数学物理方法 2 复变函数的积分
复变函数的积分 柯西定理

第三章 复变函数的积分§3-1复变函数的积分【刘连寿、王正清编著《数学物理方法》P 29-31】复变函数积分的定义:设C 为复平面上以0z 为起点,而以z 为终点的一段路径(即一根曲线),在C 上取一系列分点011,,,,n n z z z z z -=把C 分为n 段,在每一小段[1k k z z -]上任取一点k ξ作和数:()()()111nnn k k k k k k k S f z z f z ξξ-===-=∆∑∑, 其中1k k k z z z -∆=-如果当n →∞且每一小段的长度(1||||k k k z z z -∆=-)趋于零时, 和式()1nk kk f z ξ=∆∑的极限存在,并且其值与k z 及k ξ的选取方式无关,则称这一极限为()f z 沿路径C 由0z 到z 的积分:()()1limlim nn k k Cn n k fz dz S f z ξ→∞→∞===∆∑⎰,C 称为积分路径(()f z 在C 上取值,即z 在C 上变化)。
若C 为围线(闭的曲线),则积分记为: ()Cf z dz ⎰. (围道积分)几点说明:1. 复变函数的积分不仅与积分端点有关,还与积分路径有关。
(与我们以前在高等数学中学过的实变函数的线积分类似。
)2.因为 z x iy =+,dz dx idy =+,()()(),,f z u x y iv x y =+,于是()()()(),,CCf z dz u x y iv x y dx idy =++⎡⎤⎣⎦⎰⎰()()()(),,,,C C u x y dx v x y dy i v x y dx u x y dy ⎡⎤⎡⎤=-++⎣⎦⎣⎦⎰⎰,所以复变函数的积分可以归结为两个实变函数的线积分,它们分别是复变函数积分的实部和虚部。
3.从复变函数积分的定义出发,可以直接得出复变函数的积分具有如下简单性质:(1)0C dz z z =-⎰,z 、0z 分别为C 之起点、终点。
02复变函数微积分

数学物理方法
应用
v( x, y ) dv
2 2 u ( x , y ) x y 例2.5 已知解析函数f(z)的实部
且f(0)=0,试求出虚部和f(z) 。 解: v u 2 y x y
v u 2x y x
数学物理方法
2 xy C
(2)凑全微分显示法
dv( x, y) 2 ydx 2 xdy d (2 xy C )
v( x, y) 2 xy C
(3)不定积分法
v u 2x y x
v u 2y x y
v 2 y ( x) x
l l
l1 l 2
f ( z )dz f ( z )dz f ( z )dz
l1 l2
l
l
f ( z )dz f ( z )dz , 其中 l 是l的逆向
l
f ( z )dz
l
f ( z ) dz
f ( z)dz
l l
f ( z ) ds
那么有
u v v u , x y x y
上式称为柯西-黎曼条件。简称(C-R条件)
数学物理方法
证明:
1)若 y 0, x 0
f ( z z ) f ( z ) u ( x x, y ) iv( x x, y ) u ( x, y ) iv( x, y ) lim z 0 z 0 z x u ( x x, y ) u ( x, y ) v( x x, y ) v( x, y ) lim i lim z 0 z 0 x x u ( x, y ) v( x, y ) i x x lim
数学物理方法第二章复变函数的积分

一般而言,复变函数的积分不仅与起点和终点有 关, 同时还与路径有关。
§2.2 柯西(Cauchy)定理
——研究积分与路径之间的关系 (一)单连通域情形 单连通域: 在其中作任何简单闭合围线,围 线内的点都是属于该区域内的点。 单连通区域的Cauchy 定理 :如果函数 f (z) 在闭 单连通区域 B 中单值且解析, 则沿 B 中任 何一个分段光滑的闭合曲线 l (也可以是 B 的 边界 l0 ), 函数的积分为零。
lim f( z z ) k)( k k 1
n
存在且与 k 的选取无关, 则这个和的极限称为 函数 f (z) 沿曲线 l 从 A 到 B 的路积分,记为
即
l
f (z) dz
n k k k 1
z ) d z lim f ( )( z z f(
l n k 1 max | z | 0 k
l 1 l 2
f (z)=Re (z)不是解析函数!
y i l2 o l1 1 l2
I1 Rez d z xd( x iy) 1 xd x i d y i 0 0 2 ( y = 0) (x=1)
1 1
1+i
l1 x
1 I 0 id y x d x 2 0 0 (x=0) ( y=i ) 2
l l l
v u u v d x d y i d x d y s s x y y x
又u、v 满足C-R条件 u v u v , x y y x
y
f ( z ) d z 0
l
B
l
o
复变函数论总结

复变函数论总结摘要:对数学物理方法的第一篇复变函数论每一章每一节做了总结,对这一章也有了深入的认识,通过积分与柯西积分定理和柯西积分公式,学习了圆域内泰勒级数的展开与环域内洛朗级数的展开,以及应用留数定理计算实变函数定积分,傅立叶积分与傅立叶变换。
关键词:复数;导数;解析;积分;柯西公式、定理;幂级数展开;留数;傅立叶积分与傅立叶变换1引言《复变函数论主要内容》第一章复变函数 complex function第二章复变函数的积分 complex function integral第三章幂级数展开 power series expansion第四章留数定理 residual theorem第五章傅立叶变换 Fourier integral transformation第一章复变函数§1.1 复数及复数的运算§1.2 复变函数§1.3导数§1.4解析函数§1.1 复数及复数的运算1.复数的概念的数被称为复数,其中。
;;i为虚数单位,其意义为当且仅当时,二者相等复数与平面向量一一对应z平面虚轴y. (x,y)rx实轴模幅角 (k)注意:复数“零”(即实部和虚部都等与零的复数)的幅角没有明确意义2.复数的表示代数表示三角表示指数表示一个复数z的共轭复数注意:在三角表示和指数表示下,两个复数相等当且仅当模相等且幅角相差3.无限远点在复变函数论中,通常还将模为无限大的复数也跟复平面上的一点对应,而且称这一点为无限远点,我们把无限远点记作,它的模为无限大,幅角则没有明确意义4.复数的运算复数的加法法则:复数与的和定义是两个复数的和依然是复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。
复数的加法满足交换律和结合律,且,当同一方向时等号成立。
复数的减法法则:且有复数的乘法法则:乘法的交换律、结合律与分配律都成立复数的除法法则:注意:采用三角式或指数式比较方便。
数学物理方法1-2复变函数的积分

莫雷拉定理
总结词
莫雷拉定理是复变函数中一个关于全 纯函数的积分性质的定理。
详细描述
莫雷拉定理说明,如果全纯函数f(z)在圆盘 |z| < R内有界,那么对于任意实数t,积分 ∫f(z)e^(it)dz在|z| = R的边界上非零。这个 定理在研究全纯函数的性质以及解决一些数 学物理问题时非常有用。
柯西定理
总结词
柯西定理是复变函数中的一个基本定理,它表明如果一个函数在某个区域内的点上满足某种条件,则 该函数在该区域内可积。
详细描述
柯西定理说明,如果函数f(z)在某个区域D内是解析的,并且存在常数C使得对于D内的任意点z,都有 |f(z)|≤C,那么函数f(z)在D内是可积的。这意味着满足一定条件的解析函数在一定区域内具有可积性。
幂级数展开的收敛性
幂级数展开的收敛性取决于函数的性质和级数的收敛条件。
幂级数展开的应用
幂级数展开在数学物理中广泛应用于求解微分方程和积分方程。
泰级数展开
泰勒级数展开定义
01
将一个复变函数表示为多项式的无穷级数。
泰勒级数展开的收敛性
02
泰勒级数展开的收敛性取决于函数的性质和级数的收敛条件。
泰勒级数展开的应用
个定理在解决一些数学物理问题时非常有用。
柯西不等式
总结词
柯西不等式是复变函数中一个基本的积分不等式,它反映了函数与其共轭函数之间的积分关系。
详细描述
柯西不等式表明,对于任意实数a和b,以及在全平面上的非负函数f和g,有∫f(z)g(z*)dz ≥ |∫f(z)dz * ∫g(z*)dz|, 其中z*是z的共轭复数。这个不等式在处理一些积分问题时非常有用。
积分路径
积分性质
复数函数的积分具有线性性质、可加 性、可交换性等基本性质。
数学物理方法课后答案 (2)

2
2+ 4 i
1+i
[( x 2 − y 2 ) + 2ixy ](dx + idy )
86 − 6i 3
= ∫ [ x 2 − (3 x − 2) 2 + 2ix(3 x − 2)](1 + 3i ) dx = −
(3)沿1 + i 到 2 + i ,再到 2 + 4i 的折线。
I =∫
2 1
2+ 4 i
L
∫ ∫
L
f (ξ )[
f (ξ ) Δ z ∫ L (ξ − z ) 2 (ξ − z − Δ z ) d ξ
ξ − z ( ξ − z − Δz )
2
d ξ , 现 在 讨 论 能 否 找 到 δ ( ε ), 使 当 Δ z < δ 时 d ,同 时 将 2
上 式 成 立 。 因 本 题 是 讨 论 Δ z → 0时 的 积 分 极 限 , 不 妨 令 Δ z < min z − ξ = d 代 入 有 Δ I ≤ δ
4 4 1 1 0 0
I3 = ∫ {[2(t2 + 3) + (2t)2 ]2dt + [3(2t)-(t2 + 3)]2tdt} = ∫ (24t 2 + 12 − 2t 3 − 6t )dt =
数学物理方法第2章复变函数积分-2016方案

(2.1.3)
(2) 化为参数积分计算.设积分曲线L的参数方程为z(t),
将z(t)及dz(t)=z'(t)dt代入式(2.1.4),可得
3
【例2.1.1】计算积分I=
其中曲线L是
(1)沿1+ i 到2+4 i 的直线,见图2.2(a);
(2)沿1+ i 到2+i,再到2+4 i 的折线,见图2.2(b);
§2.2.1 单通区域的柯西定理
定理 若函数f(z)在单通区域D 内解析,则f(z)在D内沿任意 闭曲线的积分为零
∮l f(z)dz = 0 (2.2.1)
证明 这个定理的严格证明比较复 杂, 为简单起见, 我们在“f(z)在D 内连续” 附加条件下证明这个定 理.
先将复变积分化为两个实变积 分的线性叠加
29
这就是解析函数的定积分公式,它与实变 函数中的牛顿-莱布尼茨公式具有相同的形 式。
通常把f(z)的原函数的集合
称f(z)的不定积分,式中C为复常数。
30
(2.2.8)
31
§2.2.3 复通区域的柯西定理
定理 若f(z)在闭复通区域 解析,则f(z)沿所
有内、外边界线(L=L0+ 之和为零
37
【2.2.2】试计算 其中积分回路分别(图2.11) (1) |z-i|=2;(2) |z+i|=2;(3) |z|=3.
38
解 首先,将被积函数分解为部分分式(利用通 分可以凑出来)
≠0
=0
39
40
【例2.2.3】若f(z)=1/(z-a) 在z=a的无心邻域内 连续,积分回路是以a点为圆心的圆弧
由于a点在D内随意变动时,柯西公式依然成立, 有时分别用z和x代替式 (2.3.1)的a和z。将柯西公 式改写为
数学物理方法 第二章 复变函数的积分

证明: 1 dz 1 f (α )dz (1)已知f (α ) = f (α ) ⋅ ∫l z − α = 2πi ∫l z − α 2πi 1 f ( z )dz 1 f ( z ) − f (α ) 与f (α ) = 比较,只需证明 ∫l z − α ∫l z − α dz = 0即可. 2πi 2πi f ( z ) − f (α ) (2)因为z = α为 的奇点,因此,以α为圆心,取任意小 z −α f ( z ) − f (α ) ε为半径做小圆Cε , 这样在l及Cε 所围复通区域上 单值解析。 z −α f ( z ) − f (α ) 1 f ( z ) − f (α ) 1 根据柯西定理, ∫ dz = ∫Cε z − α dz l 2πi z −α 2πi 对于Cε 上的z有:z − α = εe iϕ , dz = iεeiϕ dϕ 于是, 有: 1 f ( z ) − f (α ) 1 2π f ( z ) − f (α ) iϕ 1 iεe dϕ = iϕ ∫l z − α dz = 2πi ∫0 εe 2πi 2π
wuxia@
∫
2π
0
[ f ( z ) − f (α )]dϕ
(3)现在需要对上式右端做估计 因为f ( z )连续,一定可以找到∆ > 0,当 | z − α |≤ ∆时, | f ( z ) − f (α ) |≤ ε ′ 因而有: 1 2π 1 2π 1 ∫0 [ f ( z ) − f (α )]dϕ ≤ 2π ∫0 | f ( z ) − f (α ) |⋅ | dϕ |< 2π 2π =ε 1 f ( z ) − f (α ) 1 f ( z) ∴ dz = 0, f (α ) = ∫l z − α ∫l z − α dz 2πi 2πi
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线的限制, 必须记作
f ( z )dz.
l
24
思考题
应用柯西定理应注意什么?
答:
(1) 注意定理的条件“单连通域”.
1 1 3 例: f ( z ) = 在圆环域 z 内; z 2 2
(2) 注意定理的不能反过来用.
即不能由 f ( z )dz = 0, 而说 f ( z ) 在 C 内处处解析.
例3 求
l
1 n 1 dz , l 为以 z0 为中心 , r 为半 ( z z0 )
y
径的正向圆周, n 为整数 . 解
z积分路Biblioteka 的参数方程为 z0o
r
l : z = z0 re i
(0 2π),
x
l
2π 1 ire i dz = n1 i ( n1) d n1 0 r ( z z0 ) e i 2π in = n e d , r 0
o
y
l
b
a
1 2
z1 z2
k z k zk 1
zn1
x
3
作和式 S n = f ( k ) ( zk zk 1 ) = f ( k ) zk ,
k =1 k =1
n
n
这里 zk = zk zk 1 , 当 n 无限增加 , 如果不论对 l 的分法及 k 的取法如何 , Sn 有唯 一极限 , 那么称这极限值为 函数 f ( z ) 沿曲线 l 的积分 , y 记为
Cf (z)dz = C
l
l
f (z)dz, 其中C为复常数
(4)函数的和的积分等于各函数积分之和
f (z) g(z)dz =
(5)积分不等式
l
f (z)dz g(z)dz;
l
l
f ( z )dz f ( z ) d z
l
特别地,若在l上有 f ( z) M ,l的长记为l,则 性质(5)成为
11
当 n = 0 时, 1 2π l ( z z0 ) dz = i 0 d = 2i; 当 n 0 时,
y
z
z0
o
r
x
l
1 i 2π dz = n (cos n i sin n )d = 0; n1 ( z z0 ) r 0
2i , 1 = 所以 n1 dz ( z z0 ) 0, z z0 = r
a
a
l1
x
1 l l 1 为边界的复连通域 n1 在以 (z a)
内处处解析 ,
21
由复合闭路定理,
1 1 ( z a)n1 dz = ( z a)n1 dz l l1
小圆的参数方程:
i
y
l
a
l1
z = a e 0 此结论非常重要, 闭曲线x 2 π, 不必 in i 2π ie 1 2π 是圆, a也不必是圆的圆心, ie dz = d = 0 n d ( z a)n1 0 ( e只要a在简单闭曲线内即可. i n 1 ) l1
l
f ( z )dz Ml
8
例1 计算 zdz , l : 从原点到点 3 4i 的直线段 . l 解:采用参数方程方法 y=3x/4,令x=t. x = 3t , 直线的参数方程: 0 t 1, y = 4t ,
l 方程 : z =x +iy =(3 4i )t ,
1
学习要求与内容提要
目的与要求:掌握复变函数积分的概念、基本性 质及运算;柯西定理、不定积分、柯西公式。
重点: 1. 复积分的基本定理;
2. 柯西积分公式与高阶导数公式。 难点: 复合闭路定理与复积分的计算。
2
2.1复变函数的积分 ——复平面上的线积分
(与实函数积分相似,定义为和的极限)
(一)积分的定义 设函数 w = f ( z ) 定义在区域 B 内, l 为区域 B 内起点为 a 终点为 b 的一条光滑的有向曲线 , 把曲线 l 任意分成 n 个弧段, 设分点为 a = z0 , z1 , L, zk 1 , zk ,L, zn = b , 在每个弧段 zk 1 zk ( k = 1,2,L, n) 上任意取一点 k ,
B B
l
A
Sl
R
CR
23
A
思考题
复函数 f ( z ) 的积分定义式 f ( z )dz 与一元 函数定积分是否一致?
l
答:
若 l 是实轴上区间 [ , ], 则
f ( z)dz =
l
f ( x )dx,
如果 f ( x ) 是实值的, 即为一元实函数的定积分.
一般不能把起点为 , 终点为 的函数 f ( z ) 的积分 记作 f ( z )dz , 因为这是一个线积分, 要受积分路
1 dz . 2z 3
y
解
1 函数 在 z 1内解析 , 2z 3 根据柯西定理, 有 1 z =1 2z 3 dz = 0.
·
o
r =1
15
x
(二)复连通域柯西定理 下图表示一个由边界L和l1 构成的闭二连通区域B. 设f(z)在B内解析,在闭区域边界上连续.
l1 B G
l L
l1
f (z)dz =
l
l1
f ( z)dz,
17
l与l1方向相反,但与 l-1方向相同。
A
B
E
C
l
l1
D
F
l
f ( z )dz =
l1
f ( z )dz ,
•
此式说明,在区域内的一个解析函数沿 着闭曲线的积分,不因闭曲线在区域内部作 连续变形而改变它的值,只要在变形过程中 曲线不经过函数的奇点. • ------闭路变形原理
18
(多连通域柯西定理) 设B是以 C = l l1 ln
边为界的n+1闭连通区域,其中l1,l2,…,ln是简单光滑 闭曲线l内部互相分离的n条简单光滑闭曲线。若f (z)在 B 边界上连续,在B内解析,则有
C
f ( z)dz = 0
其中C取关于区域B的正向,或写为:
13
证明: ( z)dz = l u( x, y)dx v( x, y)dy i l v ( x, y)dx u( x, y)dy f
l
格林公式
Q P l Pdx Qdy = ( x y )dxdy S
积分值的实部:由格林公式化成面积分
l
b
l
f ( z )dz = lim f ( k ) zk . a
n k =1
n
1 2
z1 z2
k z k zk 1
zn1
o
x
4
关于定义的说明: (1) 如果 l 是闭曲线, 那么沿此闭曲线的积分 记为 f ( z )dz .
l
注:闭曲线是有向曲线,并定义区域总是在观察者 左侧的曲线为正 (2) 如果 l 是 x 轴上的区间 a x b, 而 f ( z ) = u( x ), 这个积分定义就是一元 实变函数
l : z = 2e i
(0 2π),
i
f z = z = 2e , dz = 2ie i d
l
z dz = 0 2 2ie i d
2π
2π
y
( 因为 z = 2 )
0
= 4i (cos i sin )d
= 0.
f z = z
o
r
x
10
z = z e i
l2
ez 函数 在此圆环域和其边界 z 上处处解析 , 圆环域的边界构成一条复合闭路,
1
2
x
ez 根据闭路复合定理, dz = 0. z
20
例3 求
l
1 l 为含 a 的任一简单闭路 , n 1 dz , (z a) y
l
n 为整数 .
解 因为 a 在曲线 l 内部,
故可取很小的正数 , 使 l 1 : z a = 含在 l 内部,
l l
6
积分的计算法2:参数方程法 设路径l的方程(参数方程)为: z=z(t) (α≤t≤β) 由求导法则, dz=z’(t) dt, 则有
f ( z )dz =
l
f [ z( t )]z ( t )dt
(三)性质: 设l是简单逐段光滑曲线,f,g在l上连续,则
(1)全路径上的积分等于各段上积分之和
n = 0, n 0.
重要结论:积分值与路径圆周的中心和半径无关.
12
2.2 柯西定理 (一)单连通区域柯西定理 讨论复变函数积分值与积分路径的关系 定理1:单连通区域柯西定理
如果函数f (z)在闭单连通域 B上解析,则沿B上任一分段光 滑闭曲线l(也可以是B的边界), 有
l
B
l
f ( z )dz = 0
定积分的定义 .
5
(二).积分的计算法
积分的计算法1:化为二元实函数的第二型曲线积分
注意到:
f z = u x, y iv x, y ; d z = d x id y
代入积分定义有:
f ( z )dz = u iv dx idy
l l
= udx vdy i udx vdy
v( x, y)dx u( x, y)dy = 0