电镀废水种类及处理
电镀废水除重金属处理方案

1电镀废水处理现状电镀产品应用范围广泛,是我国社会经济发展中必不可少的部分,然而,电镀废水处理同时也是世界三大难处理污染。
电镀企业在生产与运营中会制产生大量的电镀废水需要处理,由于产品的多样性,以及性能要求的差异,电镀废水水质非常复杂,通常是由各种重金属离子混合而成,电镀生产过程中产生的废水普遍具有以下特点:(1)污染物种类繁多:在电镀生产过程中,根据镀件的使用功能不同,按照《电镀行业污染物排放标准》(GB21900-2008)的要求,废水中含有石油类、表面活性剂、氨氮、磷、各种重金属及氰化物等多种污染因子。
(2)污染物浓度大:由于生产过程中,电镀槽液需要定期更换排放,以及不同形状的镀件会将槽液带出,废水中各种污染因子浓度较高,含盐量普遍在1%左右,如不进行处理,会对周边环境造成很大影响,生态环境急剧恶化。
(3)水质波动大:由于生产的复杂性及镀件需求的变化,废水中的污染因子种类及浓度变化较大。
(4)传统处理工艺复杂:面对各种污染因子,多种重金属混合,传统工艺需要按照污染物不同性质进行单独收集,再进行分类处置。
系统至少需要设置多达7~9种预处理系统,再进行综合处理。
针对有机物污染,如石油类氨氮、总氮及总磷等,只能采取生物法处理,工艺复杂,运行管理难度较大。
2 电镀废水处理工艺电镀废水中含大量的重金属离子,目前常用的处理方法主要有化学沉淀法、吸附法、膜分离法、电解法、铁氧体法、萃取法等。
表2-1 电镀废水处理工艺优缺点对比表废水处理工艺优点缺点化学沉淀法①目前国内外应用最广泛的方法,工艺简单,能同时去除多种废水中的金属离子;②设备投资少、石灰等碱性消耗物料价格较便宜,运行费用相对不高。
①产生大量重金属废渣,不能直接倾倒或填埋,还需要进行再次处理;②中和法出水金属离子浓度依然较高,达不到排放标准;③不能回收废水中的金属并消耗大量碱,不利于企业的资源化生产。
吸附法①深度去除废水中的金属离子,镍、铬等离子浓度可控制在0.1mg/L以下;②可回收废水中的金属离子,实现废水的资源化利用,降低企业的生产成本;③纳米吸附材料,吸附容量大,吸附材料可再生使用,使用寿命长;④可实现模块组件形式,能根据生产能力灵活调节,占地节省、结构紧凑;⑤自动化程度高,工艺流程短,操作简单,能耗低。
关于电镀、线路板的废水处理及回用2011-5-24

电镀、印刷电路板废水的处理及回用一、概述一直以来,造纸、印染、电镀、印刷电路板行业都是珠三角工业废水的排污大户,其排放的废水都具有水量大,有毒有害,难处理的特点。
在东莞市,造纸、电镀、印刷电路板行业废水的占全市的78%。
为了减少工业废水的排放量,改善水环境,今后这些大行业中的企业都将被纳入工业废水回用范畴。
被纳入工业废水回用范畴的企业可通过内部的废水处理设施,在对工业废水进行处理后,一部分达标排放,另一部分则在工厂内重复利用。
工业废水回用不仅可为企业提供一个非常经济的新水源,节省了水费,减少了远距离引水而产生的工程投资,还可以进一步减少控制水体污染的环保费用。
二、线路板、电镀废水性质线路板废水是线路板生产过程中产生的废水,线路板行业废水、废液中含有的污染物有:重金属类及其络合物(如Cu2+、Pb2+、Ni2+、Sn2+和络合物)、无机类(PO43-、F-、SS、pH)和有机类(油墨、COD 等),有的线路板厂家废水中还含有Cr6+或CN-。
电镀是利用电化学的方法对金属和非金属表面进行装饰、防护及获取某些新性能的一种工艺过程。
电镀废水除CN-和酸碱外,根据镀种不同,一般含有铬(Cr)、镍(Ni)、镉(Cd)、铜(Cu)、锌(Zn)、金(Au)、银(Ag)等重金属。
总的来说,线路板及电镀废水,成分复杂,重金属含量高,处理难度高,若要做废水回用,则必须进行严格的处理后才能满足回用要求。
在废水处理技术应用上,对于电镀及线路板废水已具有了比较成熟的处理工艺,针对废水组分不同,一般先分流预处理后,再集中在集水池进行下一道处理工序,也有个别种类废水则是独立处理,回收其贵金属成分。
三、线路板、电镀废水处理技术对于线路板、电镀废水,污染严重或难以处理的一般有含氰废水、含铬废水、含铜废水、络合废水、油墨废水。
1、含氰废水目前处理含氰废水比较成熟的技术是采用碱性氯化法处理,必须注意含氰废水要与其它废水严格分流,避免混入镍、铁等金属离子,否则处理困难增加。
电镀废水处理方法

电镀废水处理方法摘要:一、电镀废水概述二、电镀废水处理方法1.物理方法2.化学方法3.生物方法三、各类处理方法的优缺点四、电镀废水处理发展趋势五、结论正文:电镀废水处理方法一、电镀废水概述电镀废水是指在电镀过程中产生的含有有毒有害物质的废水。
这类废水具有较高的化学需氧量、重金属含量和有机物含量,对环境和人体健康造成严重威胁。
因此,对电镀废水进行有效处理显得尤为重要。
二、电镀废水处理方法1.物理方法物理方法主要通过吸附、沉淀、膜分离等手段对电镀废水进行处理。
其中,吸附法具有较高的去除效率,可以有效地去除废水中的重金属离子;沉淀法通过加入化学沉淀剂使重金属离子转化为沉淀物,从而实现去除;膜分离技术则通过筛选作用将废水中的污染物分离出来。
2.化学方法化学方法主要包括中和法、氧化还原法、混凝沉淀法等。
中和法适用于处理酸性和碱性废水,通过加入中和剂调节废水的pH值,使重金属离子转化为沉淀物;氧化还原法通过加入氧化剂或还原剂,将废水中的有毒有害物质转化为无害或低毒物质;混凝沉淀法通过加入混凝剂使废水中的微小颗粒聚集成大颗粒,便于后续沉淀和分离。
3.生物方法生物方法主要利用微生物的代谢活性对电镀废水中的有毒有害物质进行降解。
常用的生物方法有活性污泥法、生物膜法、生物滤池法等。
这些方法具有处理效果好、运行费用低、能有效去除有机物和重金属离子等优点。
但生物方法对废水中的有毒有害物质浓度有一定要求,不适用于高浓度废水的处理。
三、各类处理方法的优缺点1.物理方法:优点:操作简便、设备占地面积小、处理效果较好;缺点:对废水中的有毒有害物质去除不彻底,易造成二次污染。
2.化学方法:优点:处理效果较好,能有效去除废水中的有毒有害物质;缺点:运行费用较高,对环境有一定的影响。
3.生物方法:优点:处理效果好、运行费用低、能有效去除有机物和重金属离子;缺点:对废水中的有毒有害物质浓度有一定要求,不适用于高浓度废水的处理。
四、电镀废水处理发展趋势1.集成处理技术:将物理、化学和生物方法相结合,实现废水的高效处理。
电镀废水处理技术简介

电镀废水处理技术我国的工业迅速发展,电镀类企业为社会经济的进步奠定了基础,工业发展的同时,也带来了严重的废水排放问题。
1电镀废水来源1)前处理除油酸洗工序:前处理废水再电镀废水中很大比重,在前处理表面时除油会产生碱性废水(可能含有机溶剂),除锈会产生酸洗废水;2)镀件的清洗水:电镀生产线有很多清洗槽,带来了大量废水。
清洗废水的成分和镀液配方的成分基本一致,有重金属离子和添加剂以及络合剂。
3)废电镀液:电镀槽中的镀液经过长时间使用可能会出现变质,成分配比失调等现象,所以镀液也要更换和补充,就产生了高浓度废水。
成分和清洗水相似,电镀金属原料,还原剂,络合剂,光亮剂等等。
4)跑、冒、滴、漏的各种槽液和排水:由于电镀槽渗漏或是操作不当导致的污染。
5)设备水:只经过高温,没有污染。
2电镀废水排放标准《电镀污染物排放标准》(GB21900-2008),自2013年7月1日起,新建企业执行表2规定的水污染物排放限值。
根据环境保护工作的要求,在国土开发密度已经较高、环境承载能力开始减弱,或环境容量较小、生态环境脆弱,容易发生严重环境污染问题而需要采取特别保护措施的地区,应严格控制企业的污染物排放行为,在上述地区的企业执行表3规定的水污染物特别排放限值。
部分地区会要求执行各地的地方标准。
3电镀废水分类及处理方法1)含磷废水电镀废水中含磷物质有:磷酸、磷酸盐、次亚磷酸盐、亚磷酸、焦磷酸盐、植酸等,正磷酸盐比较容易除去,非正磷酸盐和有机磷酸盐则较难除去。
一般采取分类处理的方法,将含有正磷酸盐的废水分到前处理废水,非正磷酸盐的废水分到络合废水(含络合物的废水)。
次磷酸根不能和金属离子形成难溶性沉淀,传统方法是使用芬顿法氧化或是双氧水强氧化成正价态的磷,再进行化学沉淀。
现在有公司针对次亚磷酸盐针对性地开发了次亚磷去除剂,能够通过均相共沉淀技术,与水中的次亚磷酸盐结合生成不溶性沉淀,无需转化为正磷,把总磷处理至0.5mg/L以下,目前已广泛应用在塑料电镀以及五金化学镀废水处理中。
电镀污水处理技术

电镀污水处理电镀污水的成分非常复杂,除含氰(CN-)废水和酸碱废水外,重金属废水是电镀业潜在危害性极大的废水类别。
从电镀污水处理角度来看,电镀污水大体上可分为含铬废水、含氰废水、含镍废水、含锌废水、含镉废水、含铜废水、含金银废水、含锡废水、磷化废水、酸碱废水和电镀混合废水等类型,各类废水的污染物水平见表1。
一、电镀污水的种类、污染物水平表一二、电镀污水各种处理工艺比较高级电化学电镀处理一体机处理原理:高级电化学产生四种作用:电高级氧化、电还原、电絮凝和电气浮。
1、电氧化电解中的氧化作用分为直接氧化和间接氧化。
直接氧化,即污染物直接在阳极失去电子而发生氧化,如氰化络离子在阴极被还原成CNˉ,CNˉ在阳极首先被氧化成氰酸,然后分解成氨和二氧化碳,反应如下:CNˉ+2OHˉ-2e→CNOˉ+H2O2CNOˉ+4OHˉ-6e→2CO2+N2+2H2OCNOˉ+H2O→CO2+NH3+OHˉ间接氧化,阳极电解出的氧和臭氧在电场的作用下,与水发生反应,生成双氧水,而铁极板上又能电解出亚铁离子,这两种物质产生芬顿效应,芬顿反应所产生的自由羟基具有超强的氧化性,其氧化性仅次于氟。
能把直接氧化剩下来的氰化物进一步去除,提高去除率。
2、还原反应:阴极在高级电源的作用下,使废水中的金属离子直接还原为单质金属。
反应如下:Cr6++3e→Cr3+Cu2++2e→CuZn2++2e→ZnAg++e→Ag其它重金属类同。
间接还原,阴极在高级电源的作用下,电解出氢,在高压电场的作用下,会在水中形成游离氢,游离氢是最强的还原剂。
间接还原反应可以把直接还原反应剩下来的金属离子还原成金属单质,进一步出去污染物,提高处理效益。
铁极板上电解出的亚铁离子,对六价铬也具有很好的还原作用。
3、电絮凝可溶性阳极例如铁、铝等阳极,在电源作用下,阳极失去电子后,形成金属阳离子Fe2+、Al3+,与溶液中的OHˉ成金属氢氧化物胶体絮凝剂,吸附能力极强,将废水中的污染物质吸附共沉而去除。
电镀废水处理及回用技术手册

电镀废水处理及回用技术手册O1电镀废水的组成与性质电镀废水主要由镀件清洗水、废电镀液、设备冷却水和其它废水(包括冲刷车间地面、极板的冲洗水、通风设备冷凝水和镀槽渗漏导致的槽液和排水)等组成。
废水水质复杂、成分不易控制,其中含有不同浓度的铁、铜、锌、铭、锡、铅、镉、铁和镁离子以及高浓度的酸、硫酸盐、氯离子等,这些离子严重威胁着人体健康。
另外,电镀废水中也含有很多宝贵的工业原料,可以对其进行回收处理。
02电镀废水处理方法(1)物理法物理法是一种不改变物质化学性质而达到分离电镀废水中的悬浮污染物质的方法,其中有代表性的包括蒸发浓缩法和反渗透法。
前者顾名思义,即通过蒸发使重金属浓缩。
后者是利用反渗透的原理,在含废水的部分施加较高的压力,使作为溶剂的水分子透过半透膜从而使水与重金属及其他溶质分离。
两者均是物理操作,工艺成熟简单;无需添加化学试剂,无二次污染,并能够回收利用重金属和水,一般适用于含铭、铜及镁废水。
但这两种方法因能耗大,成本高等问题不适用处理重金属含量低的废水。
因此,一般将物理法作为辅助处理手段和其他方法共同处理电镀废水。
(2)化学法1、化学沉淀法通过投加化学试剂与废水中污染物结合形成沉淀,然后通过沉降、过滤、分离、去除的一种方法。
其中主要包括硫化物沉淀法、氢氧化物沉淀法、铭酸盐沉淀法和铁氧体沉淀法。
化学沉淀法作为一种传统工艺,应用较为成熟,费用相对低廉,所以在电镀废水处理中占据较大比重。
但其具有化学品消耗过多,废渣产生量大、重金属不能直接回用、易造成二次污染等问题。
2、氧化还原法氧化还原法是一种利用氧化剂或还原剂与溶解性的污染物发生氧化还原反应,从而将污染物转化为无害物质的方法。
其中主要包括化学氧化法和化学还原法。
氧化还原法具来源广、效率高、操作简单、投资少、应用广泛等优点。
3、铁氧体法铁氧体法的原理是:在适宜的温度条件与PH条件下,加入的硫酸铁盐与电镀废水中的金属离子形成铁氧体复合氧化物,通过固液分离从而达到去除重金属离子。
电镀废水各类水进出水水质

电镀废水各类水进出水水质电镀废水是指在电镀过程中产生的含有金属离子和有机物质的废水,由于电镀过程中的化学药品和废水的复杂性,使得电镀废水的处理变得非常困难。
为了保护环境和人类健康,电镀废水需要经过处理以将其排放到环境中。
本文将详细介绍电镀废水中各类水的进出水水质。
一、酸性电镀废水酸性电镀废水的主要成分是酸性金属盐和酸性草酸,其导致的污染主要有重金属离子的污染和酸性物质的污染。
经过处理后,酸性电镀废水应满足以下要求:1.pH值:排放的酸性电镀废水的pH值应在6~9之间,以适应环境的要求。
2.重金属离子浓度:重金属离子是酸性电镀废水的主要污染物之一,其中包括铬、镍、铜等。
重金属离子的浓度应达到国家排放标准。
3.酸性物质浓度:酸性电镀废水中的酸性物质浓度也是排放标准的重要指标之一二、碱性电镀废水碱性电镀废水的主要成分是碱性金属盐和碱性有机物,其导致的污染主要有碱性物质的污染和有机物的污染。
经过处理后,碱性电镀废水应满足以下要求:1.pH值:排放的碱性电镀废水的pH值应在6~9之间,以适应环境的要求。
2.重金属离子浓度:碱性电镀废水中的重金属离子浓度应达到国家排放标准。
3.碱性物质浓度:碱性电镀废水中的碱性物质浓度也是排放标准的重要指标之一三、中性电镀废水中性电镀废水的主要成分是金属离子和有机物质,由于其中性的特点,其处理相对较为容易。
但是,中性电镀废水中仍然含有一定的重金属离子和有机物,需要经过处理后才能排放到环境中。
经过处理后,中性电镀废水应满足以下要求:1.pH值:排放的中性电镀废水的pH值应在6~9之间,以适应环境的要求。
2.重金属离子浓度:中性电镀废水中的重金属离子浓度应达到国家排放标准。
3.有机物浓度:中性电镀废水中的有机物浓度也是排放标准的重要指标之一四、综合电镀废水综合电镀废水是指包含了酸性、碱性和中性物质的电镀废水,其污染物的种类非常复杂。
综合电镀废水经过处理后,其进出水水质应满足以上几种电镀废水的要求。
电镀废水AOMBR处理工艺详解

电镀废水A2/O-M B R处理工艺详解现代电镀网讯:常见的电镀废水处理工艺通常是采用传统化学处理法对不同种类的废水进行分类处理;从而达到回收重金属且使废水达标排放的目的〔1;2;3〕..然而;随着电镀污染物排放标准发布稿GB21900—2008的发布;N、P、COD等污染物的排放标准更加严格;仅仅采用传统化学处理并不能很好地达到排放标准的要求..MBR是一种新兴的污水处理工艺;具有处理效果好;占地面积省;抗冲击负荷能力强等诸多优点..将MBR用于工业污水的处理国内外近年来研究较多;并已经有了实际应用;实践证明采用化学处理结合MBR的新工艺处理工业污水效果很好〔4;5;6〕..某电镀工业园每天产生大量电镀废水;因其电镀产品种类较多;所产生的废水水质也较复杂..设计采用化学处理结合A2/O-MBR的新工艺对园区的络合废水及前处理废水进行处理;将传统化学处理作为生化段的预处理工艺;后接A2/O-MBR工艺以强化去除COD及脱氮除磷的效果..工程建成调试完成后经过几个月的连续监测表明;经过本工艺处理后的出水水质优良;且本工艺具备较强的抗冲击负荷能力..1废水水量及水质情况1.1设计进水水量及水质本工艺处理的对象为园区内车间排放的电镀前处理废水及络合废水;项目前期对车间排放废水进行水量调查及取样分析得到前处理废水设计水量为750m3/ d;设计进水水质:pH为4~8;水中所含污染物主要为COD、氨氮和总磷;分别为6 00、20、5mg/L;络合废水设计水量为250m3/d;设计进水水质:pH为6~8;所含污染物主要为COD、总铜、总镍、总锌、氨氮和总磷;分别为300、60~120、20、20~60、200、20mg/L..1.2生化系统进水水质要求上述两类废水显然都达不到生化进水要求;必须经过各自的预处理后方能进入A2/O-MBR系统..因此设计首先采用传统工艺对废水进行分类预处理;经过预处理的生化进水所要求的水质指标如下:COD300mg/L左右;氨氮30~35mg/L;总磷3~6mg/L;SS不超过50mg/L;总铜、总镍、总锌均低于0.5mg/L..1.3设计出水水质设计出水水质以电镀污染物排放标准发布稿GB21900—2008规定的表2的排放标准为依据;具体指标如表1所示..2处理工艺2.1工艺选择MBR反应器具有处理效果好;占地面积小;抗冲击负荷能力强等优良特性;综合考虑;决定采用化学处理结合A2/O-MBR的工艺..化学处理作为A2/O-MBR工艺的预处理;主要目的是去除绝大部分重金属;降低对活性污泥的毒害..由于络合废水含有较高的氨氮;为了减轻A2/O-MBR工艺的脱氮负荷;采用吹脱的方式对废水进行处理..厌氧池的作用主要是水解酸化以提高废水的可生化性..经过预处理的废水经pH回调后送入生化处理系统..预处理过程如下:络合废水首先采用双氧水破络;然后进行加碱混凝沉淀处理;沉淀后出水进行氨氮吹脱处理..前处理水由于含有油类物质;先做混凝气浮;再进行加碱混凝沉淀..具体的处理流程如图1所示..图1A2/O-MBR工艺流程由图1可见;经预处理后的混合废水先进入pH回调池;加酸将废水的pH调节为9~9.5..经pH回调后的废水进入厌氧池;厌氧池设计较大;总的停留时间较长;在起到水解酸化作用的同时也起到了生化调节池的作用..厌氧池后接两级沉淀池;沉淀厌氧活性污泥回流;上清液进入缺氧池..缺氧池DO较低;主要完成反硝化的作用..缺氧池出水进入好氧池;好氧池末端连接MBR池..此工段主要完成硝化反应;MBR池可以截留几乎所有活性污泥;使出水水质澄清;且使得硝化细菌得以大量增殖;加强了硝化的效果..MBR池出水进入清水池后排放..MBR池硝化液回流入缺氧池;并另设回流管使部分污泥回流入厌氧池..2.2主要构筑物参数及设备选型1生化pH回调池..由于经过物化预处理后的电镀废水呈碱性;不能直接进入生化系统;因此在厌氧池前设置一个pH回调池;通过pH自动控制系统控制H2SO4加入量;使废水的pH维持在9.5~10..处理水量62.5m3/h;尺寸为2.2m×2.2m×2.5m;钢砼结构;地上2.5m..2厌氧池..厌氧池4格串联;单格尺寸为12.0m×3.85m×6m;总停留时间为2 1h..每个厌氧池均在对角线的位置设有两个潜水搅拌器;池间过流孔上下交错布置;以改善池内的水力条件;更好地起到水解酸化及水质调节的作用..钢砼结构;地上2.5m;地下3.5m..3沉淀池..尺寸为28.85m×3.5m×6m;设计停留时间11.5h;钢砼结构;地上2. 5m;地下3.5m..4缺氧池..尺寸为4.5m×17m×6m;设计停留时间8h;对角线的位置设有两个潜水搅拌器;钢砼结构;地上2.5m;地下3.5m..5好氧池..并排4格;单池尺寸为11m×2.85m×6m;曝气使DO维持在2~4mg /L;钢砼结构;地上2.5m;地下3.5m..6MBR池..4个;连接在好氧池末端;单池尺寸为8m×2.85m×3.4m;曝气使DO 维持在2~4mg/L;钢砼结构;地上2.5m;地下0.9m..7MBR膜组件..采用PVDF帘式中空膜组件;总面积为6000m2..8好氧池风机..2个;1用1备;设计风量为20m3/min..9MBR电磁阀、真空罐及自吸泵..设4个电磁阀、2个水环式真空泵及4个自吸泵;通过自控系统控制电磁阀、真空泵及自吸泵的启闭;实现每个MBR池每出水4min后停12min继续出水..自吸泵Q≥15m3/h;H≥10m;根据真空罐内的液位控制自吸泵开启数量..10硝化液回流泵..2个;1用1备..Q≥100m3/h;H≥15m..进水管由MBR池底接出;通过调节出水管阀门调节回流比;正常运行中回流比设为200%..11污泥回流泵..2个;可同时开启..Q≥10m3/h;H≥10m..12自动控制系统..1套;可设置为全自动模式及手动模式;用于控制MBR池的出水..3系统调试运行3.1系统的启动及调试本工程于2011年3月建成并开始调试;由于厌氧池调试耗时较长;整个调试过程持续近8个月..生化系统调试首先进行污泥培养;种泥来自附近一个市政污水厂..养泥过程中硝化液回流系统及曝气系统正常开启;使缺氧池和好氧池中污泥形成循环;每日监测MBR池中的MLSS、SVI、COD、氨氮、总磷等指标;于缺氧池中投加葡萄糖、尿素和磷酸二氢钾使COD、氨氮、总磷分别补充到400、20、4 mg/L..由于条件适宜;养泥过程中污泥量增加很快..连续运行两周后开始驯化;此时MBR池中MLSS达到3000mg/L;SV30已达到约25%;SVI为85mL/g;沉降污泥絮体呈淡黄色;污泥的各项指标均达到比较好的状态..驯化开始后逐步将化学处理部分的出水导入厌氧池;并通过厌氧池进入缺氧池中;在进水的同时开启MBR的出水装置;保证每日进出水量平衡;以维持池中水量的稳定..驯化过程中每日监测4次进水中重金属含量;确保进水重金属含量符合设计要求;以保障生化系统的安全运行..每日监测MBR池中MLSS、SVI、COD、氨氮、总磷等指标以及出水的COD、氨氮、总磷含量;通过出水水质情况来考察活性污泥对污水的适应性..同时继续于缺氧池中投加葡萄糖补充COD;而不再补充N、P..考虑到正常运行时的进水水质情况及控制成本;葡萄糖投加量控制在使COD补充到300mg/L..从养泥开始到完成驯化MBR池内MLSS变化情况如图2所示..图2MBR池内MLSS随时间变化情况由图2可见;驯化开始后MBR池内MLSS增速放慢;趋于停滞;随后又有一定的下降;说明池内的部分微生物因为不适应处理水质遭到淘汰;一段时间后又呈稳定缓慢上升趋势;并最终稳定在3500mg/L左右;说明此时基本完成驯化..在保证活性污泥性状及出水水质稳定的前提下;经过了大约30d完成驯化;此时停止人工投加营养物..驯化初期MBR出水水质尚可;COD达标;氨氮和总磷超标..随着驯化的继续进行;出水氨氮仍然偏高;甚至比驯化初期更高一些;而总磷有一定程度的降低..分析原因可能是:1由于硝化细菌的生长周期较长;此时还未大量增殖;池内硝化作用强度不够;从而导致氨氮去除速率慢..2驯化初期进的工业污水较少;经过稀释后对活性污泥微生物的毒性大大降低..但是随着驯化过程的继续;工业污水进水比例增加;池中重金属的积累使得部分微生物无法适应而遭淘汰;其中可能包含具有硝化功能的微生物;使得活性污泥的硝化能力降低;出水氨氮高..3工业污水的引入所造成的冲击使得池内微生物总量减少;且污泥活性有一定降低;生物增长速度放慢;对N、P等的需求自然也就降低;从而使得出水的氨氮和总磷含量偏高..驯化阶段MBR出水的COD、氨氮、总磷变化情况如图3所示..图3驯化阶段MBR出水COD、氨氮、总磷变化情况由图3可见;到驯化后期;随着活性污泥微生物逐渐适应水质;污泥量有所增加;MBR出水的各项指标也趋于正常;基本达到排放标准要求..好氧池驯化完成后开始逐步将部分回流硝化液分流至厌氧池前端;开启沉淀池污泥回流系统;开始厌氧污泥的培养驯化过程;此过程持续近6个月后整个生化系统开始进入正常运行阶段..整个调试过程均未排泥;到调试末期污泥稳定在3500mg/L左右;相对于处理市政污水的MBR;其污泥浓度不高;分析原因是由于进水含有微量重金属;含盐量较高;COD本身较低;不利于反应器内污泥浓度的提高;然而从出水效果来看;低负荷运行状态的MBR出水水质仍然很好..3.2工艺运行效果厌氧池开始调试后即每天对生化系统进出水进行日常水质监测..运行中控制好进水水质在设计范围内;DO控制为2~4mg/L;硝化液回流比200%;MLSS稳定在3500mg/L左右..从监测结果来看;系统出水水质良好、运行稳定、抗冲击负荷能力较强;经本工艺处理后出水水质达到甚至优于电镀污染物排放标准发布稿G B21900—2008中的要求..随着厌氧池调试进程的推进;出水水质有进一步提高;具体进出水水质情况如表2所示..4工程投资与运行费用本工程总投资550万元;其中MBR膜组件费用为85万元..化学预处理部分运行费用如下:药剂费2.08元/m3;电费1.80元/m3;人工费0.36元/m3;折旧及设备维护费0.30元/m3;生化部分运行费用如下:电费1.20元/m3;折旧及设备维护费1.16元/m3;总运行费用为6.9元/m3..5结论1采用传统化学沉淀法和A2/O-MBR相结合的工艺处理电镀废水效果好;在生化段进水COD250~350mg/L;氨氮45~60mg/L;总磷2.0~3.0mg/L;总铜、总镍、总锌均低于0.5mg/L;DO控制为2~4mg/L;硝化液回流比200%;MLSS在3500mg/L 左右的运行条件下;MBR出水水质良好且稳定;达到电镀污染物排放标准发布稿G B21900—2008中的排放要求..2由于电镀污水水质的特殊性;A2/O-MBR进水含有微量重金属;盐度较高;COD 较低;本工艺正常运行状态的污泥质量浓度相对不高;稳定在3500mg/L左右;但这并没有对处理效果产生不利影响..整个处理系统具有较强的抗冲击负荷能力; MBR的使用对于出水水质的提高具有重要的作用..3电镀废水中所含重金属等有毒物质对活性污泥毒害很大;因此需要在生化系统之前采用传统化学沉淀法对废水进行预处理;使其对活性污泥的毒害降到最低..。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电镀废水的水质复杂,成分不易控制,其中含有的铬、铜、镍、镉、锌、金、银等重金属离子和氰化物等毒性较大,有些属于致癌、致畸、致突变的剧毒物质,对人类危害极大。
因此,电镀废水必须认真进行回收处理,达到保护环境、造福人民的要求,那首先必须对摸清电镀废水的种类、来源和污染物水平。
电镀废水的来源一般为:1、镀件清洗水;2、废电镀液;3、其他废水,包括冲刷车间地面、刷洗极板以及通风设备冷凝水,和由于渡槽渗漏或操作管理不当造成的跑、冒、滴、漏的各种槽液和排水;4、设备冷却水。
电镀是利用化学的方法对金属和非金属表面进行装饰、防护及获取某些新的性能的一种工艺过程,并且在生产过程中排出大量的废水。