苏教版数学高一对数函数名师导学案

苏教版数学高一对数函数名师导学案
苏教版数学高一对数函数名师导学案

执笔人:祁正权 审核人:姚东盐 2011年 10月 *日

2.3.2对数函数 第 2 课时

【教师活动】 【教学目标】 1.掌握对数函数的性质,能初步问题. 2.运用对数函数的图形和性质.3.培养学生数形结合的思想,以能力. 【教学重难点】 重点:对数函数性质的应用. 难点:对数函数图象的变换. 【教学设想】(【教学准备】) 多媒体 【教学活动】(【教学流程】) 1.问题情境 2.师生互动 3.建构数学概念 4.举例应用

5.课堂练习

6.小结作业 【教学反思】

【学生活动】 【学习目标】

1、掌握对数函数的性质

2、应用对数函数的性质解决实际问题。

【课时安排】 1课时

【学法点拨】

通过提问→汇总→练习→提炼的形式来发掘学生学习方法

【课前预习】

1.对数函数)1,0(log ≠=a a x y a 的图象和性质

2.将函数x y 2log =的图象向 平移2个单位,就得到

)2(log 2-=x y 的图象。 3.函数)1,0(log 2≠+=a a x y a 的图象一定经过定点 4.5log ,6log ,5.0log 653的大小顺序为 【课堂探究】 一.问题情景设置 如何解决与对数函数的定义、图象和性质有关的问题? 二、学生活动 1.画出3log (2)y x =+、3log 2y x =+等函数的图象,

3log y x =的图象进行对比,总结出图像变换的一般规律2.探求函数图象对称变换的规律.

三、建构数学 1.函数log ()a y x b c =++(0,1a a >≠)的图象是由函图象 得到; 2.函数|log |a y x =的图象与函数log a y x =是 ; 3.函数log ||a y x =的图象与函数log a y x =是 .

四、数学应用 例1 如图所示曲线是对数函数y =log a x 的图像,已知a 1.5,e ,则相应于C 1,C 2,C 3,C 4的a 的值依次为 例2 分别作出下列函数的图象,并与函数y =log 3x 的图出它们之间的关系 (1)y =log 3(x -2);(2)y =log 3(x +2);

对数函数讲义(可直接使用).

一、 教学目标: 1.理解对数的概念,掌握对数的运算性质; 2.掌握对数函数的概念、图象和性质;能利用对数函数的性质解题. 二、教学重、难点: 运用对数运算性质进行求值、化简、证明、运用对数函数的定义域、单调性解题 三、命题规律: 主要考察指数式b a N =与对数式log a N b =的互化,对数函数的图像和性质或由对数函数复合成的函数,主要涉及比较大小、奇偶性、过定点、单调区间以及运用单调性求最值等,主要以填空为主。 四、教学内容: 【知识回顾】 1.对数的概念 如果 ,那么数b 叫做以a 为底N 的对数,记作 ,其中a 叫做对数的 ,N 叫做对数的 。 即指数式与对数式的互化:log b a a N b N =?= 2.常用对数:通常将以10为底的对数10log N 叫做常用对数,记作lg N 。 自然对数:通常将以无理数 2.71828e =???为底的对数叫做自然对数,记作ln N 。 3.对数的性质及对数恒等式、换底公式 (1)对数恒等式:①log N a a = (01,0)a a N >≠>且②log N a a = (01,0)a a N >≠>且 (2)换底公式:log a N =log log b b N a (3)对数的性质:①负数和零没有对数 ② 1的对数是零,即log 10a = ③底的对数等于1,即log 1a a = ④log log log a b c b c d ??=log a d

4.对数的运算性质 如果01,0,0a a M N >≠>>且,那么 (1)log ()a MN = ; (2)log a M N = ; (3)log n a M = ; (4)log n a m M = 。 (5)log log a b b a ?= ; (6)log a b =1log b a 5.对数函数 函数log (01)a y x a a =>≠且做对数函数,其定义域为(0,+∞),值域为(-∞,+∞).、 6.对数函数图像与性质 注:对数函数1log log (01)a a y x y x a a ==>≠与且的图像关于x 轴对称。 7.同真数的对数值大小关系如图 在第一象限内,图像从左到右相应的底逐渐增大, 即01c d a b <<<<< 8.对数式、对数函数的理解 ① 应重视指数式与对数式的互化关系,它体现了数学的转化思想,也往往是解决“指数、对数”问题的关键。 ② 在理解对数函数的概念时,应抓住定义的“形式”,像2log 2,log 2,3ln x y y x y x ===等函数均不符合形式log (01)a y x a a =>≠且,因此,它们都不是对数函数 ③ 画对数函数log a y x =的图像,应抓住三个关键点1(,1),(1.0),(,1)a a -

高一数学函数练习题及答案

数学高一函数练习题(高一升高二衔接) 一、 求函数的定义域 1、求下列函数的定义域: ⑴33y x =+- ⑵y = ⑶01(21)111 y x x = +-+ - 2、设函数f x ()的定义域为[]01,,则函数f x ()2 的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴2 23y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈ ⑶311x y x -= + ⑷31 1 x y x -=+ (5)x ≥ ⑸ y = ⑹ 22 5941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼ y =⑽ 4y = ⑾y x =6、已知函数22 2()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式 1、 已知函数2 (1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2 (1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1 ()()1 f x g x x += -,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 2 23y x x =++ ⑵y = ⑶ 2 61y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2 (1)f x -的单调递增区间是 8、函数236x y x -= +的递减区间是 ;函数y =的递减区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3 ) 5)(3(1+-+= x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ; ⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x ; ⑸21)52()(-=x x f , 52)(2-=x x f 。

高中数学对数函数教案

高中数学对数函数教案 数学对数函数教案【教学目标】 1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用. (1)能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个 函数图象间的关系正确描绘对数函数的图象. (2)能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题. 2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想, 注重培养学生的观察,分析,归纳等逻辑思维能力. 3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性. 数学对数函数教案【教学建议】 教材分析 (1)对数函数又是函数中一类重要的基本初等函数,它是在学生 已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故 是对上述知识的应用,也是对函数这一重要数学思想的进一步认识 与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加 完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关 自然科学领域中实际问题的重要工具,是学生今后学习对数方程, 对数不等式的基础. (2)本节的教学重点是理解对数函数的定义,掌握对数函数的图 象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又

是建立在指数与对数关系和反函数概念的基础上,故应成为教学的 重点. (3)本节课的主线是对数函数是指数函数的反函数,所有的问题 都应围绕着这条主线展开.而通过互为反函数的两个函数的关系由已 知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点. 教法建议 (1)对数函数在引入时,就应从学生熟悉的指数问题出发,通过 对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数 图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多 选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找 出共性,归纳性质. (2)在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地反函数这 条主线引导学生思考的方向.这样既增强了学生的参与意识又教给他 们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣. 数学对数函数教案【教学设计示例】 一.引入新课 一.对数函数的概念 1.定义:函数的反函数叫做对数函数. 由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发.如从定义中你能了解对数函数的什么性质吗?最初步的 认识是什么? 教师可提示学生从反函数的三定与三反去认识,从而找出对数函数的定义域为,对数函数的值域为,且底数就是指数函数中的,故 有着相同的限制条件. 在此基础上,我们将一起来研究对数函数的图像与性质.

高中数学函数最值问题的常见求解方法

一、配方法 例1:当01≤≤-x 时,求函数x x y 4322 ?-=+的最大值和最小值. 解析:34)3 22(32 + --=x y ,当01≤≤-x 时,122 1≤≤x .显然由二次函数的性质可得1min =y ,3 4max = y . 二、判别式法 对于所求的最值问题,如果能将已知函数式经适当的代数变形转化为一元二次方程有无实根的问题,则常可利用判别式求得函数的最值. 例2:已知012442 2 =-++-x x xy y ,求y 的最值. 解析:由已知,变形得0)1()12(242 2 =-+--y x y x ,R x ∈,则0≥?,即有 0)1(16)12(422≥---y y 故 4 5 ≤ y . 因此 4 5 max = y ,无最小值. 例3:若x 、R y ∈且满足:022 2 =-+++y x xy y x ,则m ax x = min y = 解析:由已知,变形得:0)()12(2 2 =++-+x x y x y ,R y ∈,则0≥?,即有 0)(4)12(22≥+--x x x ,于是018≥+-x ,即 81≤ x .即 8 1max =x . 同理,0)()12(2 2 =-+++y y x y x ,R x ∈,则0≥?,即有 0)(4)12(22≥--+y y y ,于是018≥+y ,即 81-≥y .即 8 1 min -=y . 注意:关于x 、y 的有交叉项的二元二次方程,通常用此法 例4:已知函数1 1 34522+++=x x x y ,求y 的最值. 解析:函数式变形为:0)1(34)5(2 =-+--y y x y ,R x ∈,由已知得05≠-y , 0)1)(5(4)34(2≥----=?∴y y ,即:0762≤--y y ,即:71≤≤-y . 因此 7max =y ,1min -=y .

指数函数与对数函数(讲义)

指数函数与对数函数(讲义) ? 知识点睛 1. 指数函数及对数函数的图象和性质: 2. 利用指数函数、对数函数比大小 (1)同底指数函数,利用单调性比较大小; (2)异底指数函数比大小,可采用化同底、商比法、取中间值、图解法; (3)同底数对数函数比大小,直接利用单调性求解;若底数为字母,需分类讨论; (4)异底数对数函数比大小,可化同底(换底公式)、寻找中间量(-1,0,1),或借助图象高低数形结合. 3. 换底公式及常用变形: log log log c a c b b a =(a >0,且a ≠1;c >0,且c ≠1;b >0) 1 log log a b b a = (a >0,且a ≠1;b >0,且b ≠1) log log m n a a n b b m = (a >0,且a ≠1;b >0,且b ≠1) log a b a b =(a >0,且a ≠1;b >0) ? 精讲精练 1. 若a ,b ,c ∈R +,则3a =4b =6c ,则( )

A .b a c 111+= B . b a c 122+= C .b a c 221+= D .b a c 212+= 2. 计算: (1)若集合{lg()}{0||}x xy xy x y =,,,,,则228log ()x y +=_________; (2)设0()ln 0x e x g x x x ?=?>?≤(), ()则1 (())2g g =_____________; (3)若2(3)6()log 6f x x f x x x +

高一数学(人教版必修一)教案:《函数的最大(小)值》

§1.3.1函数的最大(小)值 一.教学目标 1.知识与技能: 理解函数的最大(小)值及其几何意义. 学会运用函数图象理解和研究函数的性质. 2.过程与方法: 通过实例,使学生体会到函数的最大(小)值,实际上是函数图象的最高(低)点的纵坐标,因而借助函数图象的直观性可得出函数的最值,有利于培养以形识数的解题意识. 3.情态与价值 利用函数的单调性和图象求函数的最大(小)值,解决日常生活中的实际问题,激发学生学习的积极性. 二.教学重点和难点 教学重点:函数的最大(小)值及其几何意义 教学难点:利用函数的单调性求函数的最大(小)值. 三.学法与教学用具 1.学法:学生通过画图、观察、思考、讨论,从而归纳出求函数的最大(小)值的方法和步骤. 2.教学用具:多媒体手段 四.教学思路 (一)创设情景,揭示课题. 画出下列函数的图象,指出图象的最高点或最低点,并说明它能体现函数的什么特征? ①()3f x x =-+ ②()3 [1,2]f x x x =-+∈- ③2 ()21f x x x =++ ④2 ()21[2,2]f x x x x =++∈- (二)研探新知 1.函数最大(小)值定义 最大值:一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足: (1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =. 那么,称M 是函数()y f x =的最大值. 思考:依照函数最大值的定义,结出函数()y f x =的最小值的定义. 注意:

①函数最大(小)首先应该是某一个函数值,即存在0x I ∈,使得0()f x M =; ②函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x I ∈,都有 ()(())f x M f x m ≤≥. 2.利用函数单调性来判断函数最大(小)值的方法. ①配方法 ②换元法 ③数形结合法 (三)质疑答辩,排难解惑. 例1.(教材P 30例3)利用二次函数的性质确定函数的最大(小)值. 解(略) 例2.将进货单价40元的商品按50元一个售出时,能卖出500个,若此商品每个涨价1元,其销售量减少10个,为了赚到最大利润,售价应定为多少? 解:设利润为y 元,每个售价为x 元,则每个涨(x -50)元,从而销售量减少 10(50),x -个共售出500-10(x-50)=100-10x(个) ∴y=(x-40)(1000-10x) 9000(50x +≤2=-10(x-70)<100) ∴max 709000x y ==时 答:为了赚取最大利润,售价应定为70元. 例3.求函数2 1 y x = -在区间 上的最大值和最小值. 解:(略) 例4.求函数y x =+ 解:令201t x t =≥=-+有则 2215 1()024 y t t t t =-++=--+ ≥Q 21()02t ∴--≤ 2155 ()244 t ∴--+≤ .∴5 原函数的最大值为4

高一数学对数函数经典题及详细答案

高一数学对数函数经典练习题 一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、已知32a =,那么33log 82log 6-用a 表示是( ) A 、2a - B 、52a - C 、2 3(1)a a -+ D 、 2 3a a - 答案A 。 ∵3a =2→∴a=log 32 则: log 38-2log 36=log 323 -2log 3(2*3) =3log 32-2[log 32+log 33] =3a-2(a+1) =a-2 2、2log (2)log log a a a M N M N -=+,则 N M 的值为( ) A 、41 B 、4 C 、1 D 、4或1 答案B 。 ∵2log a (M-2N )=log a M+log a N , ∴log a (M-2N)2=log a (MN ),∴(M-2N)2 =MN , ∴M 2-4MN+4N 2=MN ,→m 2-5mn+4n 2=0(两边同除n 2)→(n m )2 -5n m +4=0,设x=n m →x 2-5x+4=0→(x 2 ???==1x x 又∵2log (2)log log a a a M N M N -=+,看出M-2N>0 M>0 N>0 ∴n m =1答案为:4 3、已知2 2 1,0,0x y x y +=>>,且1 log (1),log ,log 1y a a a x m n x +==-则等于( ) A 、m n + B 、m n - C 、()12m n + D 、()1 2 m n - 答案D 。 ∵loga(1+x)=m loga [1/(1-x)]=n ,loga(1-x)=-n 两式相加得:→ loga [(1+x)(1-x)]=m-n →loga(1-x 2)=m-n →∵ x 2+y 2=1,x>0,y>0, → y 2=1- x 2→loga(y 2)=m-n

高中数学函数最值问题的常见求解方法

高中数学函数最值问题的常见求解方法 一、配方法 例1.当01≤≤-x 时,求函数x x y 4322?-=+的最大值和最小值. 解析:3 4)322(32 + - -=x y ,当01≤≤-x 时, 12 2 1≤≤x .可得1min =y ,3 4max = y . 二、判别式法:若能将问题转化为一元二次方程有无实根的问题,则常利用判别式求得函数的最值. 例2.若x 、R y ∈且满足:022 2 =-+++y x xy y x ,则max x = , min y = . 解析:由已知,变形得:0)()12(22=++-+x x y x y ,R y ∈,则0≥?,即有 0)(4)12(2 2≥+--x x x ,于是018≥+-x ,即 8 1≤ x .即 8 1max = x . 同理,0)()12(22=-+++y y x y x ,R x ∈,则0≥?,即有 0)(4)12(2 2 ≥--+y y y ,于是018≥+y ,即 8 1- ≥y .即 8 1min - =y . 例3.在2 0π ≤ ≤x 条件下,求2 ) sin 1()sin 1(sin x x x y +-= 的最大值. 解:设x t sin =,因0(∈x ,)2 π,故 10≤≤t ,则2 ) 1()1(t t t y +-= ,即 0)12()1(2 =+-++y t y t y 因为 10≤≤t ,故01≠+y ,于是0)1(4)12(2 ≥+--=?y y y 即 8 1≤ y 。 将8 1= y 代入方程得 0[3 1∈= t ,]1,所以8 1max = y . 注意:因0≥?仅为方程0)12()1(2 =+-++y t y t y 有实根0[∈t ,]1的必要条件,因此,必须 将8 1= y 代入方程中检验,看等号是否可取. 练习:已知函数)(1 2 R x x b ax y ∈++=的值域为]4,1[-,求常数b a ,.(答案: 3=b ,4±=a ) 三、换元法 (一)局部换元法 例4.求函数x x y 21-+=的最值. 解析:设x t 21-= (0≥t ),则由原式得11)1(2 12 ≤+-- =t y 当且仅当1=t 即0=x 时取 等号.故1max =y ,无最小值. 例5.已知20≤ ≤a ,求函数))(cos (sin a x a x y ++=的最值. 解析:2)cos (sin cos sin a x x a x x y +++= 令t x x =+cos sin 则 22≤ ≤- t 且2 1cos sin 2 -= t x x ,于是]1)[(2 12 2-++= a a t y 当2= t 时,21 22 max + + =a a y ;当a t -=时,)1(2 1 2 min -= a y . 注意:若函数含有x x cos sin 和x x cos sin +,可考虑用换元法解. (二)三角代换法(有时也称参数方程法) 例6.已知x 、y R ∈,4122≤+≤y x .求22y xy x u ++=的最值. 解析:设θcos t x =,θsin t y =,(t 为参数),因 4122≤+≤y x ,故 412≤≤t )2sin 2 11()sin sin cos (cos 2 2 2 2 θθθθθ+ =++=∴t t u 故当42=t 且12sin =θ时,6max =u ;当12=t 且12sin -=θ时,2 1max =u . 练习1:实数x 、y 适合:545422=+-y xy x ,设22y x S +=,则 max 1S +min 1S =____。 练习2:已知x 、y R ∈且x y x 6232 2=+,求y x +的最值. 解析:化x y x 6232 2=+为123)1(2 2 =+-y x ,得参数方程为?? ? ??=+=θθsin 26 cos 1y x )sin(2 101sin 26cos 1?θθθ++ =+ +=+∴y x , 故 2 101)(max +=+y x ,2 101)(min - =+y x . (三)均值换元法 例7.已知1=+b a ,求证:4 4b a +的最小值为 8 1. 解析:由于本题中a 、b 的取值范围为一切实数,故不能用三角换元,但根据其和为1,我们可

苏教版高一数学必修1综合复习试题

高一数学必修1综合复习试题 一、填空题 1.集合A ={x |-1≤x ≤2},B ={x |x <1},则A ∩(?R B )= . 2.已知函数20()10x x f x x x ?=?->?,≤,,,若1()2f a =,则实数a = . 3.方程)2(log )12(log 255-=+x x 的解集为 . 4.函数23 )(-=x x f 的定义域为 . 5.已知函数()f x 是R 上的奇函数,且当0x >时,32()2f x x x =-,则0x <时,函数()f x 的表达式为()f x = . 6.定义集合A 、B 的一种运算:1212{,,}A B x x x x x A x B *==+∈∈其中,若{1,2,3}A =,{1,2}B =,则A B *中的所有元素数字之和为 . 7.已知定义在R 上的奇函数)(x f 满足),()2(x f x f -=+则)6(f =_________. 8.若2()2(1)2f x ax a x =+-+在(3,3)-为单调函数,则a 的取值范围是 . 9 .函数y 的单调递减区间为 . 10.函数)86lg()(2++-=a ax ax x f 的定义域为R ,则实数a 的取值范围是 . 11.若关于x 的方程a a x -+= 523)43(有负实数解,则实数a 的取值范围为 . 12.如果函数()223f x x x =-+在[]0,m 上有最大值3,最小值2,则m 的范围是 .

13.已知定义域为()(),00,-∞+∞U 的偶函数()f x 在(0)+∞,上为增函数,且(1)0f =,则 不等式()0x f x ?>的解集为 . 14.不等式012 ≥+-ax x 对所有]2,1[∈x 都成立,则实数a 的取值范围 . 二、解答题 15.设集合{}2|lg(2)A x y x x ==--,集合{}|3||B y y x ==-. ⑴ 求B A ?和A B U ; ⑵ 若{}|40C x x p =+<,C A ?,求实数p 的取值范围. 16.计算下列各式的值: (1)3212833)21() 32(??? ??--+-- ; (2) 2lg 2lg3111lg 0.36lg823 +++.

人教版高中数学《函数的单调性与最值》教学设计全国一等奖

1.3.1函数的单调性与最大(小)值(第一课时) 教学设计 一、教学内容解析: (1)教学内容的内涵、数学思想方法、核心与教学重点; 本课教学内容出自人教版《普通高中课程标准实验教科书必修数学1》(以下简称“新教材”)第一章节。 函数的单调性是研究当自变量x不断增大时,它的函数y增大还是减小的性质.如增函数表现为“随着x增大,y也增大”这一特征.与函数的奇偶性不同,函数的奇偶性是研究x成为相反数时,y是否也成为相反数,即函数的对称性质. 函数的单调性与函数的极值类似,是函数的局部性质,在整个定义域上不一定具有.这与函数的奇偶性、函数的最大值、最小值不同,它们是函数在整个定义域上的性质. 函数单调性的研究方法也具有典型意义,体现了对函数研究的一般方法:加强“数”与“形”的结合,由直观到抽象;由特殊到一般.首先借助对函数图象的观察、分析、归纳,发现函数的增、减变化的直观特征,进一步量化,发现增、减变化数字特征,从而进一步用数学符号刻画. 函数单调性的概念是研究具体函数单调性的依据,在研究函数的值域、定义域、最大值、最小值等性质中有重要应用(内部);在解不等式、证明不等式、数列的性质等数学的其他内容的研究中也有重要的应用(外部).可见,不论在函数内部还是在外部,函数的单调性都有重要应用,因而在数学中具有核心地位. 教学的重点是:引导学生对函数定义域I的给定区间D上“随着x增大,y也增大(或减小)”这一特征进行抽象的符号描述:在区间D上任意取x1,x2,当x1<x2时,有f(x1)<f(x2)(或f(x1)>f(x2)),则称函数f(x)在区间D上是增函数(或减函数). (2)教学内容的知识类型; 在本课教学内容中,包含了四种知识类型。函数单调性的相关概念属于概念性知识,函数单调性的符号语言表述属于事实性知识,利用函数单调性的定义证明函数单调性的步骤属于程序性知识,发现问题----提出问题----解决问题的研究模式,以及从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明等研究问题的一般方法,属于元认知知识. (3)教学内容的上位知识与下位知识; 在本课教学内容中,函数的单调性,是文字语言、图形语言、符号语言的上位知识.图象法、作差法是判断证明函数单调性的下位知识. (4)思维教学资源与价值观教育资源; 生活常见数据曲线图例子,能引发观察发现思维;函数f(x)= +1和函数 1 y x x =+,能引发 提出问题---分析问题----解决问题的研究思维,不等关系等价转化为作差定号,是转化化归思维的好资源,是树立辩证唯物主义价值观的好契机;创设熟悉的二次函数探究背景,是引发从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明思维的好材料,树立了“事物是普遍联系的”价值观. 二、教学目标设置: 本课教学以《普通高中数学课程标准(实验)》(以下统称为“课标”)为基本依据,以“数学育人”作为根本目标设置。 “课标”数学1模块内容要求是:不仅把函数看成变量之间的依赖关系,还要用集合与对应的语言刻画函数,体会函数的思想方法与研究方法,结合实际问题,体会函数在数学和其他学科中的重要性。 “课标”对本课课堂教学内容要求是:通过已学过的函数特别是二次函数,理解函数的单调性.(第一课时) 为尽好达到以上要求,结合学生实际,本课课堂教学目标设置如下: (1)知识与技能: 理解函数单调性的概念,让学生能清晰表述函数单调性的定义与相关概念; 能利用图象法直观判断函数的单调性;

高一数学二次函数在闭区间上的最值练习题

第1课 二次函数在闭区间上的最值 一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。 一般分为:对称轴在区间的左边,中间,右边三种情况. 设)0()(2 ≠++=a c bx ax x f ,求)(x f 在][n m x ,∈上的最大值与最小值。 分析:将)(x f 配方,得顶点为???? ? ?--a b ac a b 4422,、对称轴为a b x 2-= 当0>a 时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上)(x f 的最值: (1)当[]n m a b ,∈-2时,)(x f 的最小值是 a b ac a b f 4422 -= ?? ? ??-, )(x f 的最大值是)()(n f m f 、中的较大者。 (2)当),(2m a b -∞∈- 时,)(x f 在[]n m ,上是增函数则)(x f 的最小值是)(m f ,最大值是)(n f (3)当),(2+∞∈-n a b 时,)(x f 在[]n m ,上是减函数则)(x f 的最大值是)(m f ,最小值是)(n f 当0

高一数学讲义完整版

高一数学复习讲义09年版 函数部分(1) 重点:1把握函数基本知识(定义域、值域) x(a>0、<0) 主要是指数函数y=a x(a>0、<0),对数函数y=log a 2二次函数(重点)基本概念(思维方式)对称轴、 开口方向、判别式 考点1:单调函数的考查 2:函数的最值 3:函数恒成立问题一般函数恒成立问题(重点讲) 4:个数问题(结合函数图象) 3反函数(原函数与对应反函数的关系)特殊值的取舍 4单调函数的证明(注意一般解法) 简易逻辑(较容易) 1. 2. 3. 4.

启示:对此部分重点把握第3题、第4题的解法(与集合的关系) 问题1:恒成立问题解法及题型总结(必考) 一般有5类:1、一次函数型:形如:给定一次函数y=f(x)=ax+b(a≠0),若y=f(x)在[m, n]内恒有f(x)>0(<0) 练习:对于满足0-4x+p-3恒成立的x的取值范围 2、二次函数型:若二次函数y=ax2+bx+c=0(a≠0)大于0恒成立,则有a>0Δ<0若是二次函数在指定区间上的恒成立问题,还可以利用韦达定理以及根与系数的分布知识求解 练习:1设f(x)=x2-2ax+2,当x∈[-1, +∞)时,都有f(x)>a恒成立, a的取值范围 2关于x的方程9x+(4+a)3x+4=0恒有解,求a的范围。 3、变量分离型 若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解 练习:若1-ax>1/(1+x),当对于x∈[0, 1]恒成立,求实数a的取值范围。 4利用图象 练习:当x∈(1, 2)时,不等式(x-1)2

苏教版高中数学概念及公式复习

苏教版高中数学概念及 公式复习 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

数学公式 第一章集合与简易逻辑 1、对于任意集合B A ,,则 =B C A C U U ; )(B A C U =; 2、若集合 A 中有n 个元素,则集合A 的所有不同的子集个数为_________,所有真子集的个数是 __________,所有非空子集的个数是 ,所有非空真子集的个数是 。 3、 B A 中元素的个数的计算公式为:=)(B A Card ; 4、原命题与逆否命题,否命题与逆命题具有相同的 第二章函数 1、函数定义域的求法: ① ) ()(x g x f y = ,则 ; ②)()(* 2N n x f y n ∈=则 ; ③ 0)]([x f y =,则 ; ④如:)(log )(x g y x f =,则 ; ⑤含参问题的定义域要分类讨论; ⑥对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。 2、函数值域的求法: ①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型 ),(,)(2n m x c bx ax x f ∈++=的形式; ②逆求法(反求法):通过反解,用y 来表示x ,再由x 的取值范围,通过解不等式,得出y 的取值范 围;常用来解,型如: ),(,n m x d cx b ax y ∈++= ; ④换元法:通过变量代换转化为能求值域的函数,化归思想; ⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域; ⑥基本不等式法:转化成型如: )0(>+ =k x k x y ,利用平均值不等式公式来求值域; ⑦单调性法:函数为单调函数,可根据函数的单调性求值域。 ⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。 3、函数的性质:函数的单调性、奇偶性、周期性、对称性 ⑴单调性:定义(注意定义是相对与某个具体的区间而言) 判定方法有:①定义法(作差比较和作商比较)②导数法(适用于多项式函数) 注: 函数上的区间I 且x 1,x 2∈I.若 2 121)()(x x x f x f -->0(x 1≠x 2),则函数f(x)在区间I 上是增函 数;若 2 121)()(x x x f x f --<0(x 1≠x 2),则函数f(x)是在区间I 上是减函数。 ⑵奇偶性:定义(注意区间是否关于原点对称,比较f(x) 与f(-x)的关系) f(x) -f(-x)=0? f(x) =f(-x) ?f(x)为偶函数;

高一数学函数的最值

第八课时 函数的最值 【学习导航】 知识网络 学习要求 1.了解函数的最大值与最小值概念; 2.理解函数的最大值和最小值的几何意义; 3.能求一些常见函数的最值和值域. 自学评价 1.函数最值的定义: 一般地,设函数()y f x =的定义域为A . 若存在定值0x A ∈,使得对于任意x A ∈,有0()()f x f x ≤恒成立,则称0()f x 为()y f x =的最大值,记为max 0()y f x =; 若存在定值0x A ∈,使得对于任意x A ∈,有0()()f x f x ≥恒成立,则称0()f x 为()y f x =的最小值,记为min 0()y f x =; 2.单调性与最值: 设函数()y f x =的定义域为[],a b , 若()y f x =是增函数,则max y = ()f a ,min y = ()f b ; 若()y f x =是减函数,则max y = ()f b ,min y = ()f a . 【精典范例】 一.根据函数图像写单调区间和最值: 例1:如图为函数()y f x =,[]4,7x ∈-的图象,指出它的最大值、最小值及单调区间.

【解】 由图可以知道: 当 1.5x =-时,该函数取得最小值2-; 当3x =时,函数取得最大值为3; 函数的单调递增区间有2个:( 1.5,3)-和(5,6); 该函数的单调递减区间有三个:(4, 1.5)--、(4,5)和(6,7) 二.求函数最值: 例2:求下列函数的最小值: (1)22y x x =-; (2)1()f x x = ,[]1,3x ∈. 【解】 (1)222(1)1y x x x =-=-- ∴当1x =时,min 1y =-; []1,3x ∈上是单调减函数,所以当3x =时函数1()f x x =取得1. 函数()4(0)f x x mx m =-+>在(,0]-∞上的最小值(A ) ()A 4 ()B 4- ()C 与m 的取值有关 ()D 不存在 2. 函数()f x =的最小值是 0 ,最大值是 32 . 3. 求下列函数的最值:

高一《对数与对数函数》讲义【解析版】

对数与对数函数 【高考要求】 1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化为自然对数或常用对数,了解对数在简化运算中的作用. 2.理解对数函数的概念,理解对数函数的单调性与函数图象通过的特殊点,知道指数函数y =a x 与对数函数y =log a x 互为反函数(a>0,a ≠1),体会对数函数是一类重要的函数模型. 【知识梳理】 1.对数的概念 (1)对数的定义 如果a x =N (a >0且a ≠1),那么数x 叫做以a 为底N 的对数,记作___ x =log a N ___,其中__ a __叫做对数的底数,__ N __叫做真数.真数N 为正数(负数和零无对数). 说明:①实质上,上述对数表达式,不过是指数函数x a y =的另一种表达形式,例如:8134=与 81log 43= 这两个式子表达是同一关系,因此,有关系式.log N x N a a x =?= ②“log ”同“+”“×” “ ”等符号一样,表示一种运算,即已知一个数和它的幂求指数的运算,这 种运算叫对数运算,不过对数运算的符号写在数的前面。 ③对数的底数和真数 从对数的实质看:如果a b =N (a >0且a ≠1),那么b 叫做以a 为底N 的对数,即b =log a N .它是知道底数和幂求指数的过程.底数a 从定义中已知其大于0且不等于1;N 在对数式中叫真数,在指数式中,它就是幂,所以它自然应该是大于0的. (2)几种常见对数 2.对数的性质与运算法则 (1).对数基本性质:log 10a =,log 1a a =,log a N a N =---对数恒等式 (2).对数运算性质:若0,1,0,0a a M N >≠>>且,则: ①log ()log log a a a MN M N =+ ②log log log a a a M M N N =- ③log log ()n a a M n M n R =∈ (3).换底公式:log log (0,1;0,1;0)log c a c b b a a c c b a = >≠>≠> 推论:①log log (,,0)m n a a n M M m n R m m = ∈≠ ②1log log a b b a = 点评:(1)要熟练掌握公式的运用和逆用。 (2)在使用公式的过程中,要注意公式成立的条件。 例如:真数为两负数的积,).5(log ).3(log 22--不能写成).5(log ).3(log 22--=).5(log )3(log 22-+-

高一数学-苏教版全套

高一数学-苏教版(全套) 一 任意角的三角函数 教学目标:(1)理解任意角的概念、弧度的意义, 能正确地进行弧度与角度的换算. (2)掌握任意角的正弦、余弦、正切的意义,并会利用单位圆中的三角 函数线表示正弦、余弦和正切. (3)了解任意角的余切、正割、余割的定义. (4)掌握同角三角函数的基本关系式: 1cot tan ,tan cos sin ,1cos sin 22===+αααα α αα (5)掌握正弦、余弦的诱导公式. 教学重点:正弦、余弦、正切的意义, 同角三角函数的基本关系式. 教学难点:任意角的概念, 诱导公式. 课时分配:约12课时. 第一课时 角的概念的推广(1) 一.引入:(1)课本第三页引例; (2)自行车轮的转动等实例. 二.新课:(一)概念:正角、负角、零角;第?象限的角;终边相同的角. (二)符号:φ?θγβα,,,,,等. (三)关于集合: S={ββ|=α+k ×360o,k ∈Z } 第二课时 角的概念的推广(2) 一. 复习、作业讲评.

二. 新课:(一)课本第6页例3:写出与下列各角终边相同的角的集合S,并把S 中 适合不等式 -360o≤β<720o的元素β写出来: (1)60o (2)-21o (3)363o14ˊ (二)习题4.1 .5(1)已知α是锐角,那么2α是 ( ) (A)第一象限角. (B)第二象限角. (C)小于180o的角. (D)不大于直角的角. 第三课时 弧度制(1) 一. 新课:(一)概念:角度制, 1弧度的角,弧度制. (二)公式:r l =α (三)换算:1.把角度换成弧度. 360o=2πrad180o=πrad1o=rad rad 001745.0180 ≈π 2. 把弧度换成角度. 2πrad=360oπrad = 180o 1rad=815730.57180'=≈?? ? ?? π (四)例题:例1. 把67o18′化成弧度 例2. 把rad π5 3 化成度

人教版高一数学对数函数教案

有关高一数学对数函数的概念以及一些常见的解题方法和延伸,基本的知识点及简单的例题,希望对高中生们有帮助。 1对数的概念 如果a(a>0,且a≠1)的b次幂等于N,即ab=N,那么数b叫做以a为底N的对数,记作:logaN=b,其中a叫做对数的底数,N叫做真数. 由定义知: ①负数和零没有对数; ②a>0且a≠1,N>0; ③loga1=0,logaa=1,alogaN=N,logaab=b. 特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN. 2对数式与指数式的互化 式子名称abN指数式ab=N(底数)(指数)(幂值)对数式logaN=b(底数)(对数)(真数) 3对数的运算性质 如果a>0,a≠1,M>0,N>0,那么 (1)loga(MN)=logaM+logaN. (2)logaM/N=logaM-logaN. (3)logaM^n=nlogaM (n∈R). 问:①公式中为什么要加条件a>0,a≠1,M>0,N>0? ②logaan=? (n∈R) ③对数式与指数式的比较.(学生填表) 式子ab=NlogaN=b名称a—幂的底数 b— N—a—对数的底数 b— N—运 算 性 质am·an=am+n am÷an= (am)n= (a>0且a≠1,n∈R)logaMN=logaM+logaN logaMN= logaMn=(n∈R) (a>0,a≠1,M>0,N>0) 难点疑点突破 对数定义中,为什么要规定a>0,,且a≠1? 理由如下:

①若a<0,则N的某些值不存在,例如log- ②若a=0,则N≠0时b不存在;N=0时b不惟一,可以为任何正数 ③若a=1时,则N≠1时b不存在;N=1时b也不惟一,可以为任何正数 为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数 解题方法技巧 1 (1)将下列指数式写成对数式: ①54=625;②2-6=164;③3x=27;④ (2)将下列对数式写成指数式: ①log1216=-4;②log2128=7; ③log327=x;④lg0.01=-2; ⑤ln10=2.303;⑥lgπ=k. 解析由对数定义:aN=b. 解答(1)①log5625=4.②log2164=-6. ③log327=x.④log135.73=m. 解题方法 指数式与对数式的互化,必须并且只需紧紧抓住对数的定义:①12-4=16. ②27=128.③3x=27. ④10-2=0.01.⑤e2.303=10.⑥10k=π. 2 根据下列条件分别求x的值: (1)log8x=-23;(2)log2(log5x)=0; (3)logx27=31+log32;(4)logx(2+3)=-1. 解析(1)对数式化指数式,得:x=8-23=? (2)log5x=20=1. x=? (3)31+log32=3×3log32=?27=x? (4)2+3=x-1=1x. x=? 解答(1)x=8-23=(23)-23=2-2=14. (2)log5x=20=1,x=51=5. (3)logx27=3×3log32=3×2=6, ∴x6=27=33=(3)6,故x=3. (4)2+3=x-1=1x,∴x=12+3=2-3. 解题技巧 ①转化的思想是一个重要的数学思想,对数式与指数式有着密切的关系,在解决有关问题时,经常进行着两种形式的相互转化. ②熟练应用公式:loga1=0,logaa=1,alogaM=M,logaan=n.3 已知logax=4,logay=5,求A=〔x·3x-1y2〕12的值. 解析思路一,已知对数式的值,要求指数式的值,可将对数式转化为指数式,再利用指数式的运算求值;

相关文档
最新文档