双螺杆挤出机发展
挤出机单螺杆与双螺杆(精)

挤出机单螺杆与双螺杆挤出机按其螺杆数量可以分为单螺杆、双螺杆和多螺杆挤出机。
目前以单螺杆挤出机应用最为广泛, 适宜于一般材料的挤出加工。
双螺杆挤出机由于具有由摩擦产生的热量较少、物料所受到的剪切比较均匀、螺杆的输送能力较大、挤出量比较稳定、物料在机筒内停留长 , 混合均匀。
SJSZ 系列锥形双螺杆挤出机具有强制挤出、高质量、适应性广、寿命长、剪切速率小、物料不易分解、混炼塑化性能好、粉料直接成型等特点,温度自控,真空排气等装臵。
适用于管、板、异形材等制品的生产。
2001年兰泰塑料机械有限公司开发出高扭矩型 SHJ-92同向双螺杆配混挤出造粒机组,并出口印度尼西亚,产量达 1100公斤 /小时, 355kw, 螺杆转速达 500r/min,在国内机型配臵和性能最高。
在国内率先研制成功双流道液压换网系统, 实现了真正的不停车换网。
混炼转子型螺杆元件等新型元件研制成功并且应用。
单螺杆挤出机无论作为塑化造粒机械还是成型加工机械都占有重要地位, 近几年, 单螺杆挤出机有了很大的发展。
目前德国生产的大型造粒用单螺杆挤出机,螺杆直径达 700mm ,产量为 36t/h。
单螺杆挤出机发展的主要标志在于其关键零件——螺杆的发展。
近几年以来, 人们对螺杆进行了大量的理论和实验研究, 至今已有近百种螺杆,常见的有分离型、剪切型、屏障型、分流型与波状型等。
从单螺杆发展来看, 尽管近年来单螺杆挤出机已较为完善, 但随着高分子材料和塑料制品不断的发展, 还会涌现出更有特点的新型螺杆和特殊单螺杆挤出机。
从总体而言, 单螺杆挤出机向着高速、高效、专用化方向发展。
双螺杆挤出机喂料特性好, 适用于粉料加工, 且比单螺杆挤出机有更好的混炼、排气、反应和自洁功能, 特点是加工热稳定性差的塑料和共混料时更显示出其优越性。
近些年来国外双螺杆挤出机已经有很大的发展, 各种形式的双螺杆挤出机已系列化和商品化, 生产的厂商也较多,大致分类如下:(1按两根轴线相对位臵,有平行和锥形之分;(2按两根螺杆啮合程序,有啮合型和非啮合型之分;(3按两根螺杆的旋转方向, 有同向和异向之分, 在异向中又有向内、向外之分;(4按螺杆旋转速度,有高速和低速之分;(5按螺杆与机筒的结构,有整体和组合之分。
毕业设计(论文)双螺杆挤出机

第1 章绪论1.1 塑料挤出概述当今世界四大材料体系(木材、硅酸盐、金属和聚合物)中,聚合物和金属是应用最广泛和最重要的两种材料。
据统计,在塑料制品成型加工中,挤出成型制品的产量大约占整个塑料制品产量的50以上。
其中不仅包括板、管、膜、丝、和型材等制品的直接成型,还包括热成型、中空吹塑等坯料的挤出加工。
除此之外,在填充、共混、改性等复合材料和聚合物合金生产过程中,螺杆挤出很大程度上取代了密炼、开炼等常规工艺。
挤出机几乎成为任何一个塑料有关公司或研究所最基本的装备之一。
挤出成型有如此发展趋势主要原因为:螺杆挤出机能将一系列化工基本单元过程,如固体输送、增压、熔融、排气、脱湿、熔体输送和泵出等物理过程集中在挤出机内的螺杆上来进行。
近年来,挤出工程的创新表现,更多的过程,如发泡、胶联、接枝、嵌段、调节相对分子质量甚至聚合反应等化学加工过程都愈来愈多地在螺杆挤出机上进行。
螺杆挤出工艺装备有较高的生产率和较低的能耗,减少生产面积和操作人员数量,降低生产成本,也易于实现生产自动化,创造好的劳动条件和减少少的环境污染。
螺杆挤出这种工艺不仅广泛地用于聚合物加工,而且在建材、食品、纺织、军工、和造纸等工业部门中都得到了愈来愈多的应用。
双螺杆挤出机与单螺杆挤出机相比,能使熔体得到更加充分的混合,应用更广。
1.2 塑料挤出成型设备的组成一套完整的挤出设备由主机、辅机及控制系统组成。
挤出机是塑料挤出成型的主要设备,即主机。
由挤压系统、传动系统及加热冷却系统和主机控制系统组成。
(1)挤压系统由机筒、螺杆和料斗组成,是挤出机的核心工作部分。
(2)传动系统由电机、调速装置和传动装置组成。
作用是给螺杆提供所需转速和扭矩。
(3)加热冷却系统由温控设备组成。
作用是通过对机筒进行加热和冷却,以保证挤出系统成型在工艺要求的温度范围内进行。
(4)控制系统主要由仪表、电器及执行机构组成。
作用是调节控制机筒温度、机头压力和螺杆转速。
挤出机需配置相应的辅助机械设备才能实现挤出成型。
双螺杆挤出机介绍

双螺杆挤出机介绍
首先,双螺杆挤出机由两个对称旋转的螺杆组成。
这两个螺杆通常具
有不同的结构和功能。
一个螺杆负责输送、压缩和熔融塑料颗粒,另一个
螺杆则负责混合和分散添加剂,以保证挤出过程中塑料的均匀性和稳定性。
双螺杆挤出机的结构包括进料系统、压缩区、塑化区、模具头以及冷
却系统等部分。
进料系统负责将塑料颗粒输送到挤出机的进料口,压缩区
对塑料进行加压和压缩,塑化区将塑料熔化成熔融状态,模具头对熔融塑
料进行成型,冷却系统对已成型的塑料进行冷却。
双螺杆挤出机在挤出过程中具有很多优势。
首先,它能够实现高速挤出,生产效率高。
其次,双螺杆挤出机采用的双螺杆结构,使得塑料颗粒
能够充分混合和塑化,增强了塑料制品的质量和均匀性。
此外,双螺杆挤
出机操作简便,调节方便,可根据不同的生产需求进行调整和控制。
然而,双螺杆挤出机也存在一些缺点和挑战。
首先,双螺杆挤出机的
设备成本较高,投资较大。
其次,由于使用了双螺杆结构,设备的维护和
保养比较复杂,需要专业技术人员进行维修和调整。
此外,双螺杆挤出机
对原料的适应性较差,对塑料颗粒的形状和大小有一定的要求,不适用于
处理过大或过小的颗粒。
总之,双螺杆挤出机是一种重要的塑料加工设备,广泛应用于各种塑
料制品的生产过程中。
它通过双螺杆的旋转运动,将塑料颗粒加热、熔融、挤出成型,具有高效、高质量和易操作等特点。
虽然双螺杆挤出机存在一
些缺点,但随着技术的发展和改进,这些问题也将得到解决和改善,使双
螺杆挤出机在塑料制品加工领域发挥更大的作用。
双螺杆挤出机

➢ 按螺杆排列:
• 平行双螺杆挤出机
阶式双螺杆挤出机
•
•
锥形双螺杆挤出机
1.9.3 双螺杆挤出机旳工作原理:
(1)啮合型同向旋转双螺杆(多为组合式)工作原理:
工作 特点:
① 物料从一根螺杆流入另一根螺杆,料流呈∞形运动,料斗→口模存在 着直接通道(加料过多或机头压力高时易从排气口冒料);
第九节 双螺杆挤出机
1.9.1 概述:
(1)发展史:
1869 第一台双螺 杆挤出机在 英格兰问世, 主要为制造 香肠 开发旳;
1935 第一台加工 塑料旳双螺 杆挤出机由意大利Robcrto Colombo 和Carlo Pasquetti研制出来;
1965 出现排气、脱水、造粒用双螺杆挤出机; 1968 出现组合式双螺杆混炼挤出机,可用于玻纤、碳纤及
2)组合式:
14
组合式螺杆元件
① 元件品种:
1)螺纹套——输送元件;
2)捏合盘——剪切元件; 3)齿形盘——混合元件;
4)封闭元件——反旋螺纹套或反旋捏合盘。
② 意义:
能够根据被加工物料品种旳不同,更换螺杆及机筒,扩 大了设备用途。
ห้องสมุดไป่ตู้
1.9.4 定量加料器:
1. 作用:
① 螺杆具有强制输送能力,防止过饱和堵死流道; ② 螺槽不充斥,可调整混合质量; ③ 便于构成多加料口和多排气口
结论:1. 双螺杆具有比单螺杆有更多旳优点,用途更广; 2. 双螺杆虽然购置价格高,但产量大、比功耗低,收回投资更快 。
1.9.2 双螺杆挤出机旳构造与分类:
(1)构造构成:
(2)分类:
➢按啮合是否:非啮合型双螺杆挤出机
同向平行双螺杆挤出机_研究报告——北京化工大学

目录1概述-----------------------------------1 2同向平行双螺杆挤出机的分类-------------1 2·1基本分类-------------------12·2组合分类-------------------23主要结构及基本原理---------------------2 3·1主要结构-------------------33·2基本原理-------------------44同向平行双螺杆挤出机的优点-------------6 5同向平行双螺杆挤出机的发展趋势---------7 参考文献------------------------------91概述挤出机起源18世纪,英格兰的Joseph Bramah于1795年制造的用于制造无缝铅管的手动活塞式压出机被认为是世界上第一台挤出机。
在挤出机作为一种制造方法的发展过程中,第1次有明确记载的是R.Brooman在1845年申请的用挤出机生产固特波胶电线的专利。
在聚合物加工中首先应用双螺杆挤出机是在20世纪30 年代的意大利, 其标志是Roberto Colombo研制成功了同向双螺杆挤出机Pasquetti研制成功了异向双螺杆挤出机。
现代双螺杆挤出技术是在20 世纪60 年代末至70 年代初随着RPVC制品的发展得以发展的1964年Inning和Zanradnik 申请了己内酞胺在标准组件同向旋转双螺杆挤出机内连续阴离子聚合的专利。
在我国, 双螺杆挤出机的应用大约在20 世纪70 年代初, 到90 年代初发展迅速。
关于最早双螺杆挤出机的设计初衷是为了解决挤出时物料挤出不净的问题,后来在使用和研究的过程中发现双螺杆挤出机的性能在很多方面优于单螺杆挤出机,因此,对于双螺杆的研究是很必要的,下面主要分析同向平行双螺杆挤出机的分类。
2双螺杆挤出机的分类2·1随着双螺杆挤出机的发展,就出现了各种不同样式的双螺杆挤出机,由于所需加工的物料不同,因此需要用不同的螺杆挤出机的形式来进行良好的塑化,保证加工质量。
双螺杆挤出机的原理与应用

双螺杆挤出机的原理与应用一、原理双螺杆挤出机由两个平行转动的螺杆组成,一个螺杆为主动螺杆,负责塑料的输送和熔化,另一个螺杆为从动螺杆,主要负责辅助熔化和混合塑料。
在挤出机的进料口,将颗粒状的塑料原料加入,然后通过螺杆的旋转,向前推进并渐渐加热。
螺杆螺距逐渐减小,螺杆槽的容积也逐渐减小,使得加热板尺寸渐渐缩小。
与此同时,在主动螺杆和从动螺杆的推动下,塑料原料逐渐变热,融化成熔融状态,并且充分混合。
在塑料熔融后,通过模具的形状和大小,可以将熔融的塑料挤出成各种形状的产品。
而且,双螺杆挤出机还可以通过调节不同的参数,如螺杆转速、温度、压力等,来实现对产品的生产控制。
二、应用1.塑料加工:双螺杆挤出机广泛应用于塑料加工工业中,用于生产各种塑料制品,如塑料薄膜、塑料管材、塑料板材、塑料条材等。
双螺杆挤出机可以通过调整螺杆的转速和温度,以及挤出机的出料头,来实现对不同材料和不同尺寸的塑料制品的生产。
2.橡胶加工:双螺杆挤出机还可以应用于橡胶加工工业中,用于生产橡胶制品,如橡胶管、橡胶密封件等。
双螺杆挤出机通过调整螺杆的转速和温度,以及模具的形状和大小,来实现对不同种类的橡胶制品的生产。
3.医疗器械:双螺杆挤出机被广泛应用于生产医疗器械,如输液管、人工关节、导管等。
医疗器械的生产要求严格,对产品的材料和尺寸等方面有着严格要求。
双螺杆挤出机可以通过精确控制生产参数,来满足医疗器械的高质量要求。
4.冶金工业:双螺杆挤出机还可以应用于冶金工业中,用于生产冶金制品,如合金管、合金杆等。
双螺杆挤出机在冶金工业中的应用,可以通过调整挤出机的工艺参数,来实现对不同种类的合金材料的生产。
总之,双螺杆挤出机是一种广泛应用于塑料、橡胶、医疗器械、冶金等工业中的设备。
通过调整挤出机的工艺参数,可以满足不同种类和尺寸的产品的生产要求。
双螺杆挤出机在塑料加工等领域中具有重要的地位,有助于提高生产效率和产品质量,推动工业的发展。
双螺杆挤出机介绍

双螺杆挤出机介绍双螺杆挤出机是一种常用的塑料加工设备,主要用于将塑料颗粒通过挤出工艺转化为各种形状的塑料制品。
相比于单螺杆挤出机,双螺杆挤出机具有更高的生产效率和更广泛的应用领域。
下面将详细介绍双螺杆挤出机的工作原理、结构特点、应用范围以及市场前景等方面的内容。
一、工作原理双螺杆挤出机的工作原理是将塑料颗粒通过喂料口投入挤出机的双螺杆腔内,通过两个螺杆的旋转将塑料颗粒加热熔融,并通过注塑头使熔融塑料注入模具中,最后通过冷却系统使塑料固化并形成所需的产品形状。
其中,双螺杆挤出机的两个螺杆可以采用对转或同转方式运行,通过调整速度和压力参数可以灵活控制挤出过程中的温度、压力和速度等参数,以满足不同产品的生产需求。
二、结构特点1.双螺杆挤出机的双螺杆具有更大的传热面积和较高的传热效率,能够更好地实现塑料的熔融和连续稳定挤出;2.双螺杆挤出机的双螺杆之间的距离可调,可以实现对挤出机腔内的塑料压实和熔融效果的调控,使产品的外观质量更加均匀和稳定;3.双螺杆挤出机的挤出头结构多样,可以适应不同产品的挤出需求,通过更换挤出头可以制作出不同形状和尺寸的产品;4.双螺杆挤出机配备有先进的控制系统,可以实现对挤出温度、压力、速度和流量等参数的精确控制。
三、应用范围双螺杆挤出机广泛应用于塑料加工行业,可以用于制作各种塑料制品,如塑料板材、管道、薄膜、型材、线缆套管、异型制品等。
不仅适用于常见的塑料材料,如PP、PE、PVC等,还可以用于特殊塑料材料,如热塑性弹性体、聚酰胺、聚碳酸酯等。
由于双螺杆挤出机对原料的适应性和挤出效果较好,因此在汽车、建筑、电子、医疗器械等行业得到了广泛的应用。
四、市场前景随着工业技术的进步和市场需求的增加,双螺杆挤出机在塑料加工行业的市场前景非常广阔。
双螺杆挤出机具有更高的生产效率和更好的产品质量,能够有效提高企业生产能力和产品竞争力。
同时,双螺杆挤出机的自动化程度也在不断提高,可以实现智能化控制和远程监控,更加符合现代工业的发展趋势。
单螺杆挤出机与双螺杆挤出机性能对比分析报告

单螺杆挤出机与双螺杆挤出机性能状况分析报告一. 塑料挤出机概述1. 常规单螺杆挤出机现状和技术水平分析在常规单螺杆挤出机的性能方面,我国己能生产螺杆直径为φ12-φ250mm多种规格、门类齐全的挤出机,长径比大多在25-30范围。
一些新型的混炼元件如分离型、屏障型、分流型、变流道型以及流束位置变换型等混炼元件得到了较为广泛的应用:螺杆最高转速:直径φ150-φ200的大型挤出机加工烯烃类物料时为50-75r/min,加工PVC等热敏性物料时为5-42r/min:直径φ30以下的小型机器加工烯烃类物料时为l60-200r/min,加工PVC等热敏性物料时为18-l20r/min:北京化工大学研制成功的φl2mm手提式单螺杆排气挤出机为1200r/min。
而国外单螺杆挤出机螺杆直径最小φ6mm,最大为φ700mm,最大长径比达60。
日本池贝公司φ30单螺杆挤出机最高螺杆转速为300r/min,挤出机300kg/h,远远高于我国同规格机器实际产量l4kg/h的水平。
由于常规单螺杆挤出机与其它挤出机相比,具有结构简单、坚固耐用、维修方便、价格低廉、操作容易等特点。
在我国相当长时间内仍有很大市场,因此如何使常规单螺杆挤出机优质、高效、多功能化,仍然是我国塑机研究工作者的艰巨任务。
2.异向旋转双螺杆挤出成型机的现状与技术水平分析2.1 异向旋转平行双螺杆挤出机异向旋转双螺杆挤出机有许多种类型,可分为平行和锥形两大类,前者两根螺杆的轴线互相平行,后者两根螺杆的轴线相交成一角度。
目前流行的平行异向双螺杆挤出机多为在啮合区纵横向都封闭,即共轭型的。
锥形双螺杆挤出机与啮合型平行异向双螺杆挤出机的工作机理基本相同。
如果将其设计成啮合区螺槽纵横向皆封闭的,则其输送能力和建压能力都很强,因其加料端两螺杆轴线间有较大的空间,可以采用大的止推轴承和扭矩分配齿轮,从而能承受高扭矩和高推力负荷,很适合硬聚氯乙烯类制品的挤出成型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
S. J. Meitner, L. R. Baylor, S. K. Combs, D. T. Fehling, J. M. McGill, D. A. Rasmussen
The ITER pellet injection system is comprised of devices to form and accelerate pellets, and is connected to inner wall guide tubes for fueling, and outer wall guide tubes for ELM suppression [1,2,3]. The ITER plasma fuel is injected as solid hydrogen isotope pellets. The ITER pellet injection system will need to provide a solid extrusion rate of ~1500 mm3/s
J. W. Leachman
Mechanical Engineering Department University of Wisconsin - Madison Madison, WI USA
(1800 mbar-L/s) at durations of up to 3000 s [4]. The pellets used to trigger ELMs are to be injected at high frequencies >15 Hz. A method of producing fuel pellets approaching the ITER requirements with a single screw extruder has proven feasible [5,6]. The extruder provides a stream of hydrogen isotopes to a secondary section of the pellet injection system, where cylindrical pellets are punched/formed and accelerated in a gas gun with room temperature propellant gas into the plasma. A novel method of using a twin screw extruder, cooled by supercritical helium, has been proposed [2] to utilize the advantages of the twin-screw extruder. Twin-screw extruders used in the food industry, when compared to single-screw extruders, offer the proven advantages of positive displacement pumping without relying on wall friction to move the extrusion through the screws and reduced pulsation at the die [7]. A one-fifth ITER scale prototype has been built at the Oak Ridge National Laboratory [8] which has demonstrated the production of a continuous solid deuterium (D2) extrusion. Design improvements have been made to the pre-cooler and liquefier heat exchangers, and to limit the loss of extrusion through gaps in the screws. II.
978-1-4244-2636-2/09/$25.00 ©2 h Ts Tm m
dTm dx
In order to solve this differential equation, first the definition for the average heat transfer coefficient, h , is used which is a function of the local heat transfer coefficient and L , the tube length under inspection:
Fusion Energy Division Oak Ridge National Laboratory Oak Ridge, TN USA
Abstract— The ITER pellet injection system is comprised of devices to form and accelerate pellets, and will be connected to inner wall guide tubes for fueling, and outer wall guide tubes for ELM pacing. An extruder will provide a stream of solid hydrogen isotopes to a secondary section, where pellets are cut and accelerated with a gas gun into the plasma. The ITER pellet injection system is required to provide a plasma fueling rate of 120 Pa-m3/s (900 mbar-L/s) and durations of up to 3000 s. The fueling pellets will be injected at a rate up to 10 Hz and pellets used to trigger ELMs will be injected at higher rates up to 20 Hz. A twin-screw extruder for the ITER pellet injection system is under development at the Oak Ridge National Laboratory. A one-fifth ITER scale prototype has been built and has demonstrated the production of a continuous solid deuterium extrusion. The 27 mm diameter, intermeshed, counter-rotating extruder screws are rotated at a rate up to ≈5 rpm. Deuterium gas is pre-cooled and liquefied and solidified in separate extruder barrels. The precooler consists of a deuterium gas filled copper coil suspended in a separate stainless steel vessel containing liquid nitrogen. The liquefier is comprised of a copper barrel connected to a Cryomech AL330 cryocooler, which has a machined helical groove surrounded by a copper jacket, through which the pre-cooled deuterium condenses. The lower extruder barrel is connected to a Cryomech GB-37 cryocooler to solidify the deuterium (at ≈15 K) before it is forced through the extruder die. The die forms the extrusion to a 3 mm x 4 mm rectangular cross section. Design improvements have been made to improve the pre-cooler and liquefier heat exchangers, and to limit the loss of extrusion through gaps in the screws. This paper will describe the design improvements for the next iteration of the extruder prototype. Keywords-ITER; twin-screw extruder; pellet injection
HEAT EXCHANGER IMPROVEMENTS
I.
INTRODUCTION
A. Improved Pre-Cooler Design The pre-cooler is used to reduce the temperature of the incoming fuel gas (295 K) to 80 K before it is passed on to the liquefier. If the exhaust temperature of the D2 from the precooler does not reach 80 K, additional cooling load is placed on the liquefier and solidifying barrel, exceeding their cooling capacity. Design changes to the pre-cooler were implemented to improve the heat exchanger performance. The previous precooler design consisted of a copper reservoir containing LN2, surrounded by a D2 trace copper coil [8]. The redesigned pre-cooler now contains the D2 copper coil inside the reservoir in a LN2 bath. The copper coil diameter was reduced from 12.7 mm to 6.35 mm for ease of coiling. The required tube length was determined by analyzing a differential control volume on the gas travelling in the xdirection, shown in Fig. 1, as outlined by Nellis and Klein [9].