固体物理习题解答
固体物理课后习题与答案

第一章 金属自由电子气体模型习题及答案1. 你是如何理解绝对零度时和常温下电子的平均动能十分相近这一点的?[解答] 自由电子论只考虑电子的动能。
在绝对零度时,金属中的自由(价)电子,分布在费米能级及其以下的能级上,即分布在一个费米球内。
在常温下,费米球内部离费米面远的状态全被电子占据,这些电子从格波获取的能量不足以使其跃迁到费米面附近或以外的空状态上,能够发生能态跃迁的仅是费米面附近的少数电子,而绝大多数电子的能态不会改变。
也就是说,常温下电子的平均动能与绝对零度时的平均动能十分相近。
2. 晶体膨胀时,费米能级如何变化?[解答] 费米能级3/222)3(2πn mE o F= , 其中n 单位体积内的价电子数目。
晶体膨胀时,体积变大,电子数目不变,n 变小,费密能级降低。
3. 为什么温度升高,费米能反而降低?[解答] 当K T 0≠时,有一半量子态被电子所占据的能级即是费米能级。
除了晶体膨胀引起费米能级降低外,温度升高,费米面附近的电子从格波获取的能量就越大,跃迁到费米面以外的电子就越多,原来有一半量子态被电子所占据的能级上的电子就少于一半,有一半量子态被电子所占据的能级必定降低,也就是说,温度生高,费米能反而降低。
4. 为什么价电子的浓度越大,价电子的平均动能就越大?[解答] 由于绝对零度时和常温下电子的平均动能十分相近,我们讨论绝对零度时电子的平均动能与电子的浓度的关系。
价电子的浓度越大,价电子的平均动能就越大,这是金属中的价电子遵从费米—狄拉克统计分布的必然结果。
在绝对零度时,电子不可能都处于最低能级上,而是在费米球中均匀分布。
由式3/120)3(πn k F =可知,价电子的浓度越大费米球的半径就越大,高能量的电子就越多,价电子的平均动能就越大。
这一点从3/2220)3(2πn m E F=和3/222)3(10353πn mE E oF ==式看得更清楚。
电子的平均动能E 正比于费米能o F E ,而费米能又正比于电子浓度32l n。
固体物理习题解答

,在 时为
.(课本数据有误)
试计算
(1) 费米能和费米温度;
(2) 费米球的半径;
(3) 费米速度;
(4) 费米球的最大横截面积;
(5) 室温下和绝对零度附近电子的平均自由程.
解:电子数密度
.
费米波矢
(1) 费米能
费米温度
(2) 费米球的半径 (3) 费米速度
(4) 费米球的最大横截面
(5) 平均自由时间
证:比热
高温时,
,即
按 Maclaurin 公式展开 取前三项有
,其中
,
.
, 很小,于是
, ,于是
4.(3.12)设某离子晶体中相邻两离子的相互作用势能为
为待定常数,平衡间距 解:平衡时,有
,求线膨胀系数 .
线膨胀系数
,
其中
,
.
即
10 / 15
1.(4.3)如果已知空位形成能为 是多少?
解:
作业 5
应满足布洛赫定理,若晶格常数为 ,电子的波函数为
(2)
.
(3)
( 是某个确定的函数)
试求电子在这些状态的波矢.
解:一维布洛赫定理为
.
(1)
(2) (3) 2(6.2)设一维电子能带可以写成
其中 为晶格常数,试求 (1) 能带的宽度; (2) 电子的平均速度; (3) 能带底部和顶部的电子有效质量.
解:(1)
马德隆常数
,对于一维晶格,选取一个正离子作为参考离子,在求和中对负离子取正号,
对正离子取负号,参考离子两边的离子是对称分布的,则有
时,由
两边积分,有
取 ,得
故由两种离子组成、间距为 的一维晶格的马德隆常数
固体物理习题答案

第一章晶体的结构习题解答1.以堆积模型计算由同种原子构成的同体积的体心和面心立方晶体中的原子数目之比.[解答]设原子的半径为R,体心立方晶胞的空间对角线为4R,胞的边长为,晶胞的体积为,一个晶胞包含两个原子,一个原子占的体积为,单位体积晶体中的原子数为;面心立方晶胞的边长为 ,晶胞的体积为,一个晶胞包含四个原子,一个原子占的体积为,单位体积晶体中的原子数为 . 因此,同体积的体心和面心立方体晶体中原子数之比为:=0.909。
2.解理面是面指数低的晶面还是面指数高的晶面?为什么?[解答]晶体容易沿解理面劈裂,说名平行于解理面的原子层之间的结合力弱,即平行解理面的原子层的间距大。
因为面间距大的晶体晶面族的指数低,所以解理面是面指数低的晶面。
3.与晶列垂直的倒格面的面指数是什么?[解答]正格子与倒格子互为倒格子。
正格子晶面与倒格式垂直,则倒格晶面与正格矢正交。
即晶列与倒格面垂直。
4.高指数的晶面族与低指数的晶面族相比,对于同级衍射,哪一晶面族衍射光弱?为什么?[解答]对于同级衍射,高指数的晶面族衍射光弱,低指数的晶面族衍射光强。
低指数的晶面族间距大,晶面上的原子密度大,这样的晶面对射线的反射(衍射)作用强。
相反,高指数的晶面族面间距小,晶面上的原子密度小。
另外,由布拉格反射公式2dh k ls inθ=nλ可知,面间距dh k l 大的晶面,对应一个小的光的掠射角θ面间距dh k l小的晶面,对应一个大的光的掠射角θ。
θ越大,光的透射能力就越强,反射能力就越弱。
5.以刚性原子球堆积模型,计算以下各结构的致密度分别为:(1)简立方,π /6;(2)体心立方,;(3)面心立方,;(4)六角密积,;(5)金刚石结构,。
[解答]设想晶体是由刚性原子球堆积而成。
一个晶胞中刚性原子球占据的体积与晶胞体积的比值称为结构的致密度。
设n为一个晶胞中刚性原子球数,r表示刚性原子球半径,表示晶胞体积,则致密度(1)对简立方晶体,任一个原子有6个最近邻,若原子以刚球堆积,如图1·2所示,中心在1,2,3,4处的原子球将依次相切。
固体物理课后习题答案

(
)
⎞ 2π k⎟= −i + j + k 同理 ⎠ a
(
)
(
)
(
)
2π ⎧ ⎪b1 = a −i + j + k ⎪ 2π ⎪ i− j+k ⎨b 2 = a ⎪ 2π ⎪ ⎪b3 = a i + j − k ⎩
(
)
(
)
(
)
由此可得出面心立方格子的倒格子为一体心立方格子; 所以体心立方格子和面心立方格子互为正倒格子。 2.2 在六角晶系中,晶面常用四个指数(hkil)来表示,如图 所示,前三个指数表示晶面族中最靠近原点的晶面在互成 1200的 共面轴 a1 , a2 , a3 上的截距为
设两法线之间的夹角满足
K 1 i K 2 = K1 i K 2 cos γ
K 1iK 2 cos γ = = K1 i K 2 2π 2π (h1 i + k1 j + l1 k )i (h2 i + k2 j + l2 k ) a a 2π 2π 2π 2π (h1 i + k1 j + l1 k )i (h1 i + k1 j + l1 k ) i (h2 i + k2 j + l2 k )i (h2 i + k2 j + l2 k ) a a a a
a1 a2 a3 , , ,第四个指数表示该晶面 h k i
在六重轴c上的截距为
c 。证明: l
i = −(h + k )
并将下列用(hkl)表示的晶面改用(hkil)表示:
2
第一章 晶体的结构
( 001) , (133) , (110 ) , ( 323) , (100 ) , ( 010 ) , ( 213) .
固体物理习题带答案

第二章:原子的结合
1. 设原子间的互作用能表示为 u (r ) 态,则 n>m. 解:原子间的相互作用能为: u (r )
作用能处于极小值: 这时有
r
m
rn
。证明:要使两原子处于平衡状
r
m
rn
。若两原子处于平衡状态时,则其相互
du (r ) (m) m 1 (n) n 1 dr r r
子晶格的情形比较, 与 q 之间存在着两种不同的色散关系。一维复式晶体中可以存在两 种独立的格波。两种不同的格波的色散关系:
2 2
(m M ) 4mM {1 [1 sin 2 aq]1 / 2 } 2 mM (m M ) (m M ) 4mM {1 [1 sin 2 aq]1 / 2 } 2 mM (m M )
xn (t ) A cos(t 2 naq) 。试求格波的色散关系。
解:一维单原子链中,牛顿方程为:
n ( x n 1 xn 1 2 xn ) m x
若将其振动位移写成 xn (t )
A cos(t 2 naq) 代入牛顿方程,则有
2
2 [1 cos(2aq)] 因此其色散关系为 m
0 。 所 以 有
r0
m
r0
m 1
n
r0
n 1
。所以
m nm r0 。 n
0
r0
同
时
有
d 2u ( r ) (m)( m 1) m 2 (n)( n 1) n 2 2 dr r r
。
所
以
固体物理学习题解答

《固体物理学》习题解答第一章 晶体结构1. 氯化钠与金刚石型结构是复式格子还是布拉维格子,各自的基元为何?写出这两种结构的原胞与晶胞基矢,设晶格常数为a 。
解:氯化钠与金刚石型结构都是复式格子。
氯化钠的基元为一个Na +和一个Cl -组成的正负离子对。
金刚石的基元是一个面心立方上的C原子和一个体对角线上的C原子组成的C原子对。
由于NaCl 和金刚石都由面心立方结构套构而成,所以,其元胞基矢都为:123()2()2()2a a a ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩a j k a k i a i j相应的晶胞基矢都为:,,.a a a =⎧⎪=⎨⎪=⎩a ib jc k2. 六角密集结构可取四个原胞基矢123,,a a a 与4a ,如图所示。
试写出13O A A '、1331A A B B 、2255A B B A 、123456A A A A A A 这四个晶面所属晶面族的晶面指数()h k l m 。
解:(1).对于13O A A '面,其在四个原胞基矢上的截矩分别为:1,1,12-,1。
所以,其晶面指数为()1121。
(2).对于1331A A B B 面,其在四个原胞基矢上的截矩分别为:1,1,12-,∞。
所以,其晶面指数为()1120。
(3).对于2255A B B A 面,其在四个原胞基矢上的截矩分别为:1,1-,∞,∞。
所以,其晶面指数为()1100。
(4).对于123456A A A A A A 面,其在四个原胞基矢上的截矩分别为:∞,∞,∞,1。
所以,其晶面指数为()0001。
3. 如将等体积的硬球堆成下列结构,求证球体可能占据的最大体积与总体积的比为:简立方:6π;。
证明:由于晶格常数为a ,所以:(1).构成简立方时,最大球半径为2m aR =,每个原胞中占有一个原子,334326m a V a ππ⎛⎫∴== ⎪⎝⎭36m V a π∴= (2).构成体心立方时,体对角线等于4倍的最大球半径,即:4m R =,每个晶胞中占有两个原子,334322348m V a a π⎛⎫∴=⨯= ⎪ ⎪⎝⎭328m V a ∴=(3).构成面心立方时,面对角线等于4倍的最大球半径,即:4m R =,每个晶胞占有4个原子,334244346m V a a π⎛⎫∴=⨯= ⎪ ⎪⎝⎭346m V a ∴=(4).构成六角密集结构时,中间层的三个原子与底面中心的那个原子恰构成一个正四面体,其高则正好是其原胞基矢c 的长度的一半,由几何知识易知3m R =c 。
固体物理习题解答

1231.布喇菲格子:晶体由完全相同的原子组成,原子与晶格的格点相重合,而且每个格点周围的情况都一样。
(Bravais 格子)氯化钠结构:面心立方Na +布氏格子和面心立方Cl -的布氏格子套构而成的复式格子。
金刚石晶胞中由于位于四面体中心的原子和顶角原子价键的取向各不相同(即中心原子和顶角原子周围的情况不同),所以是复式格子,这种复式格子是两个面心立方格子套构而成的。
2.倒格子:设一晶格的基矢为→1a ,→2a ,→3a ,若另一格子的基矢为→1b ,→2b ,→3b ,与→1a ,→2a ,→3a 存在关系:⎩⎨⎧≠===•ji j i a b ij j i 022ππδ (i,j=1,2,3)则称以→1b ,→2b ,→3b 为基矢的格子是以→1a ,→2a ,→3a 为基矢的格子的倒格子。
自原点O 引晶面族ABC 的法线ON ,在法线上截取一段OP=ρ,使ρd=2π,d 是晶面族ABC 的面间距,对于每一族晶面都有一点P ,使得OP 成为该方向的周期,把P 平移可以得出一个新的点阵,这个新格子称为原来晶格的倒格子。
设正格子基矢为→1a ,→2a ,→3a ,则→1a →2a ,→2a →3a ,→3a →1a 晶面族 的面间距分别为d 3,d 1,d 2。
分别作OP 垂直于三个晶面族,在三个垂线上截取33/2d b π=,11/2d b π=,22/2d b π=,这样得出的三个矢量→1b ,→2b ,→3b 就取为倒格子的基矢。
又因为正格子元胞的体积为:)()()(213132321→→→→→→⨯=⨯=⨯=Ωa a d a a d a a d ,即:Ω⎪⎭⎫ ⎝⎛⨯•==→→→323122a a d b ππ,Ω⎪⎭⎫ ⎝⎛⨯•==→→→132222a a d b ππ,Ω⎪⎭⎫⎝⎛⨯•==→→→211322a a d b ππ3.证明体心立方格子和面心立方格子互为正倒格子。
面心立方格子基矢: )(2)(2)(2321→→→→→→→→→+=+=+=j i a a i k a a k j a aB 0 →1a→3a→2aAC NP利用公式:Ω⎪⎭⎫ ⎝⎛⨯•=→→→3212a a b π,Ω⎪⎭⎫ ⎝⎛⨯•=→→→1322a a b π,Ω⎪⎭⎫ ⎝⎛⨯•=→→→2132a a b π可求出其倒格子基矢为: )(2)(2)(2321→→→→→→→→→→→→-+=+-=++-=k j i ab k j i a b k j i a b πππ体心立方格子基矢: )(2)(2)(2'3'2'1→→→→→→→→→→→→-+=+-=++-=k j i a a k j i a a k j i a a 利用公式可求出其倒格子基矢为: )(2)(2)(2'3'2'1→→→→→→→→→+=+=+=j i a a i k a a k j a a πππ,所以体心立方格子与面心立方格子互为正倒格子。
固体物理习题参考答案

固体物理第一次习题参考答案1.如果将等体积球分别排成下列结构,设x 表示刚球所占体积与总体积之比,证明结构 x简单立方 0.526x π=≈体心立方 30.688x π=≈ 面心立方 20.746x π=≈ 六角密排 20.746x π=≈ 金刚石 30.3416x π=≈解:设钢球半径为r ,立方晶系晶格常数为a ,六角密排晶格常数为a,c 钢球体积为V 1,总体积为V 2(1)简单立方单胞含一个原子,a r =2 52.06343321≈==ππa r V V(2)体心立方取惯用单胞,含两个原子,r a 43= 68.0833423321≈=⋅=ππar V V (3)面心立方取惯用单胞,含4个原子,r a =2 74.0623443321≈=⋅=ππar V V (4)六角密排与面心立方同为密堆积结构,可预期二者具有相同的空间占有率 取图示单胞,含两个原子,a r =2 单胞高度a c 38=(见第2题) 74.062233422321≈=⋅⋅=ππc a r V V (5)金刚石取惯用单胞,含8个原子,r a 2341= 34.01633483321≈=⋅=ππar V V2.试证六方密排密堆积结构中128() 1.6333c a =≈解: 六角密排,如图示,4个原子构成正四面体222)2332(2a a c =⋅+⎪⎭⎫⎝⎛ ⇒ a c 38=3.证明:体心立方晶格的倒格子是面心立方,面心立方的倒格子是体心立方。
证:体心立方基矢取为⎪⎪⎪⎩⎪⎪⎪⎨⎧+-=++-=-+=)(2)(2)(2321k j i a a k j i a a k j i a a其中a 为晶格常数其倒格子基矢,按定义)(2)(21111114212)(223321j i b j i a kj ia a a a b+=+=--⋅=⨯Ω=πππ)(2)(2132k j b a a b +=⨯Ω=π)(2)(2213k i b a a b +=⨯Ω=π可见,体心立方的倒格子是晶格常数为a b π4=的面心立方。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《固体物理学》部分习题解答1.3 证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方 。
解 由倒格子定义2311232a a b a a a π⨯=⋅⨯ 3121232a a b a a a π⨯=⋅⨯ 1231232a a b a a a π⨯=⋅⨯体心立方格子原胞基矢123(),(),()222a a aa i j k a i j k a i j k =-++=-+=-+ 倒格子基矢231123022()()22a a a ab i j k i j k a a a v ππ⨯==⋅-+⨯+-⋅⨯202()()4a i j k i j k v π=⋅-+⨯+-2()j k a π=+ 同理31212322()a ab i k a a a aππ⨯==+⋅⨯ 32()b i j a π=+ 可见由123,,b b b 为基矢构成的格子为面心立方格子 面心立方格子原胞基矢123()/2()/2()/2a a j k a a k i a a i j =+=+=+ 倒格子基矢2311232a a b a a a π⨯=⋅⨯ 12()b i j k a π=-++ 同理22()b i j k a π=-+ 32()b i j k aπ=-+ 可见由123,,b b b 为基矢构成的格子为体心立方格子1.4 证明倒格子原胞的体积为03(2)v π,其中0v 为正格子原胞体积证 倒格子基矢2311232a a b a a a π⨯=⋅⨯3121232a a b a a a π⨯=⋅⨯1231232a a b a a a π⨯=⋅⨯倒格子体积*0123()v b b b =⋅⨯3*23311230(2)()()()v a a a a a a v π=⨯⋅⨯⨯⨯ 3*00(2)v v π=1.5 证明:倒格子矢量112233G hb h b h b =++垂直于密勒指数为123()hh h 的晶面系. 证: 33121323,a aa a CA CB h h h h =-=- 容易证明12312300h h h h h h G CA G CB ⋅=⋅=112233G hb h b h b =++与晶面系123()hh h 正交。
1.6 如果基矢,,a b c 构成简单正交系证明晶面族()hkl 的面间距为2221()()()h k ld a b c=++ 说明面指数简单的晶面,其面密度较大,容易解理 证 简单正交系a b c ⊥⊥ 123,,a ai a bj a ck ===倒格子基矢2311232a a b a a a π⨯=⋅⨯ 3121232a a b a a a π⨯=⋅⨯ 1231232a a b a a a π⨯=⋅⨯123222,,b i b j b k a b cπππ=== 倒格子矢量123G hb kb lb =++222h i k j l k a b cπππ=++ 晶面族()hkl 的面间距2d Gπ=2221()()()h k l a b c=++ 面指数越简单的晶面,其晶面的间距越大晶面上格点的密度越大,这样的晶面越容易解理1.9 指出立方晶格(111)面与(100)面,(111)面与(110)面的交线的晶向 解 (111)面与(100)面的交线的AB -AB 平移, A 与O 重合。
B 点位矢B R aj ak =-+(111)与(100)面的交线的晶向AB aj ak =-+—— 晶向指数011⎡⎤⎣⎦(111)面与(110)面的交线的AB—- 将AB 平移,A 与原点O 重合,B 点位矢B R ai aj =-+(111)面与(110)面的交线的晶向AB ai aj =-+ ――晶向指数110⎡⎤⎣⎦2。
1.证明两种一价离子组成的一维晶格的马德隆常数为2ln 2α=.证 设想一个由正负两种离子相间排列的无限长的离子键,取任一负离子作参考离子(这样马德隆常数中的正负号可以这样取,即遇正离子取正号,遇负离子取负号),用r 表示相邻离子间的距离,于是有(1)11112[ (234)ij rr r r r rα±'==-+-+∑ 前边的因子2是因为存在着两个相等距离i r 的离子,一个在参考离子左面,一个在其右面,故对一边求和后要乘2,马德隆常数为234(1) (34)n x x x x x x +=-+-+ 当X=1时,有1111 (2234)n-+-+= 2.3 若一晶体的相互作用能可以表示为()mnu r rrαβ=-+求 1)平衡间距0r 2)结合能W(单个原子的) 3)体弹性模量 4)若取02,10,0.3,4m n r nm W eV ==== ,计算,αβ值。
解 1)晶体内能()()2m n N U r r rαβ=-+ 平衡条件0r r dUdr== 11000m n m n r r αβ++-+= 10()n m n r m βα-= 2) 单个原子的结合能01()2W u r =-0()()m n r r u r r r αβ==-+ 1(1)()2mn m m n W n m βαα--=- 3) 体弹性模量0202()V UK V V∂=⋅∂ 晶体的体积3V NAr =-— A 为常数,N 为原胞数目 晶体内能()()2m n N U r r rαβ=-+ 1112[1...]234α=-+-+22n α∴=1121()23m n N m n r r NAr αβ++=-221121[()]23m n U N r m n V V r r r NAr αβ++∂∂∂=-∂∂∂ 体弹性模量0202()V UK V V ∂=⋅∂22222000001[]29m n m n V V UN m n m n V V r r r r αβαβ=∂=-+-+∂ 由平衡条件1120001()023m n V V UN m n Vr r NAr αβ++=∂=-=∂00m n m n r r αβ=222220001[]29m n V V UN m n V V r r αβ=∂=-+∂ 体弹性模量0202()V U K V V ∂=⋅∂ 000()2mn N U r r αβ=-+222220001[]29m n V V UN m n V V r r αβ=∂=-+∂2220001[]29m nV V UN m n m n V V r r αβ=∂=-+∂ (00m n m n r r αβ=) 2000[]29m nN nm V r r αβ=--+20220()9V V U mn U V V =∂=-∂ 009mnK U V = 4)00m n m n r r αβ= 10()n m n r m βα-= 1(1)()2mn m m n W n m βαα--=- 1002W r β=95101.1810eV m β-=⨯⋅ 20100[2]r W r βα=+ 1929.010eV m α-=⨯⋅2.6.用林纳德—琼斯(Lennard —Jones )势计算Ne 在bcc (球心立方)和fcc (面心立方)结构中的结合能之比值.解 1261261()4()(),()(4)()()2n l u r u r N A A r r r r σσσσεε⎡⎤⎡⎤=-=-⎢⎥⎢⎥⎣⎦⎣⎦26661200612()1022r A A du r r u N r A A σε⎛⎫=⇒=⇒=- ⎪⎝⎭22066201212()12.25/9.11()/()0.957()14.45/12.13bcc bcc fcc fcc u r A A u r A A ωω'====' 2.7.对于2H ,从气体的测量得到Lennard —Jones 势参数为65010, 2.96.J A εσ-=⨯=计算2H 结合成面心立方固体分子氢时的结合能(以KJ/mol 单位),每个氢分子可当做球形来处理.结合能的实验值为0。
751kJ /mo1,试与计算值比较.解 以2H 为基团,组成fcc 结构的晶体,如略去动能,分子间按Lennard —Jones 势相互作用,则晶体的总相互作用能为:1261262.ij ij i j U N P P R R σσε--⎡⎤⎛⎫⎛⎫''=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦∑∑61214.45392;12.13188,ijij jiP P --''==∑∑16235010, 2.96, 6.02210/.erg A N mol εσ-=⨯==⨯()()1262816 2.96 2.962602210/501012.1314.45 2.55/.3.16 3.16U U mol erg KJ mol -⎡⎤⎛⎫⎛⎫=⨯⨯⨯⨯⨯-≈-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦0将R 代入得到平衡时的晶体总能量为。
因此,计算得到的2H 晶体的结合能为2。
55KJ /mol ,远大于实验观察值0。
75lKJ /mo1.对于2H 的晶体,量子修正是很重要的,我们计算中没有考虑零点能的量子修正,这正是造成理论和实验值之间巨大差别的原因.3。
1.已知一维单原子链,其中第j 个格波,在第n 个格点引起的位移为,sin(_)nj j j j j a t naq μωδ=+,j δ为任意个相位因子,并已知在较高温度下每个格波的平均能量为kT ,具体计算每个原子的平方平均位移。
解 任意一个原子的位移是所有格波引起的位移的叠加,即sin()n nj j j j j jja t naq μμωδ==++∑∑ (1)2*2*n nj nj nj nj nj j j j j j μμμμμμ''≠⎛⎫⎛⎫==+ ⎪⎪⎝⎭⎝⎭∑∑∑∑由于nj nj μμ⋅数目非常大为数量级,而且取正或取负几率相等,因此上式得第2项与第一项相比是一小量,可以忽略不计.所以22n njjμμ=∑由于nj μ是时间t 的周期性函数,其长时间平均等于一个周期内的时间平均值为22211sin()2T jj j j j j a t naq dt a T μωδ=++=⎰(2) 已知较高温度下的每个格波的能量为kT,nj μ的动能时间平均值为022222000111sin()224LT T nj j j nj j j j j j j d w a T dx dt L a t naq dt w La T dt T μρρωδρ⎡⎤⎛⎫==++=⎢⎥ ⎪⎢⎥⎝⎭⎣⎦⎰⎰⎰ 其中L 是原子链的长度,ρ使质量密度,0T 为周期. 所以221142nj j j T w La KT ρ== (3) 因此将此式代入(2)式有22nj jKTPL μω=所以每个原子的平均位移为22221n nj jjj j jKT KT PL PL μμωω====∑∑∑ 3.2 讨论N 个原胞的一维双原子链(相邻原子间距为a ),其2N 个格波解,当M=m 时与一维单原子链结果一一对应解 质量为M 的原子位于 2n-1, 2n+1, 2n+3 ……。