最新统计学第八章方差分析
医学统计学 -第08章 方差分析

第一节 方差分析的基本思想
看一个例子
例8-1 为研究钙离子对体重的影响作用,某研究者将36 只肥胖模型大白鼠随机分为三组,每组12只,分别给 予高脂正常剂量钙(0.5%)、高脂高剂量钙(1.0%)和高 脂高剂量钙(1.5%)三种不同的饲料,喂养9周,测其 喂养前后体重的差值。问三组不同喂养方式下大白鼠 体重改变是否不同?
• 三种喂养方式体重改变的平均值各不相同,这种变异 称为组间变异
•
是组内均值
X
与总均值
i
X
之差的平方和
360
340
组间变异反映了:
320
三种喂养方式的差异(影响), 300
同时也包含了随机误差。
280
260
240
k ni
220
SS组间
(Xi X )2
200
i1 j
180
X甲
X
X乙
X丙
甲
乙
丙
3、组内变异(SS组内,variation within groups)
0.05
2、根据公式计算SS、MS及F值,列于方差分析表内(计 算过程省略)
变异来源 总变异 组间 组内(误差)
完全随机设计的方差分析表
平方和 SS 自由度
均方MS
47758.32
35
31291.67
2
15645.83
16466.65
33
498.99
F值
31.36
3、确定P值,作出判断
分子自由度=k-1=2,分母自由度=n-k=33,查F 界值表(方差分析用)
表 8-1 三种不同喂养方式下大白鼠体重喂养前后差值(g)
正常钙(0.5%) 高剂量钙(1.0%) 高剂量钙(1.5%)
单向方差分析

F 分布曲线
17
F 界值表
5
附表5 F界值表(方差分析用,单侧界值) 上行:P=0.05 下行:P=0.01
分母自由度 υ2
•
分子旳自由度,υ1
1
2
3
4
5
6
161 200 216 225 230 234 1
4052 4999 5403 5625 5764 5859
18.51 19.00 19.16 19.25 19.30 19.33 2
t Yi Yh Se
Yi Yh
,
MS组内(
1 n1
1 n2
)
N a 组内
29
例四个均值旳Bonferroni法比较
设α=α’/c=0.1/6=0.0167,由此t旳临 界值为t(0.0167/2,20)=2.6117
18.5 28.0
t(A: B)
3.48 2.6117, 24 4 20
以F命名,故方差分析 又称 F 检验 (F
test)。用于推断两 个或多种总体均数有 无差别 。
3
方差分析旳优点: 不受比较组数旳限制,可比较多组均数 可同步分析多种原因旳作用 可分析原因间旳交互作用
4
完全随机设计资料(单原因)方差分析 One-way analysis of variance 第一节 方差分析旳基本思想
deviations from mean,SS)反应变异旳大小
10
1. 总变异: 全部测量值之间总
旳变异程度,计算公式
a ni
SS总
Yij Y
2
Y a ni 2 ij
C
i1 j1
i1 j1
N
统计学课后答案(第3版)第8章方差分析习题答案

第八章 方差分析习题答案一、单选1.D ;2.B ;3.A ;4.C ;5.C ;6.C ;7.C ;8.A ;9.B ;10.A二、多选1.ACE ;2.ABD ;3.BE ;4.AD ;5.BCE6.ABCD ;7.ABCDE ;8.ABCE ;9.ACD ;10.ABD三、计算分析题1、运用EXCEL 进行单因素方差分析,有:方差分析:单因素方差分析SUMMARY组 观测数 求和 平均 方差列 1 5 1.21 0.242 2.45E-05列 2 5 1.38 0.276 0.00226列 3 5 1.31 0.262 1.35E-05方差分析差异源 SS df MS F P-value F crit 组间 0.00292 2 0.00146 1.906005 0.191058 3.885294 组内 0.009192 12 0.000766总计 0.012112 14由于P 值=1.906005>05.0=α,不拒绝原假设,没有证据表明3个总体的均值之间有显著差异。
(或用F 值判断,有同样结论)2、运用EXCEL 进行单因素方差分析,有:方差分析:单因素方差分析SUMMARY组 观测数 求和 平均 方差列 1 5 222 44.4 28.3列 2 5 150 30 10列 3 5 213 42.6 15.8方差分析差异源 SS df MS F P-value F crit 组间 615.6 2 307.8 17.06839 0.00031 3.885294 组内 216.4 12 18.03333总计 832 14由于由于P 值=0.00031<05.0=α,拒绝原假设,表明3个总体的均值之间有显著差异。
(或用F 值判断,有同样结论)进一步用LSD 方法见教材P2063、(1)按行依次为:420、2、1.478(第一行);27、142.07(第二行);4256(第三行)。
(2)由于P 值=0.245946>05.0=α,不拒绝原假设,没有证据表明3种方法组装产品数量有显著差异。
第八章:方差分析

SSE xij xi
k ni i 1 j 1
2
计算结果为: SSE = 2708
三个离差平方和的关系
总离差平方和(SST)、组内离差平方和(SSE) 、组间离差平方和 (SSA) 之间的关系:
x
k i 1 j 1
ni
ij
x ni xi x xij x
外包装底色对产品销量是否有显著影响?
市场 北京 上海 深圳 西安 成都 红色 36 35 27 29 38 橙色 28 26 31 30 24 紫色 30 32 28 26 35 蓝色 22 27 20 21 29
什么是方差分析?
【 例 】为了对几个行业的服务质量进行评价,消费者协会 在4个行业分别抽取了不同的企业作为样本。最近一年中消 费者对总共23家企业投诉的次数如下表:
2.
方差分析的基本假定
1. 每个总体都服从正态分布 (每个行业被投诉的次数必须服从正态分布) 2. 各个总体的方差相同 ( 4个行业被投诉次数的方差都相等) 3. 观测值是独立的 (每个行业被投诉的次数与其他行业被投诉的次数独立)
方差分析的基本假设
H 0 : m1 m2 mk H1 : m1 , m2 , , mk 不全相等
2.计算误差
计算全部观测值的均值以及各水平下的组均值 计算总误差 计算组内误差 计算组间误差
计算总误差( SST)
1. 全部观察值 xij 与总平均值 x 的离差平方和 2. 反映全部观察值的离散状况 3. 其计算公式为
SST xij x
k ni i 1 j 1 2
方差分析
差异源
组间 组内
SS
1456.609 2708
卫生统计学第八章正交试验方差分析

WENKU DESIGN
正交试验设计定义与原理
正交试验设计定义
正交试验设计是研究多因素多水平的一种设计方法,它是根 据正交性从全面试验中挑选出部分有代表性的点进行试验, 这些有代表性的点具备了“均匀分散,齐整可比”的特点。
正交试验设计原理
正交试验设计是利用正交表来安排与分析多因素试验的一种 设计方法。它是由试验因素的全部水平组合中,挑选部分有 代表性的水平组合进行试验的,通过对这部分试验结果的分 析,了解全面试验的情况。
THANKS
感谢观看
REPORTINGΒιβλιοθήκη https://VS
正交表特点
每列中不同数字出现的次数相等;任意两 列中数字的排列方式齐全而且均衡。
正交试验设计步骤
挑因素,选水平
根据试验的目的和专业知识,挑选出与考察指标有关的因素。对选出的因素要分清主次,合理安排。 选取的水平数应根据实际情况而定,过少会导致结果不准确,过多则可能数据分布的规律性较差,代 表性差;
通过建立线性模型来描述各因素 与结果之间的关系,从而进行方 差分析和参数估计。
PART 03
正交试验方差分析步骤
REPORTING
WENKU DESIGN
数据整理与描述性统计
整理试验数据
按照试验因素和水平整理数据,列出试验指标的观察值。
计算总均值和总变异
计算所有观察值的总和、均值、离差平方和等描述性统计量。
选正交表,进行表头设计
根据确定的列数(C)与水平数(t)选择相应的正交表。选择的原则是首先满足列数,其次是水平数。若 有2个或2个以上正交表满足条件时则应选取行数最少的一个;
正交试验设计步骤
明确试验方案,进行试验;
医学统计学-8-方差分析

第二节 单因素方差分析
单因素方差分析
单因素方差分析:研究的是一个处理因素的 不同水平间效应的差别。
处 理 因 素
水平1 水平2 水平1 水平2 水平c
单因素方差分析
例1、某地用A、B和C三种方案治疗血红蛋 白含量不满10g的婴幼儿贫血患者,A方案 为每公斤体重每天口服2.5%硫酸亚铁1ml, B方案为每公斤体重每天口服2.5%硫酸亚 铁0.5ml,C方案为每公斤体重每天口服3g 鸡肝粉,治疗一月后,记录下每名受试者血 红蛋白的上升克数,资料见下表,问三种治 疗方案对婴幼儿贫血的疗效是否相同?
A、B、C三种方案治疗婴幼儿贫血的疗效观察表
治疗方案 A n=20
血红蛋白增加量(g) 1.8 1.4 0.5 1.2 2.3 2.3 3.7 0.7 2.4 0.5 2.0 1.4 1.5 1.7 2.7 3.0 1.1 3.2 0.9 2.5
B
n=19
0.2
0.0 2.1 -0.7
0.5
1.6 1.9 1.3
q XA XB
MSe 1 1 2 nA nB
ν=νe
一、q检验
例、在前面对某地用A、B和C三种方案治疗 血红蛋白含量不满10g的婴幼儿贫血患者的 例题(完全随机设计方差分析例1)进行了 方差分析,我们得出三组总体不等的结论。 究竟哪些总体均数之间存在着差别,我们需 要在前方差分析基础之上,再对该资料作两 两比较的q检验。
随机因素是无法避免的,而实质性差异是我们 需要得到的。 如何排除随机因素的干扰,利用样本信息对总 体均数间是否存在差异作出推断?
方差分析的基本思想
按照设计类型将总变异分解为处理因素引 起的变异和随机因素造成的变异; 以处理因素变异与随机因素变异之比来构 造检验统计量F。
统计学课件第八章 方差分析

.1 00 0t j
学
习
网
统计学
统
(两类方差)
计 学 习 网
1. 组内方差
中 华
tj .c
统
中华统计学习网
华
8 - 14 8 - 14
计 学
习 网
计
因素的不同水平(不同总体)下各样本之间的方差 比如,A1、A2、A3、A4四种颜色饮料销售量之间的 方差 组间方差既包括随机误差,也包括系统误差
解释方差分析的概念 解释方差分析的基本思想和原理 掌握单因素方差分析的方法及应用 掌握双因素方差分析的方法及应用
华 统 中 om 中 华 统 计
ww w. 10 00 tj .c
经济、管理类 经济、管理类 基础课程 基础课程
om
中华统计学习网
圣才学习网
华
8-8 8-8
计 学
习 网
计
1. 检验饮料的颜色对销售量是否有影响,也就 是检验四种颜色饮料的平均销售量是否相同 2. 设μ1为无色饮料的平均销售量,μ2粉色饮料的 平均销售量,μ3为橘黄色饮料的平均销售量, μ4为绿色饮料的平均销售量,也就是检验下面 的假设 H0: μ1 = μ2 = μ3 = μ4 H1: μ1 , μ2 , μ3 , μ4 不全相等 3. 检验上述假设所采用的方法就是方差分析
方差分析的基本思想和原理
ww w
om
中华统计学习网
圣才学习网
.1 00 0t j
学
习
网
统计学
计 统 华
(方差的比较)
计 学 习 网
1. 如果不同颜色(水平)对销售量(结果)没有影响,那
么在组间方差中只包含有随机误差,而没有系统 误差。这时,组间方差与组内方差就应该很接近 ,两个方差的比值就会接近1 如果不同的水平对结果有影响,在组间方差中除 了包含随机误差外,还会包含有系统误差,这时 组间方差就会大于组内方差,组间方差与组内方 差的比值就会大于1 当这个比值大到某种程度时,就可以说不同水平 之间存在着显著差异
方差分析法PPT课件

计算各样本平均数 y 如i 下:
表 6-2
型号
ABCDE F
yi
9.4 5.5 7.9 5.4 7.5 8.8
•5
引言 方差分析的基本概念和原理
两个总体平均值比较的检验法 把样本平均数两两组成对:
y 1与 y ,2 与y 1 ,…y 3 与 y ,1 与y 6 ,…y ,2 与y 3 ,共有y (5
6.3 显著性检验
利用(6-17)式来检验原假设H0是否成立.对于给定的显著水
平,可以从F分布表查出临界值
A的值.
F(k1,k(再m根1)据),样本观测值算出F
当 FAF(k1,时k(m ,拒1绝))H0,
当 FAF(k1,,时k(m ,接1 受))H0。
即:如果H0成立,F应等于1;相反应大于1,而且因素的影响越大, F值也越大
m
km
T Tj Yij
•38
j1
作统计假设:6种型号的生产线平均维修时数无显 著差异,即
H0: i=0(i=1,2,…,6),H1:i不全为零
•37
6.3 显著性检验
计算SA及SE
k
SA
k
m
i1
(Yi
Y)2
Ti2
i1
m
T2 km
k
km
km
Ti2
SE i1
(Yij Yi)2
j1
i1
j1Yij2i1m
m
Ti Yij
j 1
相当于检验假设
H0 : i 0 (i=1,2,…,k) , H1 : αi不全为零
•29
6.3 显著性检验
可以证明当H0为真时,
ST
2
~2(k
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H1: 1 , 2 , 3 , …, s 不全相等
• 至少有两个不相等 (其它可能相同!)
• 不意味着有: 1 2 ... s
One-Factor ANOVA:
H0: 1 = 2 = 3 = ... = c
请注意其含义
H1: not all the k are equal
之间的平均效果 (均值) 差异足够大, 方案之内的差异相对
小. 反之, 就接受 H0 , 即不同方案的效果没有显著性差异.
注: 用 SPSS 做方差分析中, 输出的结果是: 统计值 f 右侧 的概率, 其与给定显著性水平 进行比较.
如: 查F表得: f , 当 f f ,
在SPPS 的结果中是输出 f 值右侧概率 p .
The Null Hypothesis is True
One Factor ANOVA:
H0: 1 = 2 = 3 = ... = c H1: not all the k are equal
The Null Hypothesis is
NOT True
Total Variation 总变异
s
n i
SST
( X ij X )2
i1 j1
Xij = the ith observation in group i ni = the number of observations in group i
n = the total number of observations in all groups
s
n i
SStotal [
( xij X total )2 ]
i1 j 1
s i 1
ni
(
X
i
X total
)2
s i 1
( x n i
j 1 ij
Xi )2
SS Among SSWithin
MSA SS Among /(s 1), MSW SSWithin /(n s)
F MSA / MSB ~ F (s 1, n s)
MSW =
SSW/(n - S)
Total
n - 1 SST = SSA+SSW
根据观测值, 计算出f 值, 若 f > f (s-1, n-s) (显著性水平为), 则表明 SSb 较大, Xi – Xtotal 的平方和较大, 对应的总体参数
是 i - 的绝对值较大,所以拒绝 H0 , 即至少有两个方案
One-Factor Analysis of Variance 单因子方差分析
单因素方差分析是对多套实验方案的效果的对比 分析,可以用来检验多组相关样本之间均值有无显著 性差异。
如:s 组人员的工资水平、s 种同功能药品的效果、s 种 训练方法的训练效果、 等问题,有无显著性差异。
假设条件: 样本是随机并独立地抽取 (这个条件一定要满足) 所有总体都服从正态分布 所有总体的方差都相等
Among-Group Variation 组间变异
s
SSA ni ( X i X )2 i 1
MSA SSA s 1
ni = the number of observations in group i
s = the number of groups
_
Xi the sample mean of group i
•
••
(ns
1)S
2 s
(n1 1) (n2 1) • • • (ns 1)
• If more than 2 groups, use F Test.
• For 2 groups, use t-Test. F Test more limited.
i
One-Way ANOVA Summary Table 单因子方差分析表
p
f f
One-Factor ANOVA F Test Example
As production manager, you Machine1 Machine2
Source of Degrees
Variation
of
Freedom
Among (Factor)
s-1
Sum of Squares
SSA
Mean
F Test
Square Statistic
(Variance) MSA =
= MSA MSW
SSA/(s - 1)
Within (Error)
n -s
SSW
__
X the overall or grand mean
i j Variation Due to Differences Among Groups.
Within-Group Variation 组内变异
s
n i
SSW
( X ij X i )2
i1 j1
MSW SSW ns
X ij the jth observation in group i
X i the sample mean of group i
Summing the variation within each group and then adding over all groups.
i
Within-Group Variation
MSW SSW ns
(n1
1)S12
(n2
1)S22
s = the number of groups
s
n j
X ij
X j 1 i1 n
2、总变异的分解……方差分析的关键!!!
s
n i
X total [
xij ] / n, n n1 n2 ... ns ij
]/
ni ,
j
1,2,...,s;
第八章 方差分析(ANOVA) Analysis of Variance
在参数假设检验中,我们经常检验两个总 体分布的均值是否相同,其中运用的统计量主 要是 t 统计量。
如果有多个总体,则必须进行两两比较检 验,显然很繁琐。而方差分析,可以一次完成 对多个总体的均值是否相同的检验:
H0: 1 = 2 = 3 = ... = s
多个独立样本均值的比较--单因素方差分析
1、资料类型
方案 1 x11
x12
方案 2 x21
x22
方案 3 x31
x32
…
…
…
方案 s xs1
xs2
…… …… …… …… ……
x1n 1
x2n 2
x3n 3
…
xsn s
注意,s 个样本中含量不必相等!!!
单因素方差分析的假设检验
H0: 1 = 2 = 3 = ... = s =