地震反演的类型
反演常用方法

地球物理反演就是利用观测数据恢复地下地质结构和岩石性质的方法,狭义地说,反演就是从有限频带宽度的地震数据中恢复出宽带波阻抗。
地震反演从方法上大致可分为基于波动理论的波动方程反演和基于褶积模型的反演两大类。
以波动方程为基础的地震反演由于算法结构复杂,对地震噪音敏感等因素,要得到一个稳定的解是比较困难的,因此,这类方法还未得到广泛的实际应用。
以褶积模型为基础的地震反演,由于算法简单,对地震噪音敏感性小,一般情况下都能得到一个稳定的解,在生产中得到了广泛地应用。
稀疏脉冲法包括最大似然反褶积、L1范数反褶积、最小熵反褶积、最大熵反褶积、同态反褶积等,稀疏脉冲反演是基于脉冲反褶积基础上的递推反演方法,其基本假设是地层的强反射系数是稀疏分布的。
从地震道中根据稀疏的原则提取反射系数,与子波褶积后生成合成地震记录;利用合成地震记录与原始地震道残差的大小修改参与褶积的反射系数个数,再作合成地震记录;如此迭代,最终得到一个能最佳逼近原始地震道的反射系数序列。
该方法适用于井数较少的地区,其主要优点是能够获得宽频带的反射系数,较好地解决地震反演的多解性问题,从而使反演结果更趋于真实。
约束稀疏脉冲反演采用一个快速的趋势约束脉冲反演算法,用解释层位和井约束控制波阻抗的趋势和幅值范围,脉冲算法产生了宽带结果,恢复了缺失的低频和高频成分;同时,再加入根据井的波阻抗的趋势约束。
约束稀疏脉冲反演最小误差函数是J=∑(ri)p+λq∑(di-si)q++α2∑(ti-Zi)2(1)式中:ri为样点的反射系数;zi为样点的波阻抗;di是原始地震道;si 是合成地震道;Zi介于井约束的最大和最小波阻抗之间;ti是用户提供的波阻抗趋势;α为趋势最小匹配加权因子;p,q为L模因子;i是地震道样点序号;λ为数据不匹配加权因子。
如果从最大似然反褶积中求反射系数r(t),则在上述过程中为了得到可靠的反射系数估计值,可以单独输入波阻抗信息作为约束条件,从而求得最合理的波阻抗模型Z(t)=Z(t-1)(1+r(t))/(1-r(t))(2)稀疏脉冲法假设反射系数是稀疏的、离散的,利用测井资料可以得到井旁道的准确反射系数,通过上述反褶积方法,在测井资料、地质模型的约束下,逐道递推子波、反射系数,从而反演出波阻抗、速度等数据。
地震资料反演

地震资料反演其实反演,确切的应该叫做“反演预测”。
很多人忽略了这个“预测”的真正含义。
利用已知少数井点,通过地震资料,提取与钻井揭示的地质特征相对最吻合的信息,来对大片无井空白区的属性做预测,最终反应的是对地质特征的一个预测。
既然是一门技术,就有它的可适用性和不可靠性。
这就需要反演人员有软件操作的技术,更重要的是要有足够的地质思维!!!如果没有后者,那就需要地质人员来指导!不同的反演人员,即使针对相同的资料,反演出来的结果也不完全一样。
换句话说,往往是按照熟悉区块地质特征的地质人员的要求来做出反演预测。
不然反演的不确定性就会被放大。
真正的地质人员,是不会否定地震反演。
概括一下,只不过有两点:1、反演一般是在没有足够的井资料控制整个区块的时候采用(那非均质性强的地方呢?)。
2、反演结果的好坏,需要操作人员的技术,更需要地质人员的把握。
我没有搞过反演,但见过一些反演的结果:有2点感性认识:第一点:井越多(测录井数据越全面),反演结果越准确。
在井控制范围内,预测精度高,井控制范围以外,随着距离的增大,精度降低。
第二点:反演人员的地质概念和经验,对反演结果有很大的影像。
相同的数据与流程,不同人员作出来的差别还是很大,而且都是在加载了相同解释成果的前提下。
反演分为三种,一种是基本是没有井资料,通常在勘探前期,第二种是有少量井资料,在勘探开发中期,第三种就是井资料很丰富,通常已经是开发中后期。
随着井资料的丰富反演结果肯定越来越好啊,如果没有或者很少井,就只能通过插值或者数值模拟的方法搞出来伪井资料,这个往往误差很大反演结果的好坏,地震资料的质量非常重要,反演结果的分辨率要高于地震资料的分辨率,因为加入了测井资料的高纵向分辨率。
反演预测的物性分布只是一个定性的描述,效果特别好也只是个半定量的描述。
反演的解具有高度不唯一性,需要测井来约束,道理上是井越多越好,但是井多了,约束的方法就比较复杂,能否约束好,是个关键问题。
正、反演(文字部分)

一、地震正演模型的基本概念
正演模型 (模拟) 反演模型 (反演) 地震响应 反演计算 地质模型
输入 地质模型
处理 模型计算
输出 地震响应
正演模型基本概念:利用计算机数值模拟方法来 获得已知 地质体的地震响应特征。从而指导地 震资料的构造与岩性解释。
2、地震数学模型
按一定的假设条件设计一个地下地质体模 型(包括地质体的几何形态和物性参数), 用计算机计算按一定的方式进行观测时由这 个地质体产生的地震相应。
主要优点:改变模型参数方便,选用计算方法
灵活,模型制作简单。 主要缺点:对实际地质体进行了简化,难以精
确地反映复杂地质体真实的情况。
3、地震数学模型的主要模拟方法
1 ri i 1i 1 ii 1 ri
反演—合成声波测井
用Gardner公式从波阻抗中分离 出速度和密度。
地震记录的形成和反演原理
地震反演的基本原理
地震正演:
s(t)=b(t)*r(t)+n(t)
其中,s(t)—地震记录
b(t)—地震子波 r(t)—反射系数, n(t)—噪声 地震反演:r(t) = s(t) * a(t), a(t)—反子波 频率域:A(f).B(f)=1 B(f) 、 A(f) 分别为地震子波与反子波的频谱
地震正演模型分类
按对地质体变化的假设方式和观测方式分类 一维地震模型 二维地震模型
三维地震模型
• 1. 地震物理模型
•
用一定的材料,按一定的比例,制造出与 实际地质构造在形态、结构和物性等主要特征 相当的物理模型,并在实验室里对该物理模型 按一定的模拟相似比进行模拟地震记录,用以 研究地震勘探的野外采集方法技术,地震资料 处理和解释的理论与实际问题的研究。
地震反演

第一章反演理论第一节基本概念一.反演和正演1.反演反演是一个很广的概念,根据地震波场、地球自由振荡、交变电磁场、重力场以及热学等地球物理观测数据去推测地球内部的结构形态及物质成分,来定量计算各种有关的物理参数,这些都可以归结为反演问题。
在地震勘探中,反演的一个重要应用就是由地震记录得到波阻抗。
有反演,还有正演。
要正确理解反演问题,还要知道正演的概念。
2.正演正演和反演相反,它是对一个假设的地质模型,给定某些参数(如速度、层数、厚度)用理论关系式(数学模型)推导出某种可测量的量(如地震波)。
在地震勘探中,正演的一个重要应用就是制作合成地震记录。
3.例子考虑地球内部的温度分布,假定地球内部的温度随深度线性增加,其关系式可表示成:T(z)=a+bz正演:给定a和b,求不同深度z的对应温度T(z)反演:已经在不同点z测得T(z),求a和b。
二.反演问题描述和公式表达的几个重要问题1.应用哪种参数化方式——离散的还是连续的?2.地球物理数据的性质是什么?观测中的误差是什么?3.问题能不能作为数学问题提出,如果能够,它是不是适定的?4.对问题有无物理约束?5.能获得什么类型的解,达到什么精度?要求得到近似解、解的范围、还是精确解?6.问题是线性的还是非线性的?7.问题是欠定的、超定的、还是适定的?8.什么是问题的最好解法?9.解的置信界限是什么?能否用其它方法来评价?第二节反演的数学基础一.解超定线性反问题1.简单线性回归可利用最小平方法确定参数a 、b 使误差的平方和最小。
⎪⎪⎩⎪⎪⎨⎧∑-∑∑∑-∑=-=∑∑-=22)()(x x n y x xy n b x b y n x b y a (1-2-1) 拟合公式为:bx a y+=ˆ (1-2-2) 该方法的公式原来只适用于解超定问题,但同样适用于欠定问题,当我们有多个参数时,称为多元回归,在地球物理领域广泛采用这种方法。
此过程用矩阵形式表示,则称为广义最小平方法矩阵方演。
地球物理反演方法的分析与评价

地球物理反演方法的分析与评价地球物理反演是通过测量地球物理场并运用数学模型来推断地下结构的一种技术。
为了获得准确的地下信息,科学家们不断改进和发展不同的反演方法。
本文将对几种常见的地球物理反演方法进行分析与评价。
1. 介电常数反演方法介电常数反演方法是一种通过测量电磁场数据来推断地下介电常数分布的方法。
该方法适用于地质勘探、环境监测等领域。
通过分析电磁场数据的变化,可以推断地下的介电常数分布情况,进而了解地下的岩石性质和地形特征。
这种方法具有较高的分辨率和准确性。
2. 地震波反演方法地震波反演方法是一种通过测量地震波数据来推断地下介质的方法。
地震波波形在不同介质中传播的速度和路径都有所不同,通过分析地震波数据的变化,可以推断地下的物理性质和结构。
地震波反演方法适用于地震勘探、地震灾害预测等领域。
这种方法可以提供较准确的地下结构和地质信息。
3. 重力反演方法重力反演方法是一种通过测量地球重力场数据来推断地下密度分布的方法。
地下的密度分布会对地球重力场产生影响,通过分析重力场数据的变化,可以推断地下的密度分布情况。
重力反演方法适用于矿产勘探、地下水资源调查等领域。
这种方法具有较高的分辨率和准确性。
4. 电磁法反演方法电磁法反演方法是一种通过测量地下电磁场数据来推断地下电导率分布的方法。
地下的电导率分布与地下的水分、岩石性质等因素有关,通过分析电磁场数据的变化,可以推断地下的电导率分布情况。
电磁法反演方法适用于水资源调查、矿产勘探等领域。
这种方法可以提供较准确的地下电导率信息。
5. 时间域反演方法时间域反演方法是一种通过测量地球物理场数据的时间变化来推断地下结构的方法。
该方法适用于地壳运动监测、地震预测等领域。
通过分析地球物理场数据的时间变化,可以推断地下的结构和变化情况。
时间域反演方法具有较高的分辨率和准确性。
综上所述,地球物理反演方法是研究地下结构和物性的重要手段,不同的反演方法适用于不同的领域和问题。
地震反演

地震反演姓名:李雪松班级:油气田s101 学号:201071059一、地震反演的基本定义通俗的讲就是由地震为基础加上其他条件为约束推测出地层岩性构造的过程叫地震反演。
把常规的界面型反射剖面转换成岩层型的测井剖面,将地震资料变成可与测井资料直接对比的形式,实现这种转换的处理过程叫地震反演。
地震反演:地震反演是利用地表观测地震资料,以已知地质规律和钻井、测井资料为约束,对地下岩层空间结构和物理性质进行成像(求解)的过程,广义的地震反演包含了地震处理解释的整个内容。
地震多解性和粗略性地震反演多解性是指同一地震资料可对应用不同的岩层结构,粗略性是指推断的参数少,分辨率低,前者可能导致地下模型的错误,后者影响模型的精度。
理论基础:鲁宾逊褶积模型基础。
其实现过程是:(1)子波提取;(2)逐道修改波阻抗模型道,与子波褶积合成地震记录,使之与相对应地震记录相似度最大化(相关系数最大或绝对误差最小),逐道外推,直到完成全剖面的波阻抗反演。
叠偏地震记录X(t)可表示为:X(t)=K(t)*W(t) (1)式中W(t)为地震子波,K(t)为反射系数。
从井出发优化波阻抗模型,并正演合成地震记录,使之与相对应地震道相关度最大化,形成反演成果道,选择反演成果道中相关系数达到标准的阻抗模型,以此为基础点建立下一道的初始波阻抗模型,并进行上述优化,直至完成全剖面的反演。
技术特点:1.采用逐道相关外推建立(优选)初始阻抗模型。
2.反演成果纵向分辨薄层的能力较强。
前提条件:要有地震偏移资料,构造沉积解释层位,标准化后的声波和密度测井曲线,如有其它相关资料更好。
优点:逐道外推波阻反演对井的依赖较小,单井时通常也有较高的精度,整体建模反演,适应于岩性剧烈变化的地带,井多时反演精度较高。
缺点:逐道外推波阻抗反演在地震资料较差,岩性剧烈变化地带适应性较差,要调整参数进行试验。
整体建模波阻抗反演井少时反演精度不够高。
求取的孔隙度、渗透率和饱和度参数,可信度相对较低。
地震反演方法概述

地震反演方法概述地震反演:由地震信息得到地质信息的过程;地震反射波法勘探的基础在于:地下不同地层存在波阻抗差异,当地震波传播有波阻抗差异的地层分界面时,会发生反射从而形成地震反射波。
地震反射波等于反射系数与地震子波的褶积,而某界面的法向入射反射系数就等于该界面上下介质的波阻抗差与波阻抗和之比。
也就是说,如果已知地下地层的波阻抗分布,我们可以得到地震反射波的分布,即地震反射剖面。
即由地层波阻抗剖面得到地震反射波剖面的过程称为地震波阻抗正演,反之,由地震反射剖面得到地层波阻抗剖面的过程称为地震波阻抗反演。
叠前反演主要是指AVO反演,通过AVO反演,可以获得全部的岩石参数,如:岩石密度、纵横波速度、纵横波阻抗、泊松比等。
叠前反演与叠后反演的根本区别在于叠前反演使用了未经叠加的地震资料。
多道叠加虽然能够改善资料的品质,提高信噪比,但是另一方面,叠加技术是以动校正后的地震反射振幅、波形等特征不随炮检距变化的假设为基础的。
实际上,来自同一反射点的地震反射振幅在不同炮检距上是不同的,并且反射波形也随炮检距的变化而发生变化。
这种地震反射振幅、波形特征随炮检距的变化关系很复杂,主要原因就在于不同炮检距的地震波经过的地层结构、弹性性质、岩性组合等许多方面都是不同的。
叠加破坏了真实的振幅关系,同时损失了横波信息。
叠前反演通过叠前地震信息随炮检距的变化特征,来揭示岩性和油气的关系。
叠前反演的理论基础是地震波的反射和透射理论。
理论上讲,利用反射振幅随入射角的变化规律可以实现全部岩性参数的反演,提取纵波速度、横波速度、纵横波速度比、岩石密度、泊松比、体积模量、剪切模量等参数。
叠后地震剖面相当于零炮检距的自激自收记录。
与叠前反演不同,叠后反演只能得到纵波阻抗。
虽然叠后反演与叠前反演相比有很多不足之处,但由于其技术方法成熟完备,到目前为止,叠后反演仍然是主流的反演类型,是储层预测的核心技术。
介绍几种叠后反演方法:1)道积分:利用叠后地震资料计算地层相对波阻抗(速度)的直接反演方法。
地震波形指示反演方法、原理及其应用

地震波形指示反演方法、原理及其应用1. 地震波形指示反演方法是一种通过分析地震波形数据来推断地下介质结构和地震源机制的方法。
2. 地震波形指示反演方法的基本原理是利用地震波在地下传播时受到地下介质的变化而产生的波形变化。
3. 地震波形指示反演方法可以应用于地震勘探、地震监测和地震灾害评估等领域。
4. 波形反演方法通常基于正演模拟,将地震波场的观测数据与最优化的模拟波形进行比较,以获得地下结构的信息。
5. 传统的波形反演方法包括偏移反演、全波形反演和散射波波形反演等。
6. 偏移反演是一种通过将地震道数据与合适的速度域反射系数进行相关计算,以获得地下结构的方法。
7. 全波形反演是一种基于非线性优化算法的波形反演方法,它利用射线追踪和波数积分模拟地震波传播,通过反复迭代优化得到地下模型。
8. 散射波波形反演是一种通过分析地震波的散射模式来反演地下结构的方法,它适用于复杂介质和多尺度问题。
9. 波形反演方法需要准确的初始模型,反演算法的收敛性和速度都与初始模型有关。
10. 噪声对波形反演方法有较大的影响,需要进行信噪比的优化和噪声去除处理。
11. 波形反演方法通常需要大量的计算资源和时间,对于大规模三维反演问题往往需要高性能计算平台的支持。
12. 地震波形指示反演方法也可以应用于地下水资源勘探、地质灾害研究等领域。
13. 地震波形指示反演方法广泛应用于石油勘探和地震勘探领域,对于油气勘探、勘探目标确定和优化井位选择等方面具有重要意义。
14. 波形反演方法也可以应用于地震监测和预测,通过监测地震波形的变化,提前判断地震活动性和地震风险。
15. 波形反演方法在地震灾害评估方面也有重要应用,可以通过分析地震波形数据来确定地震烈度和地震震源参数。
16. 波形反演方法还可以用于地下岩体稳定性评估、地下水动力响应分析等工程应用。
17. 通过结合不同类型的波形数据,如P波、S波和面波,可以获得更全面的地下结构信息。
18. 地震波形指示反演方法的精度和可靠性受到地震源机制、速度模型和反演算法的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地震反演的类型
1.1 反演的分类
1)从所利用的地震资料来分可分两类:叠前反演和叠后反演;
2)从测井资料在其中所起作用大小可分为四类:地震直接反演,测井控制下的地震反演,测井—地震联合反演和地震控制下的测井内插外推;
3)从实现方法上可分三类:直接反演、基于模型反演和地震属性反演。
4)从反演模型参数来分主要有:储层特性(如:孔隙度、渗透率、饱和度等)反演、岩石物性反演、地质结构反演、各向异性参数反演、阻抗反演以及速度反演等;
5)从使用的数学方法可分为:最优化拟合反演、遗传算法反演、蒙特卡罗反演、Born近似反演、统计随机反演以及基于神经网络的反演等。
1.2几种主要反演方法的概述
叠前反演尚处于研究试验阶段,而叠后地震反演近年来快速发展,形成了多种技术。
下面简要介绍几种主要反演方法:直接反演(递推反演和道积分反演)、基于模型反演、地震属性反演、测井约束反演和叠前AVO反演。
1.2.1直接反演
两种基本做法:递推反演和道积分反演。
1)递推反演:递推反演是一种基于反射系数递推计算地层波阻抗的直接地震反演方法。
它完全依赖于地震资料本身的品质,地震资料噪音对反演结果敏感,影响大,地震带宽窄会导致分辨率相对较低,难以满足储层描述的要求。
典型的有Seislog,Glog,稀疏脉冲反演(实现方法又有MED,AR,MLD,BED方法等)等;Seislog,CLOG等使用测井信息后,只获得剖面上关键点的低频分量,整个剖面上的低频信息要靠内插来求得。
优点:计算简单,递推列累计误差小。
其结果直接反映岩层的速度变化,可以以岩层为单元进行地质解释。
缺点:由于受地震固有频率的限制,分辨率低,无法适应薄层解释的需要;其次,无法求得地层的绝对波阻抗和绝对速度,不能用于定量计算储层参数。
这种方法在处理过程中不能用地质或测井资料对其进行约束控制,因而其结果比较粗略。
2)道积分反演:是以反褶积为基础的地震直接反演法。
道积分是利用叠后地震资料计算相对波阻抗的直接反演方法,它无需测井资料控制,计算简单,其结果直接反映了岩层的速度变化,但受地震资料固有频宽的限制,分辨率低,无法适应薄层解释的需要,无法求得地层的绝对波阻抗和绝对速度,不能用于定量计算储层参数。
优点:能比较完整地保留地震反射的基本特征(断层、产状),不存在基于模型方法的多解性问题,能够明显地反映岩相、岩性的空间变化,在岩性相对稳定的条件下,能较好地反映储层的物性变化。
缺点:由于受地震频带宽度的限制,递推反演资料的分辨率相对较低,不能满足薄储层的研究需要。
1.2.2基于模型的反演
1)基于模型的反演:就是从地质模型出发,采用模型优选迭代扰动算法(广义线性或非线性最优化算法),通过不断修改更新模型,使模型正演合成地震资料与实际地震数据最佳吻合,最终的模型数据便是反演结果。
实现方法有广义线性反演(GLI)(Cooke,1983);宽带约束反演(BCI)(Martinez,1988);地震岩性模拟(SLIM)(Ge lfand,1984);具有全局优化特点的遗传算法、模拟退火法(Smith等1992:Sen和Stoffa,1995);蒙特卡罗搜索法(Cary和Chapman,19 98)以及人工神经网络法(Ca lderron-Macias 等,1998)等。
目前,以模型为基础的反演方法一般都是依据测井及地质资料建立初始模型,通过广义线性反
演方法(GLI)进行迭代求取岩性参数(Cooke,1983;Brac,1988)。
由于该问题的非线性,所以除了要求较精确的子波外,还要求初始模型接近真实模型,才能达到可靠的结果,即反演结果强烈依赖于初始模型的选择。
全局最优化算法如遗传算法(GA)和模拟退火算法(SA),克服了广义线性反演方法(GLI)依赖初始模型选择的缺陷,可以得到全局最优的反演结果。
地震波阻反演本身属于多参数的非线性最优化问题。
2)测井约束反演是一种基于模型的反演。
其基本思想是:测井资料有很高的垂向分辨率,但只是点上的一孔之见;地震勘探的分辨率虽不高,却具有线上和面上的详细资料,将两者结合起来,取长补短。
在垂向上充分利用井的高分辨率信息,在横向上充分利用地震资料的可对比性作为控制,建立起较为可靠的、分辨率较高的初始地质模型;对初始模型进行正演,计算出合成地震剖面,再与实际地震剖面相比较求模型修改参数(摄动量)反复修改更新初始模型,使合成地震剖面与实际地震剖面在最小平方意义下最为接近,最终得出高分辨率的波阻抗反演剖面。
1.2.3地震属性反演
属性反演是一个将地震特征转化为储层特征的过程。
借助于岩石物理、正演模拟和井资料约束等手段。
其中,岩石物理研究可提供储层物性与地震属性之间的关系,正演模拟(包括物理模拟和数值模拟)可揭示地震对不同构造、不同岩性的响应特征,测井数据及油藏工程数据则可用来约束反演过程和佐证反演结果。
在对一个具体储层进行描述时,首先要根据先验信息建立地质模型,然后通过多种属性反演不断修改这个模型,直到逼近储层的实际情况为止。
在属性变换中是把地震反演的波阻抗和地震数据中提取的各种属性数据结合起来,进行某种数学变换,进而建立与储层参数之间的某种关系。
实际上它是一种多变量的线性回归过程. 1.2.4 AVO反演
叠前反演主要是AVO反演。
它是一项直接利用地震反射振幅与炮间距的关系来寻找油气的一项地震反演技术。
根据AVO效应,可以对岩石骨架性质和孔隙流体性质做出判断,还有助于研究地下介质的各向异性,特别是识别裂隙的发育方向和裂隙性油气藏等。
国内外不乏AVO技术预测油气成功的例子(尤其是在墨西哥湾),但也有相当数量失败的例子。
其主要的问题是出在影响反射振幅的各种因素的校正、正演模型研究及综合分析上。
叠前高保真的目标处理及正演模型分析是AVO及叠后反演的基础和保证。
经过近十年的分析总结,人们充分认识到,AVO只是地震反演属性的一种,它需要综合测井、地质和其它属性进行综合分析,才能提高可信度及精度。
从近几年的技术发展情况看,对AVO的研究重点除了放在精确校正各种影响振幅的因素和加强综合分析外,一个值得注意的趋势就是P波方位AVO和多波方位AVO的研究与应用。
随着三维地震技术的深入发展和人们对三维体解释的概念增强,P波方位AVO已作为一种预测油气藏各向异性的有效方法而受到青睐。
另一方而,随着海上地震采集技术(4D*4)的突破,多年来用多分量地震资料研究地层各向异性的理想将在海上成为现实。