直径,为圆内一点(含圆周),则的取值范围为__________.二、解答题1.如图,在四棱锥中,平面,分别是棱的中点.(1)求证:平面;(2)求证:平面平面.2.已知函数()求的最小值,并写出取得最小值时的自变量的集合;()设的内角所对的边分别为且若求的值.3.已知椭圆的离心率为,且过点.()求椭圆的方程;() 设点在椭圆上,且与轴平行,过点作两条直线分别交于椭圆于两点,若直线平分,求证:直线的斜率是定值,并求出这个定值.4.某湿地公园内有一条河,现打算建一座桥将河两岸的路连接起来,剖面设计图纸如下:其中,点为轴上关于原点对称的两点,曲线段是桥的主体,为桥顶,且曲线段在图纸上的图形对应函数的解析式为,曲线段均为开口向上的抛物线段,且分别为两抛物线的顶点,设计时要求:保持两曲线在各衔接处()的切线的斜率相等.(1)求曲线段在图纸上对应函数的解析式,并写出定义域;(2)车辆从经倒爬坡,定义车辆上桥过程中某点所需要的爬坡能力为:(该点与桥顶间的水平距离)(设计图纸上该点处的切线的斜率),其中的单位:米.若该景区可提供三种类型的观光车:①游客踏乘;②蓄电池动力;③内燃机动力.它们的爬坡能力分别为米,米,米,又已知图纸上一个单位长度表示实际长度米,试问三种类型的观光车是否都可以顺利过桥?5.已知数列的前项和为,且()求数列的通项公式;()若数列满足,求数列的通项公式;()在()的条件下,设,问是否存在实数使得数列是单调递增数列?若存在,求出的取值范围;若不存在,请说明理由.6.已知函数()当时,求的单调区间和极值.()若对于任意,都有成立,求的取值范围;()若且证明:7.A.如图所示,是园内两条弦和的交点,过延长线上一点作圆的切线,为切点,已知求证:B.已知矩阵,.求矩阵,使得C.在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线的极坐标方程为,已知直线与曲线相交于两点,求线段的长.D.已知都是正数,且,求证:8.口袋里装有大小相同的卡片八张,其中三张标有数字1,三张标有数字2,二张标有数字3,第一次从口袋里任里任意抽取一张,放回口袋里后第二次再任意抽取一张,记第一次与第二次取到卡片上数字之和为.(1)为何值时,其发生的概率最大?说明理由;(2)求随机变量的期望.9.在平面直角坐标系中,已知两点,若点的坐标满足,且点的轨迹与抛物线交于两点.()求证:()在轴上是否存在一点,使得过点任作一条抛物线的弦,并以该弦为直径的圆过原点.若存在,求出的值及圆心的轨迹方程;若不存在,请说明理由.江苏高三高中数学月考试卷答案及解析一、填空题1.已知实数满足则的最大值是_____.【答案】.【解析】作可行域:所以当目标函数经过时,【考点】线性规划.2.已知集合,则集合__________.【答案】【解析】由交集的运算可知,故填:.3.复数,其中是虚数单位,则复数的虚部是__________.【答案】【解析】因为,所以复数的虚部是,故填:.4.在平面直角坐标系中,双曲线的离心率为__________.【答案】【解析】因为在双曲线中,,所以,,故填:.5.一架飞机向目标投弹,击毁目标的概率为,目标未受损的概率为,则目标受损但未完全击毁的概率为__________.【答案】0.4【解析】因为目标被击毁,未受损,受损但未被完全击毁是互斥事件,所以目标受损但未完全击毁的概率为,故填:.6.阅读下面的流程图,如果输出的函数的值在区间内,那么输入的实数的取值范围是__________.【答案】【解析】由得,结合框图知,,故填:.7.设是等差数列的前项的和,若则的值为__________.【答案】-13【解析】由等差数列前项和公式知,所以,故,,故填:.8.在平面直角坐标系中,已知过点的直线与圆相切,且与直线垂直,则实数__________.【答案】【解析】因为在圆上,所以圆心与切点的连线与切线垂直,又知与直线与直线垂直,所以圆心与切点的连线与直线斜率相等,,所以,故填:.9.一个长方体的三条棱长分别为若在该长方体上面钻一个圆柱形的孔后其表面积没有变化,则圆孔的半径为__________.【答案】3【解析】设圆柱形孔的的半径为,高为,则由题意知,故,显然高只能取,故填:.10.已知正数满足则的最小值为__________.【答案】【解析】因为由已知可得,所以,当且仅当时等号成立,故填.点睛:本题是均值不等式的灵活运用问题,属于难题.解决此类问题,需要观察条件和结论,结合二者构造新的式子,对待求式子进行变形,方能形成使用均值不等式的条件,本题注意到,所以把条件构造为,从而解决问题.11.若,则__________.【答案】【解析】由解得,而,故填:.12.已知函数若关于的方程恰有三个不同的实数解,则满足条件的所有实数的取值集合为__________.【答案】【解析】根据分段函数解析式作出函数的图像如图,是过定点的动直线,关于的方程恰有三个不同的实数解,就是直线与曲线有三个交点,所以当直线过点或或与在上的图像相切时有三个交点,当直线过时,,当直线过时,,当直线与在上相切时,可得,当直线与在上相切时,可得,故填:.点睛:本题涉及分段函数,二次函数,指数函数,以及函数零点,方程,图像等概念和知识,综合性较强,属于难题.一般讨论函数零点个数问题,都要转化为方程根的个数问题或两个函数图像交点的个数问题,本题由于涉及函数为初等函数,可以考虑函数图像来解决,转化为过定点的直线与抛物线变形图形的交点问题,对函数图像处理能力要求较高.13.已知是半径为的圆上的三点,为圆的直径,为圆内一点(含圆周),则的取值范围为__________.【答案】【解析】根据题意,,以点为原点,建立直角坐标系,设,,其中,则,所以,,故填:.点睛:本题考查了向量的线性运算及向量得的坐标运算,涉及三角函数知识的运用,属于中档题.解题时首先根据向量的运算法则,将所求式子转化为关于的问题,然后设出点的坐标,引入三角函数,将问题转化为的最值问题,根据三角函数的有界性,及二次函数求最值得方法,可求出范围.二、解答题1.如图,在四棱锥中,平面,分别是棱的中点.(1)求证:平面;(2)求证:平面平面.【答案】(1)详见解析(2)详见解析【解析】(1)证明线面平行,一般利用线面平行判定定理,即从线线平行出发给予证明,而线线平行的寻找与证明,往往需结合平面几何条件,如本题利用三角形中位线性质定理得(2)证明面面垂直,一般利用面面垂直判定定理,即从线面垂直出发给予证明,而线面垂直的证明,需多次利用线面垂直的判定与性质定理:先由平行四边形为菱形得,再由平面得,即,从而得平面试题解析:(1)设,连结,因为,为的中点,所以,所以四边形为平行四边形,所以为的中点,所以又因为平面,平面,所以平面.(2)(方法一)因为平面,平面所以,由(1)同理可得,四边形为平行四边形,所以,所以因为,所以平行四边形为菱形,所以,因为平面,平面,所以平面因为平面,所以平面平面.(方法二)连结,因为平面,平面,所以因为,所以,因为平面,平面,所以因为为的中点,所以,由(1),所以又因为为的中点,所以因为,平面,平面所以平面,因为平面,所以平面平面.【考点】线面平行判定定理,面面垂直判定定理2.已知函数()求的最小值,并写出取得最小值时的自变量的集合;()设的内角所对的边分别为且若求的值.【答案】⑴⑵【解析】(1)利用三角恒等变换化简,当即时,的最小值为此时自变量的取值集合为(2)因为所以又所以即由正弦定理知又结合余弦定理知得联立解得试题解析:⑴当即时,的最小值为此时自变量的取值集合为(或写成)⑵因为所以又所以即在中,由正弦定理知又由余弦定理知即联立解得点睛:解决三角形中的角边问题时,要根据条件选择正余弦定理,将问题转化统一为边的问题或角的问题,利用三角中两角和差等公式处理,特别注意内角和定理的运用,涉及三角形面积最值问题时,注意均值不等式的利用,特别求角的时候,要注意分析角的范围,才能写出角的大小.涉及三角函数性质,需要利用三角恒等变化后分析函数的最值,对称轴等,要牢记三角函数的图像和性质.3.已知椭圆的离心率为,且过点.()求椭圆的方程;() 设点在椭圆上,且与轴平行,过点作两条直线分别交于椭圆于两点,若直线平分,求证:直线的斜率是定值,并求出这个定值.【答案】⑴⑵.【解析】(1)根据椭圆的离心率可得,又椭圆过点,联立方程组解得,椭圆的标准方程为(2)设直线的方程为,联立方程组消去,由直线与圆锥曲线的位置关系得,即因为直线平分,即直线与直线的斜率为互为相反数,设直线的方程为,同理求得代入直线方程,可得即所以直线的斜率为试题解析:⑴因为椭圆的离心率为所以即所以椭圆的方程可化为又椭圆过点所以解得所以所求椭圆的标准方程为⑵由题意,设直线的方程为,联立方程组消去得:所以,即因为直线平分,即直线与直线的斜率为互为相反数,设直线的方程为,同理求得又所以即所以直线的斜率为4.某湿地公园内有一条河,现打算建一座桥将河两岸的路连接起来,剖面设计图纸如下:其中,点为轴上关于原点对称的两点,曲线段是桥的主体,为桥顶,且曲线段在图纸上的图形对应函数的解析式为,曲线段均为开口向上的抛物线段,且分别为两抛物线的顶点,设计时要求:保持两曲线在各衔接处()的切线的斜率相等.(1)求曲线段在图纸上对应函数的解析式,并写出定义域;(2)车辆从经倒爬坡,定义车辆上桥过程中某点所需要的爬坡能力为:(该点与桥顶间的水平距离)(设计图纸上该点处的切线的斜率),其中的单位:米.若该景区可提供三种类型的观光车:①游客踏乘;②蓄电池动力;③内燃机动力.它们的爬坡能力分别为米,米,米,又已知图纸上一个单位长度表示实际长度米,试问三种类型的观光车是否都可以顺利过桥?【答案】⑴⑵“游客踏乘”的车辆不能顺利通过该桥,而“蓄电池动力”和“内燃机动力”的车辆可以顺利通过该桥.【解析】(1)据题意,抛物线段与轴相切,且为抛物线的顶点,设,则抛物线段在图纸上对应函数的解析式可设为,因为点为衔接点,则解得所以曲线段在图纸上对应函数的解析式为(2)设是曲线段上任意一点,分别求P在两段上时,函数的最大值若在曲线段上,则通过该点所需要的爬坡能力,,利用二次函数求其最值(米),若在曲线段上,则通过该点所需要的爬坡能力,令,换元法求其最大阻值,(米),所以可知:车辆过桥所需要的最大爬坡能力为米,又因为,所以“游客踏乘”的车辆不能顺利通过该桥,而“蓄电池动力”和“内燃机动力”的车辆可以顺利通过该桥.试题解析:⑴据题意,抛物线段与轴相切,且为抛物线的顶点,设,则抛物线段在图纸上对应函数的解析式可设为,其导函数为由曲线段在图纸上的图像对应函数的解析式为,又,且,所以曲线在点处的切线斜率为,因为点为衔接点,则解得所以曲线段在图纸上对应函数的解析式为⑵设是曲线段上任意一点,①若在曲线段上,则通过该点所需要的爬坡能力令,所以函数在区间上为增函数,在区间上是减函数,所以(米)②若在曲线段上,则通过该点所需要的爬坡能力令则记当时,而当时,所以当时,有最小值从而取最大值此时(米)所以由①,②可知:车辆过桥所需要的最大爬坡能力为米,又因为,所以“游客踏乘”的车辆不能顺利通过该桥,而“蓄电池动力”和“内燃机动力”的车辆可以顺利通过该桥.5.已知数列的前项和为,且()求数列的通项公式;()若数列满足,求数列的通项公式;()在()的条件下,设,问是否存在实数使得数列是单调递增数列?若存在,求出的取值范围;若不存在,请说明理由.【答案】⑴;⑵.【解析】(1)由递推关系式消去,可得,数列为等比数列,且首项为,公比,所以.(2)由递推得:两式相减得:又当时,所以(3)因为所以当时,依据题意,有即分类讨论,为奇数或偶数,分离参数即可求出的取值范围是试题解析:⑴由得两式相减,得所以由又得所以数列为等比数列,且首项为,公比,所以.⑵由⑴知由得故即当时,所以⑶因为所以当时,依据题意,有即①当为大于或等于的偶数时,有恒成立.又随增大而增大,则当且仅当时,故的取值范围为②当为大于或等于的奇数时,有恒成立,且仅当时,故的取值范围为又当时,由得综上可得,所求的取值范围是点睛:本题考查了数列的递推公式,数列求和及与数列有关的含参问题,涉及分类讨论,属于难题.根据数列前项和与数列的项的递推关系求通项公式时,注意分析,在处理涉及的数列问题,一般要考虑分为奇数和偶数来分类讨论,含参的的恒成立,先分离参数,转化为求式子的最大值或最小值问题来处理.6.已知函数()当时,求的单调区间和极值.()若对于任意,都有成立,求的取值范围;()若且证明:【答案】⑴详见解析;⑵详见解析.【解析】(1)求导数分类讨论①时,②当时,令解得,当时,当写出单调区间及极值.(2)转化为对于恒成立.分离参数对于恒成立,利用导数求不等式右边的最大值即可.(3)不妨设则,要证只要证即证因为在区间上单调递增,所以又即证构造函数函数在区间上单调递增,故而故所以即所以成立.试题解析:⑴①时,因为所以函数的单调递增区间是,无单调递减区间,无极值;②当时,令解得,当时,当所以函数的单调递减区间是,单调递增区间是,在区间上的极小值为无极大值.⑵由题意,即问题转化为对于恒成立.即对于恒成立,令,则令,则所以在区间上单调递增,故故所以在区间上单调递增,函数要使对于恒成立,只要,所以即实数的取值范围为.⑶因为由⑴知,函数在区间上单调递减,在区间上单调递增,且不妨设则,要证只要证即证因为在区间上单调递增,所以又即证构造函数即因为,所以即所以函数在区间上单调递增,故而故所以即所以成立.点睛:本题考查函数的单调性极值及恒成立问题,涉及函数不等式的证明,综合性强,难度大,属于难题.处理导数大题时,注意分层得分的原则,力争第一二问答对,第三问争取能写点,一般涉及求函数单调性及极值时,比较容易入手,求导后注意分类讨论,对于恒成立问题一般要分离参数,然后利用函数导数求函数的最大值或最小值,对于含有不等式的函数问题,一般要构造函数,利用函数的单调性来解决,但涉及技巧比较多,需要多加体会.7.A.如图所示,是园内两条弦和的交点,过延长线上一点作圆的切线,为切点,已知求证:B.已知矩阵,.求矩阵,使得C.在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线的极坐标方程为,已知直线与曲线相交于两点,求线段的长.D.已知都是正数,且,求证:【答案】A:详见解析;B:;C: ;D:详见解析.【解析】A.由切割线定理及三角形相似可以,所以.B.由矩阵变化公式可得.C.根据参数方程及极坐标方程与普通方程转化公式处理.D.由均值不等式可以得证.试题解析:A.由切割线定理得,又,,即,因为,所以,故,因为,所以,所以.B.因为 ,所以 ,由,得,所以.C.因为曲线的极坐标方程,所以,即曲线的直角坐标方程为,将直线的参数方程为,代入抛物线方程,得,即,解得,,所以.D.证明:因为都是正数,所以,,又,所以,当且仅当时等号成立.8.口袋里装有大小相同的卡片八张,其中三张标有数字1,三张标有数字2,二张标有数字3,第一次从口袋里任里任意抽取一张,放回口袋里后第二次再任意抽取一张,记第一次与第二次取到卡片上数字之和为.(1)为何值时,其发生的概率最大?说明理由;(2)求随机变量的期望.【答案】18.解(1)取值为2,3,4,5,6【解析】略9.在平面直角坐标系中,已知两点,若点的坐标满足,且点的轨迹与抛物线交于两点.()求证:()在轴上是否存在一点,使得过点任作一条抛物线的弦,并以该弦为直径的圆过原点.若存在,求出的值及圆心的轨迹方程;若不存在,请说明理由.【答案】⑴详见解析;⑵.【解析】(1)根据条件,可知点的轨迹是,两点所在的直线,即,联立消元得,设交点坐标为,,所以,,因为可得,(2)假设存在点,并设是过抛物线的弦,其方程为,根据直线与圆锥曲线的位置关系得,,所以利用可得,故存在这样的点满足题意,则,代入条件消元,消去得.试题解析:(1)由,可知点的轨迹是,两点所在的直线,所以点的轨迹方程为,即,由化简得,设的轨迹与抛物线的交点坐标为,,所以,,,因为所以,(2)假设存在这样的点,并设是过抛物线的弦,其方程为,代入得,此时,,计算两直线的斜率之积,所以,所以(定值),故存在这样的点满足题意,设的中点为,则,,消去得.。

江苏高三高中数学月考试卷带答案解析

江苏高三高中数学月考试卷带答案解析

江苏高三高中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、填空题1.已知集合,,则 __________.2.复数(是虚数单位)在复平面内所对应点的在第__________象限.3.执行如图所示的程序框图,则输出的值为__________.4.在一段时间内有2000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如下面的频率分布直方图所示.若该处高速公路规定正常行驶速度为90km/h~120km/h,试估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有________辆.5.已知等差数列的公差,且.若=0 ,则n= .[6.“”是“函数在上单调递增”的_______________条件.(空格处请填写“充分不必要条件” 、“必要不充分条件”、“充要条件”或“既不充分也不必要条件”)7.在区间上随机取一个数x,的值介于的概率为.8.已知正六棱锥底面边长为,侧棱长为,则此六棱锥体积为9.函数在上恒成立,则的取值范围是.10.已知是椭圆:与双曲线的一个公共焦点,A,B分别是,在第二、四象限的公共点.若,则的离心率是.11.平行四边形中,为平行四边形内一点,且,若,则的最大值为.12.已知,若存在,满足,则称是的一个“友好”三角形.若等腰存在“友好”三角形,则其底角的弧度数为.13.已知函数是定义在上的奇函数,且当时,().若,则实数的取值范围是.14.若函数在上存在零点,且,则的取值范围是 .二、解答题1.如图,已知直三棱柱中,,分别是棱,中点.(1)求证:⊥平面;(2)求证:∥平面;2.设的内角的对边分别为,且为钝角.(1)证明:;(2)求的取值范围.3.某环线地铁按内、外环线同时运行,内、外环线的长均为30 km(忽略内、外环线长度差异).(1)当9列列车同时在内环线上运行时,要使内环线乘客最长候车时间为10 min,求内环线列车的最小平均速度;(2)新调整的方案要求内环线列车平均速度为25 km/h,外环线列车平均速度为30 km/h.现内、外环线共有18列列车全部投入运行,问:要使内、外环线乘客的最长候车时间之差最短,则内、外环线应各投入几列列车运行?4.如图,曲线由两个椭圆:和椭圆:组成,当成等比数列时,称曲线为“猫眼曲线”.若猫眼曲线过点,且的公比为.(1)求猫眼曲线的方程;(2)任作斜率为且不过原点的直线与该曲线相交,交椭圆所得弦的中点为,交椭圆所得弦的中点为,求证:为与无关的定值;(3)若斜率为的直线为椭圆的切线,且交椭圆于点,为椭圆上的任意一点(点与点不重合),求面积的最大值.5.已知两个无穷数列分别满足,,其中,设数列的前项和分别为,(1)若数列都为递增数列,求数列的通项公式;(2)若数列满足:存在唯一的正整数(),使得,称数列为“坠点数列”①若数列为“5坠点数列”,求;②若数列为“坠点数列”,数列为“坠点数列”,是否存在正整数,使得,若存在,求的最大值;若不存在,说明理由.6.已知函数(为自然对数的底数).(1)若,求函数的单调区间;(2)若,且方程在内有解,求实数的取值范围.7.已知矩阵,求矩阵8.直角坐标系内,直线的参数方程为参数),以为极轴建立极坐标系,圆C的极坐标方程为,确定直线和圆C的位置关系.9.计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(1)求在未来4年中,至多1年的年入流量超过120的概率;(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量限制,并有如下关系;年入流量发电机最多可运行台数123800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?10.设数列()为正实数数列,且满足.(1)若,写出;(2)判断是否为等比数列?若是,请证明;若不是,请说明理由.江苏高三高中数学月考试卷答案及解析一、填空题1.已知集合,,则 __________.【答案】【解析】,【考点】集合运算【方法点睛】1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.3.在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.2.复数(是虚数单位)在复平面内所对应点的在第__________象限.【答案】二【解析】在复平面内所对应点的在第二象限.【考点】向量几何意义3.执行如图所示的程序框图,则输出的值为__________.【答案】4【解析】第一次循环:;第二次循环:,第三次循环:,结束循环,输出【考点】循环结构流程图4.在一段时间内有2000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如下面的频率分布直方图所示.若该处高速公路规定正常行驶速度为90km/h~120km/h,试估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有________辆.【答案】1700【解析】【考点】频率分布直方图5.已知等差数列的公差,且.若=0 ,则n= .[【答案】5【解析】,因此n=5【考点】等差数列性质【思路点睛】等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.6.“”是“函数在上单调递增”的_______________条件.(空格处请填写“充分不必要条件” 、“必要不充分条件”、“充要条件”或“既不充分也不必要条件”)【答案】充分不必要条件【解析】在上单调递增在上恒成立,所以“”是“函数在上单调递增”的充分不必要条件条件.【考点】导数应用【思路点睛】导数与函数的单调性(1)函数单调性的判定方法:设函数y =f (x )在某个区间内可导,如果f′(x )>0,则y =f (x )在该区间为增函数;如果f′(x )<0,则y =f (x )在该区间为减函数.(2)函数单调性问题包括:①求函数的单调区间,常常通过求导,转化为解方程或不等式,常用到分类讨论思想;②利用单调性证明不等式或比较大小,常用构造函数法. 7.在区间上随机取一个数x ,的值介于的概率为 .【答案】 【解析】由题意得,因此所求概率为【考点】几何概型概率8.已知正六棱锥底面边长为,侧棱长为,则此六棱锥体积为【答案】12【解析】由题意得六棱锥的高为,体积为【考点】六棱锥体积9.函数在上恒成立,则的取值范围是 .【答案】(,+∞)【解析】由题意得,令,则,因此,从而【考点】不等式恒成立 10.已知是椭圆:与双曲线的一个公共焦点,A ,B 分别是,在第二、四象限的公共点.若,则的离心率是 .【答案】【解析】设双曲线的实轴长为,为椭圆:与双曲线的另一个公共焦点,则由对称性知,因此由得【考点】椭圆与双曲线定义【思路点睛】(1)对于圆锥曲线的定义不仅要熟记,还要深入理解细节部分:比如椭圆的定义中要求|PF 1|+|PF 2|>|F 1F 2|,双曲线的定义中要求||PF 1|-|PF 2||<|F 1F 2|,抛物线上的点到焦点的距离与准线的距离相等的转化.(2)注意数形结合,画出合理草图.11.平行四边形中,为平行四边形内一点,且,若,则的最大值为 .【答案】【解析】设,则由正弦定理得:,因此,当且仅当时取等号【考点】向量与三角综合【思路点睛】三角函数和平面向量是高中数学的两个重要分支,内容繁杂,且平面向量与三角函数交汇点较多,向量的平行、垂直、夹角、数量积等知识都可以与三角函数进行交汇.不论是哪类向量知识与三角函数的交汇试题,都会出现交汇问题中的难点,对于此类问题的解决方法就是利用向量的知识将条件转化为三角函数中的“数量关系”,再利用三角函数的相关知识进行求解.12.已知,若存在,满足,则称是的一个“友好”三角形.若等腰存在“友好”三角形,则其底角的弧度数为.【答案】【解析】不妨设为顶角,则由题意得,且,因此有,逐一验证得:满足【考点】诱导公式13.已知函数是定义在上的奇函数,且当时,().若,则实数的取值范围是.【答案】【解析】当时,,满足条件;当时,,为上的单调递增函数,也满足条件;当时,,要满足条件,需,即,综上实数的取值范围是【考点】分段函数图像与性质14.若函数在上存在零点,且,则的取值范围是 .【答案】【解析】由题意得:或,作出可行域OCAB:其中由,得知的取值范围是【考点】二次方程实根分布【思路点睛】(1)运用函数图象解决问题时,先要正确理解和把握函数图象本身的含义及其表示的内容,熟悉图象所能够表达的函数的性质.(2)在研究函数性质特别是单调性、最值、零点时,要注意用好其与图象的关系,结合图象研究.二、解答题1.如图,已知直三棱柱中,,分别是棱,中点.(1)求证:⊥平面;(2)求证:∥平面;【答案】(1)详见解析(2)详见解析【解析】(1)证明线面垂直,一般利用线面垂直判定与性质定理,经多次转化进行论证:先由直棱柱性质将侧棱垂直底面转化为线线垂直,再根据平几中等腰三角形性质得,最后由线面垂直判定定理得证(2)证明线面平行,一般利用线面平行判定定理,即从线线平行出发给予论证,而线线平行的寻找,往往利用平几知识,本题构造平行四边形,利用平行四边形性质得到线线平行:∥.试题解析:解:(Ⅰ)证明:因为三棱柱中,底面,又因为平面,所以.因为,是中点,所以.因为,所以平面.(Ⅱ)证明:取的中点,连结,,因为,分别是棱,中点,所以∥,.又因为∥,,所以∥,=.所以四边形是平行四边形.所以∥.因为平面,平面,所以∥平面.【考点】线面垂直判定与性质定理,线面平行判定定理【方法点睛】垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.(4)证明面面垂直,需转化为证明线面垂直,进而转化为证明线线垂直.2.设的内角的对边分别为,且为钝角.(1)证明:;(2)求的取值范围.【答案】(1)详见解析(2)【解析】(1)先由正弦定理,将已知条件统一成角的关系:即,再根据同角三角函数关系,化切为弦得,最后根据诱导公式得(2)求取值范围问题,一般先利用条件,将其转化为一元函数:,再利用二倍角公式,将其转化为二次函数:,最后根据角的范围,确定二次函数定义区间,结合对称轴得到函数值域试题解析:解析:(1)由及正弦定理,得,∴,即,又为钝角,因此,(不写范围的扣1分)故,即;(2)由(1)知,,∴,于是,∵,∴,因此,由此可知的取值范围是.【考点】正弦定理,诱导公式与二倍角公式,二次函数值域【方法点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.3.某环线地铁按内、外环线同时运行,内、外环线的长均为30 km(忽略内、外环线长度差异).(1)当9列列车同时在内环线上运行时,要使内环线乘客最长候车时间为10 min,求内环线列车的最小平均速度;(2)新调整的方案要求内环线列车平均速度为25 km/h,外环线列车平均速度为30 km/h.现内、外环线共有18列列车全部投入运行,问:要使内、外环线乘客的最长候车时间之差最短,则内、外环线应各投入几列列车运行?【答案】(1)20 km/h.(2)内环线投入10列,外环线投入8列【解析】(1)本题实质为路程问题:9列列车总行驶30 km,时间不超过10 min,即设内环线列车运行的平均速度为v km/h,则,v≥20.注意单位统一(2)由(1)分析,可分别求出内、外环线乘客的最长候车时间:设内环线投入x列列车运行,则外环线投入(18-x)列列车运行,内、外环线乘客最长候车时间分别,.根据绝对值的定义研究差的单调性,得x=10,所以当内环线投入10列,外环线投入8列列车运行时,内、外环线乘客最长候车时间之差最短.试题解析:解:(1)设内环线列车运行的平均速度为v km/h,由题意可知,v≥20.所以,要使内环线乘客最长候车时间为10 min,列车的最小平均速度是20 km/h.(2)设内环线投入x列列车运行,则外环线投入(18-x)列列车运行,内、外环线乘客最长候车时间分别为t1、t2 min,则t1=,t2=.于是有t=|t1-t2|=在(0,9)递减,在(10,17)递增.又,所以x=10,所以当内环线投入10列,外环线投入8列列车运行时,内、外环线乘客最长候车时间之差最短.【考点】函数实际应用,分段函数最值4.如图,曲线由两个椭圆:和椭圆:组成,当成等比数列时,称曲线为“猫眼曲线”.若猫眼曲线过点,且的公比为.(1)求猫眼曲线的方程;(2)任作斜率为且不过原点的直线与该曲线相交,交椭圆所得弦的中点为,交椭圆所得弦的中点为,求证:为与无关的定值;(3)若斜率为的直线为椭圆的切线,且交椭圆于点,为椭圆上的任意一点(点与点不重合),求面积的最大值.【答案】(1)(2)详见解析(3)【解析】(1)求椭圆标准方程,一般方法为待定系数法,由题意得,再由成等比数列,且公比为得(2)弦中点问题,一般利用点差法得中点坐标与弦斜率关系:,,两式相除得值为(3)由椭圆几何意义得,过点且斜率为的直线与椭圆也相切,而直线与椭圆相切问题,一般利用判别式为零列等量关系,根据弦长公式可得底边长,根据平行直线间距离公式可得高试题解析:解. (1),,,(2)设斜率为的直线交椭圆于点,线段中点由,得存在且,,且,即同理,得证(3)设直线的方程为,,,,两平行线间距离:,的面积最大值为【考点】椭圆标准方程,点差法,直线与椭圆位置关系【思路点睛】定值问题通常是通过设参数或取特殊值来确定“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.定值问题同证明问题类似,在求定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定值显现.5.已知两个无穷数列分别满足,,其中,设数列的前项和分别为,(1)若数列都为递增数列,求数列的通项公式;(2)若数列满足:存在唯一的正整数(),使得,称数列为“坠点数列”①若数列为“5坠点数列”,求;②若数列为“坠点数列”,数列为“坠点数列”,是否存在正整数,使得,若存在,求的最大值;若不存在,说明理由.【答案】(1),(2)①②【解析】(1)由题意得数列为等差数列,公差为2,首项为1,通项公式为,(2)①由题意得当时,,可分项讨论得②三个未知正整数、、是本题难点,先分析数列成为坠点数列的条件:,当时,,数列为“坠点数列” 的条件:除首项外有且只有一个负项.这样的范围可用等差与等比数列前项和限制:当时,,,当时,,故不存在,使得成立;当时,不存在,使得成立;当时,,当时,才存在,使得成立,所以,最后验证当时,满足条件.试题解析:解(1)数列都为递增数列,∴,,∴,;(2)①∵数列满足:存在唯一的正整数,使得,且,∴数列必为,即前4项为首项为1,公差为2的等差数列,从第5项开始为首项5,公差为2的等差数列,故;②∵,即,而数列为“坠点数列”且,∴数列中有且只有两个负项.假设存在正整数,使得,显然,且为奇数,而中各项均为奇数,∴必为偶数.i.当时,当时,,故不存在,使得成立ii.当时,显然不存在,使得成立iii.当时,当时,才存在,使得成立所以当时,,构造:为,为此时,,所以的最大值为【考点】等差数列与等比数列综合应用6.已知函数(为自然对数的底数).(1)若,求函数的单调区间;(2)若,且方程在内有解,求实数的取值范围.【答案】(1)时,的单调递减区间为;时,的单调递增区间为,递减区间为,;时,的单调递增区间为,递减区间为,. (2)【解析】(1)求函数单调区间,一般利用导数,先求导函数:,再求导函数在定义区间内的零点情况:,,最后根据两根大小分类讨论单调区间(2)先由得,再研究代入,变量分离得,令函数,利用导数可知为增函数,结合洛必达法则可得,因此可得实数的取值范围.本题也可讨论求参数取值范围.试题解析:解.(1)当,,,令,得,.当时,.当,时,,或时,;当,时,,或时,.所以,时,的单调递减区间为;时,的单调递增区间为,递减区间为,;时,的单调递增区间为,递减区间为,. .....4分(2)由得,,由得,设,则在内有零点.设为在内的一个零点,则由知在区间和上不可能单调递增,也不可能单调递减,设,则在区间和上均存在零点,即在上至少有两个零点. ,.当时,,在区间上递增,不可能有两个及以上零点;.6分当时,,在区间上递减,不可能有两个及以上零点;.7分当时,令得,所以在区间上递减,在上递增,在区间上存在最小值.若有两个零点,则有:,,.设,则,令,得.当时,,递增,当时,,递减,,所以恒成立.由,,得.当时,设的两个零点为,则在递增,在递减,在递增,所以,,则在内有零点.综上,实数的取值范围是.【考点】利用导数求函数单调区间,利用导数研究参数取值范围【思路点睛】先把方程解的问题转化为函数的零点问题.,再利用导数解决与函数零点(或方程的根)有关的问题:通过导数研究函数的单调性、最大值、最小值、变化趋势等,并借助函数的大致图象判断方程根的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.7.已知矩阵,求矩阵【答案】【解析】由逆矩阵公式得,再利用矩阵运算得试题解析:解:,【考点】逆矩阵8.直角坐标系内,直线的参数方程为参数),以为极轴建立极坐标系,圆C的极坐标方程为,确定直线和圆C的位置关系.【答案】直线与圆相交.【解析】先利用代入消元得直线的普通方程为,再利用将圆C的极坐标方程化为直角坐标方程,最后根据圆心到直线距离与半径大小关系确定位置关系试题解析:解:由,消去参数,得直线的普通方程为,由,即,消去参数,得直角坐标方程为.由(1)得圆心,半径,∴到的距离,所以,直线与圆相交.【考点】参数方程化普通方程,极坐标方程化直角坐标方程,直线与圆位置关系9.计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(1)求在未来4年中,至多1年的年入流量超过120的概率;(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量限制,并有如下关系;年入流量发电机最多可运行台数123若某台发电机运行,则该台发电机年利润为5000万元;若某台发电机未运行,则该台发电机年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?【答案】(1)(2)2【解析】(1)至多1年的年入流量超过120包含两种情况,一是4年年入流量不大于120,二是恰有一年年入流量超过120,利用互斥事件概率加法公式得,(2)由于至多安装3台,因此分三类依次讨论,分别求出对应分布列、数学期望值,最后比较数学期望值大小,试题解析:解:(1)由题意得:,由二项分布,在未来4年中,至多1年的年入流量超过120的概率为(2)设水电站年总利润为(万元)①安装1台发电机,②安装2台发电机,的分布列为420010000③安装3台发电机,的分布列为3400920015000综上,欲使水电站年总利润的均值达到最大,应安装发电机2台【考点】数学期望值,概率【方法点睛】求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布X~B(n,p)),则此随机变量的期望可直接利用这种典型分布的期望公式(E(X)=np)求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度.10.设数列()为正实数数列,且满足.(1)若,写出;(2)判断是否为等比数列?若是,请证明;若不是,请说明理由.【答案】(1)(2)是等比数列【解析】(1)先寻求之间关系:当时,,同理可得当时,,再根据,得到(2)利用数学归纳法,同(1)求出试题解析:解:(1)当时,当时,因为,所以(2)假设对于,均有,则当时,综上,,为等比数列【考点】数学归纳法。

江苏高三高中数学月考试卷带答案解析

江苏高三高中数学月考试卷带答案解析

江苏高三高中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、选择题命题的否定是_____.二、填空题1.函数f(x)=的奇偶性是_________.2.函数y=xcosx-sinx的导数为__________.3.设,则对任意实数,“”是“”的_________条件.(填“充分不必要”.“必要不充分”.“充要”.“既不充分又不必要”之一)4.设函数,集合,则如图中阴影部分表示的集合为__________.5.已知函数是定义在上的奇函数,当时,,则不等式的解集是_________.6.若函数的图象关于点(1,1)对称,则实数=__________.7.记为不超过的最大整数,则函数的最小正周期为__________.8.设P是函数图象上异于原点的动点,且该图象在点P处的切线的倾斜角为,则的取值范围是__________.9.关于x的不等式的解集为空集,则的取值范围__________.10.设函数,函数的零点个数为_______.11.已知函数f(x)= (a.b.c∈Z)是奇函数,又f(1)=2,f(2)<3,则a+b+c的值为__________.12.已知实数满足,,则的取值范围为_________.13.已知函数,且,则__________.三、解答题1.已知集合,集合.()若,求集合;(2)已知.且“”是“”的必要不充分条件,求实数的取值范围.2.定义在D上的函数f(x),如果满足;对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.(1)判断函数在是否为有界函数,请说明理由;(2)若函数在上是以1为上界的函数,求实数的取值范围.3.函数.(1)求证:函数在区间内至少有一个零点;(2)若函数在处取极值,且,使得成立,求实数的取值范围.4.将52名志愿者分成A,B两组参加义务植树活动,A组种植150捆白杨树苗,B组种植200捆沙棘树苗.假定A,B两组同时开始种植.(1)根据历年统计,每名志愿者种植一捆白杨树苗用时小时,种植一捆沙棘树苗用时小时.应如何分配A,B 两组的人数,使植树活动持续时间最短?(2)在按(1)分配的人数种植1小时后发现,每名志愿者种植一捆白杨树苗用时仍为小时,而每名志愿者种植一捆沙棘树苗实际用时小时,于是从A组抽调6名志愿者加入B组继续种植,求植树活动所持续的时间.5.已知函数f (x)=x2,g(x)=x-1.(1)若存在x∈R使f(x)<b·g(x),求实数b的取值范围;(2)设F(x)=f(x)-mg(x)+1-m-m2,且|F(x)|在上单调递增,求实数m的取值范围.6.已知函数,.(1)若曲线在处的切线的方程为,求实数的值;(2)设,若对任意两个不等的正数,都有恒成立,求实数的取值范围;江苏高三高中数学月考试卷答案及解析一、选择题命题的否定是_____.【答案】【解析】命题的否定为,所以命题的否定是点睛:命题的否定的注意点(1)注意命题是全称命题还是存在性命题,是正确写出命题的否定的前提;(2)注意命题所含的量词,对于量词隐含的命题要结合命题的含义显现量词,再进行否定;(3)注意“或”“且”的否定,“或”的否定为“且”,且”的否定为“或”.二、填空题1.函数f(x)=的奇偶性是_________.【答案】既是奇函数也是偶函数【解析】因为,既是奇函数也是偶函数2.函数y=xcosx-sinx的导数为__________.【答案】-xsinx【解析】3.设,则对任意实数,“”是“”的_________条件.(填“充分不必要”.“必要不充分”.“充要”.“既不充分又不必要”之一)【答案】充要【解析】,所以为奇函数,又为单调递增函数,所以,即“”是“”的充要条件点睛:充分、必要条件的三种判断方法.1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.2.等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.4.设函数,集合,则如图中阴影部分表示的集合为__________.【答案】【解析】所以 ,即阴影部分表示的集合为5.已知函数是定义在上的奇函数,当时,,则不等式的解集是_________.【答案】(﹣2,0)∪(2,+∞)【解析】或,所以或,即解集是(﹣2,0)∪(2,+∞)6.若函数的图象关于点(1,1)对称,则实数=__________.【答案】1【解析】关于点对称,所以7.记为不超过的最大整数,则函数的最小正周期为__________.【答案】1【解析】所以最小正周期为18.设P是函数图象上异于原点的动点,且该图象在点P处的切线的倾斜角为,则的取值范围是__________.【答案】【解析】点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.9.关于x的不等式的解集为空集,则的取值范围__________.【答案】【解析】无解,所以当时,;当时,;当且仅当时取等号当时,;当且仅当时取等号,综上10.设函数,函数的零点个数为_______.【答案】 2【解析】,令,得或.【考点】分段函数、复合函数、函数的零点.11.已知函数f(x)= (a.b.c∈Z)是奇函数,又f(1)=2,f(2)<3,则a+b+c的值为__________.【答案】2【解析】,所以点睛:(1)已知函数的奇偶性求参数,一般采用待定系数法求解,根据得到关于待求参数的恒等式,由系数的对等性得参数的值或方程(组),进而得出参数的值;(2)已知函数的奇偶性求函数值或解析式,首先抓住奇偶性讨论函数在各个区间上的解析式,或充分利用奇偶性得出关于的方程,从而可得的值或解析式.12.已知实数满足,,则的取值范围为_________.【答案】【解析】由题意可设:则,因此,【考点】三角函数最值13.已知函数,且,则__________.【答案】-100【解析】为偶数时,;为奇数时,;点睛:本题采用分组转化法求和,即通过两个一组进行重新组合,将原数列转化为一个等差数列. 分组转化法求和的常见类型还有分段型(如)及符号型(如)三、解答题1.已知集合,集合.()若,求集合;(2)已知.且“”是“”的必要不充分条件,求实数的取值范围.【答案】(1);(2)【解析】(1)集合A、B都是一元二次不等式的解集,求出解集A、B后由交集运算求得;(2)在时,同样可求得,,由充分必要条件的性质知,根据包含关系列出的不等式,可求得的范围.试题解析:()时,=.……4分∴.…6分(2)∵,∴,∴,又,∴.……0分∵“”是“”的必要不充分条件,∴,∴解之得:【考点】一元二次不等式的解法,集合的运算,集合的包含关系.2.定义在D上的函数f(x),如果满足;对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D 上的有界函数,其中M称为函数f(x)的上界.(1)判断函数在是否为有界函数,请说明理由;(2)若函数在上是以1为上界的函数,求实数的取值范围.【答案】(1)不为有界函数(2)【解析】试题分析:(1)即先求函数值域,再根据值域判定最大值是否有界,由于,所以最大值为正无穷,无界(2)由定义得不等式对恒成立,参变分离得,再根据最值得实数的取值范围试题解析:(1)当时,,不为有界函数(2)不等式对恒成立即3.函数.(1)求证:函数在区间内至少有一个零点;(2)若函数在处取极值,且,使得成立,求实数的取值范围.【答案】(1)见解析(2)【解析】试题分析:(1)由零点存在定理进行论证:即判断异号即可(2)先由极值定义得,再分离参变得,转化为求函数最大值,利用导数不难得为单调减函数,因此,即得实数的取值范围.试题解析:(1),由零点存在定理得证(2)4.将52名志愿者分成A,B两组参加义务植树活动,A组种植150捆白杨树苗,B组种植200捆沙棘树苗.假定A,B两组同时开始种植.(1)根据历年统计,每名志愿者种植一捆白杨树苗用时小时,种植一捆沙棘树苗用时小时.应如何分配A,B 两组的人数,使植树活动持续时间最短?(2)在按(1)分配的人数种植1小时后发现,每名志愿者种植一捆白杨树苗用时仍为小时,而每名志愿者种植一捆沙棘树苗实际用时小时,于是从A组抽调6名志愿者加入B组继续种植,求植树活动所持续的时间.【答案】(1)当A、B两组人数分别为时,使植树活动持续时间最短.(2)A组所需时间为1+(小时)B组所需时间为(小时),【解析】解:(1)设A 组人数为,且,, 则A 组活动所需时间;B 组活动所需时间. 令,即,解得.所以两组同时开始的植树活动所需时间而故.所以当A 、B 两组人数分别为时,使植树活动持续时间最短.(2)A 组所需时间为1+(小时) B 组所需时间为(小时),【考点】函数的运用点评:解决的关键是求解函数解析式,分析问题和解决问题的能力,属于中档题。

江苏高三高中数学月考试卷带答案解析

江苏高三高中数学月考试卷带答案解析

江苏高三高中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、填空题1.已知集合,,则等于 .2.已知虚数满足,则 .3.抛物线的准线方程为 .4.角的顶点在坐标原点,始边与轴的非负半轴重合,终边经过点,则的值是 .5.设函数f (x)=cos(ωx +φ),对任意x ∈R 都有,若函数g(x)=3sin(ωx +φ)-2,则g()的值为_________. 6.“”是“”成立的________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”).7.若为等差数列的前项和,则与的等比中项为___.8.设函数f (x)在(0,+∞)内可导,且f (e x )=x +e x ,则=__________.9.若实数满足,则的最大值为_________.10.在边长为1的正中,向量,且则的最大值为________. 11.已知是定义在上的奇函数,且当时,则_________.12.已知直线ax +by =1(a ,b 是实数)与圆O :x 2+y 2=1(O 是坐标原点)相交于A ,B 两点,且△AOB 是直角三角形,点P(a ,b)是以点M(0,1)为圆心的圆M 上的任意一点,则圆M 的面积的最小值为______. 13.已知抛物线和所围成的封闭曲线,给定点,若在此封闭曲线上恰有三对不同的点,满足每一对点关于点对称,则实数的取值范围是 .14.设各项均为正整数的无穷等差数列{a n },满足a 54=2014,且存在正整数k ,使a 1,a 54,a k 成等比数列,则公差d 的所有可能取值之和为 .二、解答题1.如图,在五面体ABCDEF 中,四边形ABCD 是平行四边形.(1)若CF ⊥AE ,AB ⊥AE ,求证:平面ABFE ⊥平面CDEF ; (2)求证:EF//平面ABCD. 2.已知向量m =,n =.(1)若m n =1,求cos的值;(2)记f(x)=m n ,在△ABC 中,角A ,B ,C 的对边分别是a , b ,c ,且满足(2a -c)cos B =bcos C , 求函数f(A)的取值范围.3.在平面直角坐标系xoy 中,椭圆C :的离心率为,右焦点F (1,0),点P 在椭圆C 上,且在第一象限内,直线PQ与圆O:相切于点M.(1)求椭圆C的方程;(2)求|PM||PF|的取值范围;(3)若OP⊥OQ,求点Q的纵坐标t的值.4.某校兴趣小组运用计算机对轮船由海上行驶入内陆海湾进行了一次模拟试验。

江苏高三高中数学月考试卷带答案解析

江苏高三高中数学月考试卷带答案解析

江苏高三高中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、填空题1.已知集合,,则________.2.命题“,x2≥3”的否定是________.3.设幂函数的图象经过点,则= .4.计算: __________.5.若则的值为__________.6.已知满足约束条件若的最大值为4,则的值为________.7.公差不为的等差数列的前项和为,若成等比数列,,则_____.8.在平面直角坐标系xOy中,P是曲线上一点,直线经过点P,且与曲线C在P点处的切线垂直,则实数c的值为________.9.若正实数满足,则的最小值为______.10.设为锐角,若,则的值为________.11.如图所示的梯形中,如果=______.12.已知函数.若函数的图象关于直线x=2π对称,且在区间上是单调函数,则ω的取值集合为______.13.已知函数f(x)是以4为周期的函数,且当-1<x≤3时,若函数恰有10个不同零点,则实数m的取值范围为______.14.已知函数在上是增函数,函数,当时,函数g(x)的最大值M与最小值m的差为,则a的值为______.二、解答题1.设的内角所对的边分别为,若,(1)求的值;(2)求的值为.2.设实数满足(其中),实数满足.(1)若,且且真,求实数的取值范围;(2)若是的必要不充分条件,求实数的取值范围.3.小王在年初用50万元购买一辆大货车,第一年因缴纳各种费用需支出6万元,从第二年起,每年都比上一年增加支出2万元,假定该车每年的运输收入均为25万元.小王在该车运输累计收入超过总支出后,考虑将大货车作为二手车出售,若该车在第x年年底出售,其销售价格为25-x万元(国家规定大货车的报废年限为10年).(1)大货车运输到第几年年底,该车运输累计收入超过总支出?(2)在第几年年底将大货车出售,能使小王获得的年平均利润最大(利润=累计收入+销售收入-总支出)?4.如图所示,某公路一侧有一块空地,其中,.当地政府拟在中间开挖一个人工湖△OMN,其中M,N都在边AB上(M,N不与A,B重合,M在A,N之间),且∠MON=30°.(1)若M在距离A点2 km处,求点M,N之间的距离;(2)为节省投入资金,人工湖△OMN的面积要尽可能小.试确定M的位置,使△OMN的面积最小,并求出最小面积.5.设,函数.(1)证明在上仅有一个零点;(2)若曲线在点处的切线与轴平行,且在点处的切线与直线平行,(O是坐标原点),证明:6.设数列的前项和为,且满足,为常数.(1)是否存在数列,使得?若存在,写出一个满足要求的数列;若不存在,说明理由.(2)当时,求证:.(3)当时,求证:当时,.江苏高三高中数学月考试卷答案及解析一、填空题1.已知集合,,则________.【答案】【解析】通过数轴可知,2.命题“,x2≥3”的否定是________.【答案】,【解析】全称命题的否定是特称命题,该命题的否定为“,”。

2024-2025学年高三上学期第一次联考(9月月考) 数学试题[含答案]

2024-2025学年高三上学期第一次联考(9月月考) 数学试题[含答案]

2024~2025学年高三第一次联考(月考)试卷数学考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.4.本卷命题范围:集合、常用逻辑用语、不等式、函数、导数及其应用.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则集合的真子集的个数为(){}4,3,2,0,2,3,4A =---{}2290B x x =-≤A B ⋂A.7B.8C.31D.322.已知,,则“,”是“”的( )0x >0y >4x ≥6y ≥24xy ≥A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件3.国家速滑馆又称“冰丝带”,是北京冬奥会的标志性场馆,拥有亚洲最大的全冰面设计,但整个系统的碳排放接近于零,做到了真正的智慧场馆、绿色场馆,并且为了倡导绿色可循环的理念,场馆还配备了先进的污水、雨水过滤系统,已知过滤过程中废水的污染物数量与时间(小时)的关系为()mg /L N t (为最初污染物数量,且).如果前4个小时消除了的污染物,那么污染物消0e kt N N -=0N 00N >20%除至最初的还需要( )64%A.3.8小时 B.4小时C.4.4小时D.5小时4.若函数的值域为,则的取值范围是()()()2ln 22f x x mx m =-++R m A.B.()1,2-[]1,2-C.D.()(),12,-∞-⋃+∞(][),12,-∞-⋃+∞5.已知点在幂函数的图象上,设,(),27m ()()2n f x m x =-(4log a f =,,则,,的大小关系为( )()ln 3b f =123c f -⎛⎫= ⎪⎝⎭a b c A.B.c a b <<b a c<<C. D.a c b <<a b c<<6.已知函数若关于的不等式的解集为,则的()()2e ,0,44,0,x ax xf x x a x a x ⎧->⎪=⎨-+-+≤⎪⎩x ()0f x ≥[)4,-+∞a 取值范围为( )A.B. C. D.(2,e ⎤-∞⎦(],e -∞20,e ⎡⎤⎣⎦[]0,e 7.已知函数,的零点分别为,,则( )()41log 4xf x x ⎛⎫=- ⎪⎝⎭()141log 4xg x x ⎛⎫=- ⎪⎝⎭a b A. B.01ab <<1ab =C.D.12ab <<2ab ≥8.已知,,,且,则的最小值为( )0a >0b >0c >30a b c +-≥6b a a b c ++A. B. C. D.29495989二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是( )A.函数是相同的函数()f x =()g x =B.函数6()f x =C.若函数在定义域上为奇函数,则()313xx k f x k -=+⋅1k =D.已知函数的定义域为,则函数的定义域为()21f x +[]1,1-()f x []1,3-10.若,且,则下列说法正确的是()0a b <<0a b +>A. B.1a b >-110a b+>C. D.22a b <()()110a b --<11.已知函数,则下列说法正确的是( )()()3233f x x x a x b=-+--A.若在上单调递增,则的取值范围是()f x ()0,+∞a (),0-∞B.点为曲线的对称中心()()1,1f ()y f x =C.若过点可作出曲线的三条切线,则的取值范围是()2,m ()()3y f x a x b =+-+m ()5,4--D.若存在极值点,且,其中,则()f x 0x ()()01f x f x =01x x ≠1023x x +=三、填空题:本题共3小题,每小题5分,共15分.12.__________.22lg 2lg3381527log 5log 210--+⋅+=13.已知函数称为高斯函数,表示不超过的最大整数,如,,则不等式[]y x =x []3.43=[]1.62-=-的解集为__________;当时,的最大值为__________.[][]06x x <-0x >[][]29x x +14.设函数,若,则的最小值为__________.()()()ln ln f x x a x b =++()0f x ≥ab 四、解答题:本题共5小题、共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)已知全集,集合,.U =R {}231030A x x x =-+≤{}220B x xa =+<(1)若,求和;8a =-A B ⋂A B ⋃(2)若,求的取值范围.()UA B B ⋂= a 16.(本小题满分15分)已知关于的不等式的解集为.x 2280ax x --<{}2x x b-<<(1)求,的值;a b (2)若,,且,求的最小值.0x >2y >-42a bx y +=+2x y +17.(本小题满分15分)已知函数.()()()211e 2x f x x ax a =--∈R (1)讨论的单调性;()f x (2)若对任意的恒成立,求的取值范围.()e x f x x ≥-[)0,x ∈+∞a 18.(本小题满分17分)已知函数是定义在上的奇函数.()22x xf x a -=⋅-R(1)求的值,并证明:在上单调递增;a ()f x R (2)求不等式的解集;()()23540f x x f x -+->(3)若在区间上的最小值为,求的值.()()442x x g x mf x -=+-[)1,-+∞2-m 19.(本小题满分17分)已知函数.()()214ln 32f x x a x x a =---∈R (1)若,求的图像在处的切线方程;1a =()f x 1x =(2)若恰有两个极值点,.()f x 1x ()212x x x <(i )求的取值范围;a (ii )证明:.()()124ln f x f x a+<-数学一参考答案、提示及评分细则1.A 由题意知,又,所以{}2290B x x ⎡=-=⎢⎣∣ {}4,3,2,0,2,3,4A =---,所以的元素个数为3,真子集的个数为.故选.{}2,0,2A B ⋂=-A B ⋂3217-=A 2.A 若,则,所以“”是“”的充分条件;若,满足4,6x y 24xy 4,6x y 24xy 1,25x y ==,但是,所以“”不是“”的必要条件,所以“”是24xy 4x <4,6x y 24xy 4,6x y “”的充分不必要条件.故选A.24xy 3.B 由题意可得,解得,令,可得4004e 5N N -=44e 5k -=20004e 0.645t N N N -⎛⎫== ⎪⎝⎭,解得,所以污染物消除至最初的还需要4小时.故选B.()248e e ek kk---==8t =64%4.D 依题意,函数的值域为,所以,解得()()2ln 22f x x mx m =-++R ()2Δ(2)420m m =--+ 或,即的取值范围是.故选D.2m 1m - m ][(),12,∞∞--⋃+5.C 因为是軍函数,所以,解得,又点在函数的图()()2nf x m x =-21m -=3m =()3,27()n f x x =象上,所以,解得,所以,易得函数在上单调递增,又273n=3n =()3f x x =()f x (),∞∞-+,所以.故选C.1241ln3lne 133log 2log 2->==>=>=>a c b <<6.D 由题意知,当时,;当时,;当时,(),4x ∞∈--()0f x <[]4,0x ∈-()0f x ()0,x ∞∈+.当时,,结合图象知;当时,,当()0f x 0x ()()()4f x x x a =-+-0a 0x >()e 0x f x ax =- 时,显然成立;当时,,令,所以,令,解0a =0a >1e x x a (),0e x x g x x =>()1e xxg x -='()0g x '>得,令0,解得,所以在上单调递增,在上单调递减,所以01x <<()g x '<1x >()g x ()0,1()1,∞+,所以,解得综上,的取值范围为.故选D.()max 1()1e g x g ==11e a0e a < a []0,e 7.A 依题意得,即两式相减得4141log ,41log ,4a b a b ⎧⎛⎫=⎪ ⎪⎝⎭⎪⎨⎛⎫⎪= ⎪⎪⎝⎭⎩441log ,41log ,4a ba b ⎧⎛⎫=⎪ ⎪⎪⎝⎭⎨⎛⎫⎪-= ⎪⎪⎝⎭⎩.在同一直角坐标系中作出的图()44411log log log 44a ba b ab ⎛⎫⎛⎫+==- ⎪ ⎪⎝⎭⎝⎭4141log ,log ,4xy x y x y ⎛⎫=== ⎪⎝⎭象,如图所示:由图象可知,所以,即,所以.故选A.a b >1144ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭()4log 0ab <01ab <<8.C 因为,所以,所以30a b c +- 30a b c +> 11911121519966399939911b a b a b b b b a b c a b a b a a a a ⎛⎫++=+=++--=-= ⎪+++⎝⎭++ ,当且仅当,即时等号成立,所以的最小值为.故选C.1911991b b a a ⎛⎫+= ⎪⎝⎭+29b a =6b aa b c ++599.AD 由解得,所以,由,解得10,10x x +⎧⎨-⎩ 11x - ()f x =[]1,1-210x -,所以的定义域为,又,故函数11x - ()g x =[]1,1-()()f x g x ===与是相同的函数,故A 正确;,()f x ()g x ()6f x ==当且仅当方程无解,等号不成立,故B 错误;函数=2169x +=在定义域上为奇函数,则,即,即()313x x k f x k -=+⋅()()f x f x -=-331313x xx x k k k k ----=-+⋅+⋅,即,整理得,即,()()33313313x x xxxxk k k k ----=-+⋅+⋅313313x x x x k kk k ⋅--=++⋅22919x x k k ⋅-=-()()21910x k -+=所以,解得.当时,,该函数定义域为,满足,210k -=1k =±1k =()1313xx f x -=+R ()()f x f x -=-符合题意;当时,,由可得,此时函数定义域为1k =-()13311331x x xxf x --+==--310x -≠0x ≠,满足,符合题意.综上,,故C 错误;由,得{}0x x ≠∣()()f x f x -=-1k =±[]1,1x ∈-,所以的定义域为,故D 正确.故选AD.[]211,3x +∈-()f x []1,3-10.AC 因为,且,所以,所以,即,故A 正确;0a b <<0a b +>0b a >->01a b <-<10ab -<<因为,所以,故В错误;因为,所以,0,0b a a b >->+>110a ba b ab ++=<0a b <<,a a b b =-=由可得,所以,故C 正确;因为当,此时,故0a b +>b a >22a b <11,32a b =-=()()110a b -->D 错误.故选AC.11.BCD 若在上单调递增,则在上佰成立,所以()f x ()0,∞+()23630f x x x a '=-+- ()0,x ∞∈+,解得,即的取值范围是,故A 错误;因为()min ()13630f x f a '==--'+ 0a a (],0∞-,所以,又()()32333(1)1f x x x a x b x ax b =-+--=---+()11f a b =--+,所以点()()()332(21)21(1)1222f x f x x a x b x ax b a b -+=-----++---+=--+为曲线的对称中心,故B 正确;由题意知,所以()()1,1f ()y f x =()()3233y f x a x b xx =+-+=-,设切点为,所以切线的斜率,所以切线的方程为236y x x =-'()32000,3x x x -20036k x x =-,所以,整理得()()()3220000336y x x x x x x --=--()()()322000003362m xx x x x --=--.记,所以3200029120x x x m -++=()322912h x x x x m =-++()26h x x '=-,令,解得或,当时,取得极大值,当时,1812x +()0h x '=1x =2x =1x =()h x ()15h m =+2x =取得极小值,因为过点可作出曲线的三条切线,所以()h x ()24h m=+()2,m ()()3y f x a x b =+-+解得,即的取值范围是,故C 正确;由题意知()()150,240,h m h m ⎧=+>⎪⎨=+<⎪⎩54m -<<-m ()5,4--,当在上单调递增,不符合题意;当,()223633(1)f x x x a x a =-+-=--'()0,a f x (),∞∞-+0a >令,解得,令,解得在()0f x '>1x <-1x >+()0f x '<11x -<<+()f x 上单调递增,在上单调递堿,在上单调递增,因为,1∞⎛- ⎝1⎛+ ⎝1∞⎛⎫+ ⎪ ⎪⎝⎭存在极值点,所以.由,得,令,所以,()f x 0x 0a >()00f x '=()2031x a-=102x x t+=102x t x =-又,所以,又,()()01f x f x =()()002f x f t x =-()()32333(1)1f x x x a x b x ax b =-+--=---+所以,又,所以()()()330000112121x ax b t x a t x b ---+=-----+()2031x a-=,化简得()()()()()()()322320000000013112121312x x x b x x b t x x t x b----=----=------,又,所以,故D 正确.故选BCD.()()20330t x t --=010,30x x x t ≠-≠103,23t x x =+=12. 由题意知10932232862log 184163381255127log 5log 210log 5log 121027---⎛⎫+⋅+=+⋅-+ ⎪⎝⎭62511411410log 5log 2109339339=-⋅+=-+=13.(2分)(3分) 因为,所以,解得,又函数[)1,616[][]06x x <-[][]()60x x -<[]06x <<称为高斯函数,表示不超过的最大整数,所以,即不等式的解集为.当[]y x =x 16x < [][]06x x <-[)1,6时,,此时;当时,,此时01x <<[]0x =[]2[]9x x =+1x []1x ,当且仅当3时等号成立.综上可得,当时,的[][][]2119[]96x x x x ==++[]x =0x >[]2[]9x x +最大值为.1614. 由题意可知:的定义域为,令,解得令,解21e -()f x (),b ∞-+ln 0x a +=ln ;x a =-()ln 0x b +=得.若,当时,可知,此时,不合题1x b =-ln a b -- (),1x b b ∈--()ln 0,ln 0x a x b +>+<()0f x <意;若,当时,可知,此时,不合ln 1b a b -<-<-()ln ,1x a b ∈--()ln 0,ln 0x a x b +>+<()0f x <题意;若,当时,可知,此时;当ln 1a b -=-(),1x b b ∈--()ln 0,ln 0x a x b +<+<()0f x >时,可知,此时,可知若,符合题意;若[)1,x b ∞∈-+()ln 0,ln 0x a x b ++ ()0f x ln 1a b -=-,当时,可知,此时,不合题意.综上所ln 1a b ->-()1,ln x b a ∈--()ln 0,ln 0x a x b +<+>()0f x <述:,即.所以,令,所以ln 1a b -=-ln 1b a =+()ln 1ab a a =+()()ln 1h x x x =+,令,然得,令,解得,所以在()ln 11ln 2h x x x '=++=+()0h x '<210e x <<()0h x '>21e x >()h x 上单调递堿,在上单调递增,所以,所以的最小值为.210,e ⎛⎫ ⎪⎝⎭21,e ∞⎛⎫+ ⎪⎝⎭min 2211()e e h x h ⎛⎫==- ⎪⎝⎭ab 21e -15.解:(1)由题意知,{}2131030,33A x x x ⎡⎤=-+=⎢⎥⎣⎦∣ 若,则,8a =-{}()22802,2B x x =-<=-∣所以.(]1,2,2,33A B A B ⎡⎫⋂=⋃=-⎪⎢⎣⎭(2)因为,所以,()UA B B ⋂= ()UB A ⊆ 当时,此时,符合题意;B =∅0a 当时,此时,所以,B ≠∅0a <{}220Bx x a ⎛=+<= ⎝∣又,U A ()1,3,3∞∞⎛⎫=-⋃+ ⎪⎝⎭13解得.209a -< 综上,的取值范围是.a 2,9∞⎡⎫-+⎪⎢⎣⎭16.解:(1)因为关于的不等式的解集为,x 2280ax x --<{2}xx b -<<∣所以和是关于的方程的两个实数根,且,所以2-b x 2280ax x --=0a >22,82,b a b a⎧=-⎪⎪⎨⎪-=-⎪⎩解得.1,4a b ==(2)由(1)知,所以1442x y +=+()()()221141422242241844242y xx y x y x y x y y x ⎡⎤+⎛⎫⎡⎤+=++-=+++-=+++-⎢⎥ ⎪⎣⎦++⎝⎭⎣⎦,179444⎡⎢+-=⎢⎣ 当且仅当,即时等号成立,所以.()2242y x y x +=+x y ==2x y +74-17.解:(1)由题意知,()()e e x x f x x ax x a=-=-'若,令.解得,令,解得,所以在上单调递琙,在0a ()0f x '<0x <()0f x '>0x >()f x (),0∞-上单调递增.()0,∞+若,当,即时,,所以在上单调递增;0a >ln 0a =1a =()0f x ' ()f x (),∞∞-+当,即时,令,解得或,令,解得,ln 0a >1a >()0f x '>0x <ln x a >()0f x '<0ln x a <<所以在上单调递增,在上单调递减,在上单调递增;()f x (),0∞-()0,ln a ()ln ,a ∞+当,即时,令,解得或,令,解得,ln 0a <01a <<()0f x '>ln x a <0x >()0f x '<ln 0a x <<所以在上单调递增,在上单调递减,在上单调递增.()f x (),ln a ∞-()ln ,0a ()0,∞+综上,当时,在上单调递减,在上单调递增;当时,在0a ()f x (),0∞-()0,∞+01a <<()f x 上单调递增,在上单调递减,在上单调递增当时,在上(,ln )a ∞-()ln ,0a ()0,∞+1a =()f x (),∞∞-+单调递增;当时,在上单调递增,在上单调递减,在上单调递增.1a >()f x (),0∞-()0,ln a ()ln ,a ∞+(2)若对任意的恒成立,即对任意的恒成立,()e xf x x - [)0,x ∞∈+21e 02xx ax x -- [)0,x ∞∈+即对任意的恒成立.1e 102x ax -- [)0,x ∞∈+令,所以,所以在上单调递增,当()1e 12x g x ax =--()1e 2x g x a=-'()g x '[)0,∞+,即时,,所以在上单调递增,所以()10102g a =-' 2a ()()00g x g '' ()g x [)0,∞+,符合题意;()()00g x g = 当,即时,令,解得,令,解得,所()10102g a =-<'2a >()0g x '>ln 2a x >()0g x '<0ln 2a x < 以在上单调递减,()g x 0,ln 2a ⎡⎫⎪⎢⎣⎭所以当时,,不符合题意.0,ln 2a x ⎛⎫∈ ⎪⎝⎭()()00g x g <=综上,的取值范围是.a (],2∞-18.(1)证明:因为是定义在上的奇函数,所以,()f x R ()010f a =-=解得,所以,1a =()22x xf x -=-此时,满足题意,所以.()()22x x f x f x --=-=-1a =任取,所以12x x <,()()()()211122121211122222122222222122x x x x x x x x x x x x f x f x x x --⎛⎫--=---=--=-+ ⎪++⎝⎭又,所以,即,又,12x x <1222x x <12220x x -<121102x x ++>所以,即,所以在上单调递增.()()120f x f x -<()()12f x f x <()f x R (2)解:因为,所以,()()23540f x x f x -+->()()2354f x x f x ->--又是定义在上的奇函数,所以,()f x R ()()2354f x x f x ->-+又在上单调递增,所以,()f x R 2354x x x ->-+解得或,即不等式的解集为.2x >23x <-()()23540f x x f x -+->()2,2,3∞∞⎛⎫--⋃+ ⎪⎝⎭(3)解:由题意知,令,()()()44244222xxxxxxg x mf x m ---=+-=+--322,,2x x t t ∞-⎡⎫=-∈-+⎪⎢⎣⎭所以,所以.()2222442x xxxt --=-=+-()2322,,2y g x t mt t ∞⎡⎫==-+∈-+⎪⎢⎣⎭当时,在上单调递增,所以32m -222y t mt =-+3,2∞⎡⎫-+⎪⎢⎣⎭,解得,符合题意;2min317()323224g x m m ⎛⎫=-++=+=- ⎪⎝⎭2512m =-当时,在上单调递减,在上单调递增,32m >-222y t mt =-+3,2m ⎛⎫- ⎪⎝⎭(),m ∞+所以,解得或(舍).222min ()2222g x m m m =-+=-=-2m =2m =-综上,的值为或2.m 2512-19.(1)解:若,则,所以,1a =()214ln 32f x x x x =---()14f x x x =--'所以,又,()14112f =--='()1114322f =--=所以的图象在处的切线方程为,即.()f x 1x =()1212y x -=-4230x y --=(2)(i )解:由题意知,()22444a x a x x x af x x x x x '---+=--==-又函数恰有两个极值点,所以在上有两个不等实根,()f x ()1212,x x x x <240x x a -+=()0,∞+令,所以()24h x x x a =-+()()00,240,h a h a ⎧=>⎪⎨=-<⎪⎩解得,即的取值范围是.04a <<a ()0,4(ii )证明:由(i )知,,且,12124,x x x x a +==04a <<所以()()2212111222114ln 34ln 322f x f x x a x x x a x x ⎛⎫⎛⎫+=---+--- ⎪ ⎪⎝⎭⎝⎭()()()2212121214ln ln 62x x a x x x x =+-+-+-,()()()21212121214ln 262x x a x x x x x x ⎡⎤=+--+--⎣⎦()116ln 1626ln 22a a a a a a =----=-+要证,即证,只需证.()()124ln f x f x a+<-ln 24ln a a a a -+<-()1ln 20a a a -+-<令,所以,()()()1ln 2,0,4m a a a a a =-+-∈()11ln 1ln a m a a a a a -=-++=-'令,所以,所以即在上单调递减,()()h a m a ='()2110h a a a =--<'()h a ()m a '()0,4又,所以,使得,即,()()1110,2ln202m m '-'=>=<()01,2a ∃∈()00m a '=001ln a a =所以当时,,当时,,所以在上单调递增,在()00,a a ∈()0m a '>()0,4a a ∈()0m a '<()m a ()00,a 上单调递减,所以.()0,4a ()()()max 00000000011()1ln 2123m a m a a a a a a a a a ==-+-=-+-=+-令,所以,所以在上单调递增,所以()()13,1,2u x x x x =+-∈()2110u x x =->'()u x ()1,2,所以,即,得证.()000111323022u a a a =+-<+-=-<()0m a <()()124ln f x f x a +<-。

江苏省泰兴市洋思中学2024学年高三年级第二学期第一次月考数学试题

江苏省泰兴市洋思中学2024学年高三年级第二学期第一次月考数学试题

江苏省泰兴市洋思中学2024学年高三年级第二学期第一次月考数学试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.双曲线22:21C x y -=的渐近线方程为( ) A .20x y ±= B .20x y ±= C .20x y ±=D .20x y ±=2.已知集合A ={﹣2,﹣1,0,1,2},B ={x |x 2﹣4x ﹣5<0},则A ∩B =( ) A .{﹣2,﹣1,0}B .{﹣1,0,1,2}C .{﹣1,0,1}D .{0,1,2}3.已知15455,log 5,log 2a b c ===,则,,a b c 的大小关系为( )A .a b c >>B .a c b >>C .b a c >>D .c b a >>4.要得到函数3cos 2sin 2y x x =-的图像,只需把函数sin 23cos 2y x x =-的图像( )A .向左平移2π个单位 B .向左平移712π个单位 C .向右平移12π个单位D .向右平移3π个单位 5.已知实数x ,y 满足约束条件2211x y y x y kx +≥⎧⎪-≤⎨⎪+≥⎩,若2z x y =-的最大值为2,则实数k 的值为( )A .1B .53C .2D .736.地球上的风能取之不尽,用之不竭.风能是淸洁能源,也是可再生能源.世界各国致力于发展风力发电,近10年来,全球风力发电累计装机容量连年攀升,中国更是发展迅猛,2014年累计装机容量就突破了100GW ,达到114.6GW ,中国的风力发电技术也日臻成熟,在全球范围的能源升级换代行动中体现出大国的担当与决心.以下是近10年全球风力发电累计装机容量与中国新增装机容量图. 根据所给信息,正确的统计结论是( )A .截止到2015年中国累计装机容量达到峰值B .10年来全球新增装机容量连年攀升C .10年来中国新增装机容量平均超过20GWD .截止到2015年中国累计装机容量在全球累计装机容量中占比超过137.已知()()()[)3log 1,1,84,8,6x x f x x x ⎧+∈-⎪=⎨∈+∞⎪-⎩ 若()()120f m f x ⎡⎤--≤⎣⎦在定义域上恒成立,则m 的取值范围是( )A .()0,∞+B .[)1,2C .[)1,+∞D .()0,18.记集合(){}22,16A x y xy =+≤和集合(){},4,0,0B x y x y x y =+≤≥≥表示的平面区域分别是1Ω和2Ω,若在区域1Ω内任取一点,则该点落在区域2Ω的概率为( ) A .14πB .1πC .12πD .24ππ- 9.已知函数()3sin ,f x x a x x R =+∈,若()12f -=,则()1f 的值等于( ) A .2B .2-C .1a +D .1a -10.若函数2sin(2)y x ϕ=+的图象过点(,1)6π,则它的一条对称轴方程可能是( )A .6x π=B .3x π=C .12x π=D .512x π=11.在菱形ABCD 中,4AC =,2BD =,E ,F 分别为AB ,BC 的中点,则DE DF ⋅=( ) A .134-B .54C .5D .15412.定义在R 上的函数()f x 满足()()2log 10()50x x f x f x x ⎧-≤⎪=⎨->⎪⎩,则()2019f =()A .-1B .0C .1D .2二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏高三高中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、填空题1.若(),则的值为__________.2.集合,,则__________.3.函数的最小正周期为__________.4.函数的单调增区间是__________.5.已知向量,,且,则__________.6.设幂函数的图像经过点,则__________.7.已知函数,则__________.8.设等比数列满足,,则的最大值为__________.9.已知函数的图像上一个最高点的坐标为,由这个最高点到其相邻的最低点间图像与轴交于点,则此函数的解析式为__________.10.设为锐角,若,则__________.11.如图,在中,是的中点,是上两个三等分点,,,则__________.12.已知函数的值域为,若关于的不等式的解集为,则实数的值为__________.13.已知函数,若存在唯一的整数,使得成立,则实数的取值范围为__________.二、解答题1.在中,分别为内角的对边,且满足,.(1)求的大小;(2)若,,求的面积.2.已知,,,.(1)求的值;(2)求的值.3.在平面直角坐标系中,设向量,,其中为的两个内角.(1)若,求证:为直角;(2)若,求证:为锐角.4.为了制作广告牌,需在如图所示的铁片上切割出一个直角梯形,已知铁片由两部分组成,半径为1的半圆及等腰直角三角形,其中,为裁剪出面积尽可能大的梯形铁片(不计损耗),将点放在弧上,点放在斜边上,且,设.(1)求梯形铁片的面积关于的函数关系式;(2)试确定的值,使得梯形铁片的面积最大,并求出最大值.5.已知函数,其中,是自然对数的底数.(1)当时,求曲线在处的切线方程;(2)求函数的单调减区间;(3)若在恒成立,求的取值范围.6.设数列的前项和为,且.(1)求证:数列为等比数列;(2)设数列的前项和为,求证:为定值;(3)判断数列中是否存在三项成等差数列,并证明你的结论.江苏高三高中数学月考试卷答案及解析一、填空题1.若(),则的值为__________.【答案】7【解析】因为,所以2.集合,,则__________.【答案】【解析】3.函数的最小正周期为__________.【答案】【解析】4.函数的单调增区间是__________.【答案】【解析】 ,所以增区间是5.已知向量,,且,则__________.【答案】8【解析】6.设幂函数的图像经过点,则__________.【答案】【解析】由题意得7.已知函数,则__________.【答案】2【解析】点睛:分段函数的考查方向注重对应性,即必须明确不同的自变量所对应的函数解析式是什么.函数周期性质可以将未知区间上的自变量转化到已知区间上.解决此类问题时,要注意区间端点是否取到及其所对应的函数值,尤其是分段函数结合点处函数值.8.设等比数列满足,,则的最大值为__________.【答案】64【解析】,,所以公比,所以当时,取最大值649.已知函数的图像上一个最高点的坐标为,由这个最高点到其相邻的最低点间图像与轴交于点,则此函数的解析式为__________.【答案】【解析】由题意得 ,且所以函数的解析式为点睛:已知函数的图象求解析式(1).(2)由函数的周期求(3)利用“五点法”中相对应的特殊点求.10.设为锐角,若,则__________.【答案】【解析】因为为锐角,所以因此点睛:三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.①一般可以适当变换已知式,求得另外函数式的值,以备应用;②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.11.如图,在中,是的中点,是上两个三等分点,,,则__________.【答案】【解析】,,,因此12.已知函数的值域为,若关于的不等式的解集为,则实数的值为__________.【答案】【解析】由题意得,由得,因此13.已知函数,若存在唯一的整数,使得成立,则实数的取值范围为__________.【答案】【解析】由得:当时,; 当时,;因为当时,,当时,,当时,,因此当时,,不合题意;当时,;当时,,不合题意;当时,,当时,,不合题意;因此的取值范围为点睛:涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.二、解答题1.在中,分别为内角的对边,且满足,.(1)求的大小;(2)若,,求的面积.【答案】(1)(2)【解析】(1)先根据正弦定理将边角关系转化为角的关系,再根据三角形内角范围求的大小;(2)先由余弦定理求,再根据三角形面积公式求面积试题解析:解:(1)∵,∴由正弦定理化简得:,∵,∴,∵,∴为锐角,则.(2)∵,,,∴由余弦定理得:,即,整理得:,计算得出:(舍去)或,则.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.2.已知,,,.(1)求的值;(2)求的值.【答案】(1)(2)【解析】(1)根据的范围,确定,直接利用二倍角的余弦,求的值;(2)根据(1)求出,再求出,通过,求的值.试题解析:(1)∵cos =又∵∴cos=(2)由(Ⅰ)知:sin=由、得()()cos()=-sin=sin(-)=sin()cos-cos()sin=×-× = .3.在平面直角坐标系中,设向量,,其中为的两个内角.(1)若,求证:为直角;(2)若,求证:为锐角.【答案】(1)见解析(2)见解析【解析】(1)借助平面向量的坐标形式的数量积公式建立方程,然后运用诱导公式分析推证;(2)借助平面向量的坐标形式的数量积公式建立方程,即,也即然后运用两角和的正切公式分析推证,即:(1)易得,因为,所以,即.因为,且函数在内是单调减函数,所以,即为直角.(2)因为,所以,即.因为是三角形内角,所以,于是,因而中恰有一个是钝角,∴,从而,所以,即证为锐角注:(2)解得后,得与异号,若,则于是,在中,有两个钝角和,这与三角形内角和定理矛盾,不可能于是必有,即证为锐角4.为了制作广告牌,需在如图所示的铁片上切割出一个直角梯形,已知铁片由两部分组成,半径为1的半圆及等腰直角三角形,其中,为裁剪出面积尽可能大的梯形铁片(不计损耗),将点放在弧上,点放在斜边上,且,设.(1)求梯形铁片的面积关于的函数关系式;(2)试确定的值,使得梯形铁片的面积最大,并求出最大值.【答案】(1),其中.(2)时,【解析】(1)求梯形铁片的面积关键是用表示上下底及高,先由图形得,这样可得高,再根据等腰直角三角形性质得,最后根据梯形面积公式得,交代定义域.(2)利用导数求函数最值:先求导数,再求导函数零点,列表分析函数单调性变化规律,确定函数最值试题解析:(1)连接,根据对称性可得且,所以,,,所以,其中.(2)记,,().当时,,当时,,所以在上单调递增,在上单调递减,所以,即时,.【考点】利用导数求函数最值【方法点睛】利用导数解答函数最值的一般步骤:第一步:利用f′(x)>0或f′(x)<0求单调区间;第二步:解f′(x)=0得两个根x1、x2;第三步:比较两根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小.5.已知函数,其中,是自然对数的底数.(1)当时,求曲线在处的切线方程;(2)求函数的单调减区间;(3)若在恒成立,求的取值范围.【答案】(1)(2)当时,无单调减区间;当时,的单调减区间是;当时,的单调减区间是.(3)【解析】(1)先对函数解析式进行求导,再借助导数的几何意义求出切线的斜率,运用点斜式求出切线方程;(2)先对函数的解析式进行求导,然后借助导函数的值的符号与函数单调性之间的关系进行分类分析探求;(3)先不等式进行等价转化,然后运用导数知识及分类整合的数学思想探求函数的极值与最值,进而分析推证不等式的成立求出参数的取值范围。

解:(1)因为,所以.因为,所以.所以切线方程为.(2) 因为,当时,,所以无单调减区间.当即时,列表如下:所以的单调减区间是.当即时,,列表如下:所以的单调减区间是.综上,当时,无单调减区间;当时,的单调减区间是;当时,的单调减区间是.(3).当时,由(2)可得,为上单调增函数,所以在区间上的最大值,符合题意.当时,由(2)可得,要使在区间上恒成立,只需,,解得.当时,可得,.设,则,列表如下:所以,可得恒成立,所以.当时,可得,无解.综上,的取值范围是.6.设数列的前项和为,且.(1)求证:数列为等比数列;(2)设数列的前项和为,求证:为定值;(3)判断数列中是否存在三项成等差数列,并证明你的结论.【答案】(1)见解析(2)见解析(3)不存在【解析】(1)依据题设探求出,再运用等比数列的定义进行推证;(2)借助等比数列的前项和公式分别求出,,然后再求其比值;(3)假设存在满足题设条件的三项,然后运用假设进行分析推证,找出矛盾,从而断定不存在假设的三项:解:(1)当时,,解得.当时,,即.因为,所以,从而数列是以2为首项,2为公比的等比数列,所以.(2)因为,所以,故数列是以4为首项,4为公比的等比数列,从而,,所以.(3)假设中存在第项成等差数列,则,即.因为,且,所以.因为,所以,故矛盾,所以数列中不存在三项成等差数列.点睛:数列是江苏高考的特色问题,这类问题的设置旨在考查等比数列、等差数列等特殊数列的通项公式前项和公式等基础知识、基本公式与基本概念,同时考查运算求解能力和推理论证能力。

相关文档
最新文档