微分方程的maple求解
积分和微分方程的MAPLE求解

x e
2 1
2
2 x
dx,
0
sin t dt , t
e
x2
dx
七 微分方程求解
> ?dsolve ode1:=t*diff(y(t),t) =y(t)*ln(t*y(t))-y(t);
> dsolve(ode1,y(t));
ode2:=diff(y(t),t,t)
+2*diff(y(t),t)+3*y(t)=a*sin(t);
> Int(exp(t)/t,t)=int(exp(t)/t,t);
定积分
Int(exp(-x),x=a..b);
int(exp(-x),x=a..b);
I1:=Int(exp(-x^2),x=0..1)
=int(exp(-x^2),x=0..1);
> ?erf > evalf(I1); ## 求近似值
课堂练习
1. y xy x e ,
2 2x
y (0) 2;
2. y 3 y 2 y x 2e x ; dx1 dt x2 x1 (0) 1 dx2 3. 4 x1 4 x2 2 x3 , x2 (0) 0 dt x3 (0) 1 dx3 2 x x x 1 2 3 dt
> dsolve(sys2, {f,g,h});
微分方程组的初值问题求解
> ######### solve the system of ODES with initial value conditions
> IC_1 := {x(a)=A,y(b)=B}; > ans1 := dsolve(sys1 union IC_1,{x(t),y(t)});
数学软件Maple使用教程

数学软件Maple使⽤教程数学实验数学软件Maple使⽤教程序⾔⼀.什么是数学实验?我们都熟悉物理实验和化学实验,就是利⽤仪器设备,通过实验来了解物理现象、化学物质等的特性。
同样,数学实验也是要通过实验来了解数学问题的特性并解决对应的数学问题。
过去,因为实验设备和实验⼿段的问题,⽆法解决数学上的实验问题,所以,⼀直没有听说过数学实验这个词。
随着计算机的飞速发展,计算速度越来越快,软件功能也越来越强,许多数学问题都可以由计算机代替完成,也为我们⽤实验解决数学问题提供了可能。
数学实验就是以计算机为仪器,以软件为载体,通过实验解决实际中的数学问题。
⼆.常⽤的数学软件⽬前较流⾏的数学软件主要有四种:1.MathACD其优点是许多数学符号键盘化,通过键盘可以直接输⼊数学符号,在教学⽅⾯使⽤起来⾮常⽅便。
缺点是⽬前仅能作数值运算,符号运算功能较弱,输出界⾯不好。
2.Matlab优点是⼤型矩阵运算功能⾮常强,构造个⼈适⽤函数⽅便很⽅便,因此,⾮常适合⼤型⼯程技术中使⽤。
缺点是输出界⾯稍差,符号运算功能也显得弱⼀些。
不过,在这个公司购买了Maple公司的内核以后,符号运算功能已经得到了⼤⼤的加强。
再⼀个缺点就是这个软件太⼤,按现在流⾏的版本5.2,⾃⾝有400多兆,占硬盘空间近1个G,⼀般稍早些的计算机都安装部下。
我们这次没⽤它主要就是这个原因。
3.Mathematica其优点是结构严谨,输出界⾯好,计算功能强,是专业科学技术⼈员所喜爱的数学软件。
缺点是软件本⾝较⼤,⽬前流⾏的3.0版本有200兆;另⼀个缺点就是命令太长,每⼀个命令都要输⼊英⽂全名,因此,需要英语⽔平较⾼。
4.Maple优点是输出界⾯很好,与我们平常书写⼏乎⼀致;还有⼀个最⼤的优点就是它的符号运算功能特别强,这对于既要作数值运算,⼜要作符号运算时就显得⾮常⽅便了。
除此之外,其软件只有30兆,安装也很⽅便(直接拷贝就可以⽤)。
所以,我们把它放到学校⽹上直接调⽤。
微分方程的maple求解

微分⽅程的maple求解1、常⽤函数1)求解常微分⽅程的命令dsolve.dsolve(常微分⽅程)dsolve(常微分⽅程,待解函数,选项)dsolve({常微分⽅程,初值},待解函数,选项)dsolve({常微分⽅程组,初值},{待解函数},选项)其中选项设置解得求解⽅法和解的表⽰⽅式。
求解⽅法有type=formal_series(形式幂级数解)、type=formal_solution(形式解)、type=numeric(数值解)、type=series(级数解)、method=fourier(通过Fourier变换求解)、method=laplace(通过Laplace变换求解)等。
解的表⽰⽅式有explicit(显式)、implicit(隐式)、parametric(参数式)。
当⽅程⽐较复杂时,要想得到显式解通常⼗分困难,结果也会相当复杂。
这时,⽅程的隐式解更为有⽤,⼀般也要简单得多。
dsolve为标准库函数。
2)求解⼀阶线性常微分⽅程的命令linearsol.在Maple中求解⼀阶线性⽅程既可以⽤dsolve函数求解,也可以⽤Detools函数包中的linearsol函数求解。
linearsol是专门求解线性微分⽅程的命令,使⽤格式为: linearsol(线性⽅程,待解函数)linearsol的返回值为集合形式的解。
3)偏微分⽅程求解命令pdsolve.pdsolve(偏微分⽅程,待解变量,选项)pdsolve(偏微分⽅程,初值或边界条件,选项)pdsolve为标准库函数,可直接使⽤。
如果求解成功,将得到⼏种可能结果:⽅程的通解;拟通解(包含有任意函数,但不⾜以构造通解);⼀些常微分⽅程的集合;2、⽅法1)⼀阶常微分⽅程的解法a 分离变量法 I 直接分离变量法。
如()()dyf xg y dx=,⽅程右端是两个分别只含x 或y 的函数因式乘积,其通解为()()dyf x dx Cg y =+?。
利用Maple对方程进行求解的命令

利用Maple对方程进行求解的命令
Maple的运算功能非常强大,在运算时能够解决各种各样的数学问题,对于一般的函数而言能够解决,同样的,也能够对方程进行求解。
下面介绍Maple求解方程的一些命令。
更多Maple基本功能介绍与操作过程请访问Maple中文版官网。
Maple解方程时经常用到下面几个命令:
solve(方程,未知数);fsolve(方程,未知数,选项);解数值解
选项:plex复数域上求根,2.fulldigits保持精度,3.maxsols=n求n个解,4.范围。
一.一元方程(省略“=”号为=0)
二.方程组
三.数值解
四.多项式分解因式、函数展开、合并、化简、转换:
factor(多项式,k),expand(函数),combine(函数),simplify(表达式),convert(表达式,形式,选项),取分子numer(分式),取分母denom(分式)
以上内容向大家介绍了Maple求解方程的常见命令格式,Maple对于一般的函数和方程都能够进行求解,甚至是复杂的方程也能进行求解,Maple符号计算尤其突出,这方面是所有的计算软件都无法比拟的。
如果需要了解更多Maple应用实例,可以参考Maple中文版官网教程:利用Maple如何进行金融建模。
数学软件Maple在常微分方程教学中的应用

作者简介 : 李姝敏 ( 1 9 7 9一) , 女, 内蒙古赤峰人 , 硕士 , 讲师 , 研 究方向 : 孤 立子理 论与可积 系统及其应 用。
55
定 对应 的 函数 Y ( ), 也 可得 到 微 分 方程 ( 2 ) 一 个 的
在 常微 分 方 程 的 教材 中 , 首 先 要 介 绍初 等 积 分 法 求解 一 阶 常微分 方程 ( 教材第二章 ) , 即将 微 分 方 程求解 问题转 化 为积分 问题 。虽然 不是 所有 的微 分
收稿 日期 : 2 0 1 3—1 0— 2 3
基金项 目: 国家 自然科 学基金 的项 目( 1 1 2 6 1 0 3 5 ) , 内蒙古 自然科学基 -  ̄ , . ( 2 0 1 2 MS 0 1 0 2 ) , 内蒙古教 育厅 高等 学校科研 项
例 1求 解一 阶 常微 分方程
:
d
2 —y
。
( 1 )
并 画 出该 方程 的方 向场 和积 分 曲线 。 解: ( 一) 求 解 采 用 用软 件 Ma p l e的 d s o l v e 命 令
s o l u t i o n := d s o l v e( d i f( Y ( ) , ) = 2 Y ( ) , Y ( ) ) ; 结 果 为 s o l u t i o n : =Y ( ) =一2+2 +e 一 C 1 —
方 程都 可 以利 用初 等 积 分 法 求 解 , 但 是 也 反 映 了微
分方程的相 当一部分 , 因此是微分方程求解 的基础。
在 第一 章第 三 节介 绍微 分方 程 的积分 曲线 , 等倾 线 , 方 向场 等概 念 时 , 对 于初 次 接 触 常 微 分 方程 的学 生 来说 , 几 乎 都不 理解 , 这 也会 影 响学生 的积 极性 和学 习兴趣 。如果将 数 学 软件 Ma p l e应 用 于 教 学 , 就 比 较 形象 和 直观 , 也 便 于 学 生 的 理解 。下 面通 过 一 个
实验七 用Maple解常微分方程

实验七用Maple解常微分方程1. 实验目的本实验旨在通过使用数学建模软件Maple来解常微分方程,加深对常微分方程解法的认识和理解。
通过实际操作和观察结果,提高对Maple软件的运用能力。
2. 实验原理常微分方程是描述物理、化学、工程等领域中的连续变化过程的常见数学工具。
解常微分方程可以帮助我们理解系统的演化规律,从而进行预测和控制。
Maple是一款强大的数学软件,其中包含了丰富的求解常微分方程的函数。
通过输入常微分方程的表达式,Maple可以直接给出解析解或数值解。
在本实验中,我们将使用Maple来解常微分方程。
3. 实验步骤3.1 安装Maple软件3.2 打开Maple软件双击桌面上的Maple图标,打开软件。
3.3 输入常微分方程点击菜单栏中的"输入",选择"数学输入",在弹出的对话框中输入常微分方程的表达式。
例如,我们要解的方程是一阶线性常微分方程`dy/dx + y = 0`,则输入表达式为:diff(y(x),x) + y(x) = 03.4 求解方程点击菜单栏中的"执行",选择"执行工作表",Maple将根据输入的方程进行求解。
3.5 查看解析解或数值解Maple会给出方程的解析解或数值解。
根据实验需求,可以选择相应的解进行查看和分析。
3.6 导出结果点击菜单栏中的"文件",选择"导出为",选择导出格式和保存路径,点击"保存",将结果导出为文档或图像文件。
4. 实验结果根据实验中输入的常微分方程,Maple求解得到如下解析解:y(x) = C exp(-x)其中C为任意常数。
5. 实验总结通过本次实验,我们研究了使用Maple软件求解常微分方程的方法。
Maple的强大功能和简便操作使得解常微分方程变得更加容易。
通过实际操作,我们可以深入理解常微分方程的解法和物理意义。
怎样利用Maple对方程进行求解

怎样利用Maple对方程进行求解
Maple的运算功能非常强大,在运算时能够解决各种各样的数学问题,对于一般的函数而言能够解决,同样的,也能够对方程进行求解。
下面介绍Maple求解方程的一些命令。
Maple解方程时经常用到下面几个命令:
solve(方程,未知数);fsolve(方程,未知数,选项);解数值解
选项:plex复数域上求根,2.fulldigits保持精度,3.maxsols=n求n个解,4.范围。
一.一元方程(省略“=”号为=0)
二.方程组
三.数值解
四.多项式分解因式、函数展开、合并、化简、转换:
factor(多项式,k),expand(函数),combine(函数),simplify(表达式),convert(表达式,形式,选项),取分子numer(分式),取分母denom(分式)
以上内容向大家介绍了Maple求解方程的常见命令格式,Maple对于一般的函数和方程都能够进行求解,甚至是复杂的方程也能进行求解,Maple符号计算尤其突出,这方面是所有的计算软件都无法比拟的。
Maple中的微分代数方程求解

Part10:Maple中的微分代数方程求解西希安工程模拟软件(上海)有限公司,200810.0 Maple中的微分方程求解器介绍Maple中微分方程求解器使用领先的算法求解以下问题:常微分方程 (ODEs): dsolve 命令用于求解线性和非线性ODEs, 初始值问题 (IVP), 以及边界值问题 (BVP),可以通过参数项选择求符号解 (解析解) 或数值解。
ODE Analyzer Assistant 微分方程分析器助手提供一个交互式用户界面方便用户求解 ODE 以及显示结果的图形。
了解更多信息,参考帮助系统中的 dsolve, dsolve/numeric, 和 ODE Analyzer.偏微分方程 (PDEs): pdsolve 命令用于求 PDEs 和含边界值问题的 PDEs 的符号解或数值解。
使用Maple的PDE工具可以完成对PDE系统的结构分析和指数降阶处理。
了解更多信息,参考帮助系统中的 pdsolve and pdsolve/numeric.微分-代数方程 (DAEs): dsolve/numeric 命令是符号-数值混合求解器,使用符号预处理和降阶技术,让Maple能够求解高指数的DAE问题。
Maple内置三个求解器用于处理DAEs:1)修正的 Runge-Kutta Fehlberg 方法,2)Rosenbrock 方法,以及 3)修正的拓展后向差分隐式方法。
10.1 Maple中的微分代数方程(DAEs)更多亮点:大部分情况下,通过识别是否存在因变量的纯代数方程,dsolve命令可以判断给定的问题是否是微分代数方程,而不是常微分方程。
如果输入是一个不含有纯代数方程的微分代数方程,使用solve求解时需要用method参数指定对象是一个微分代数方程。
dsolve 有三种数值方法求解DAEs。
默认的 DAE IVP 方法是 modified Runge-Kutta Fehlberg method (rkf45_dae),另两个方法是 rosenbrock_dae 和 Modified Extended Backward-Differentiation Implicit method (mebdfi),可以通过 method 参数项指定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、常用函数1)求解常微分方程的命令dsolve.dsolve(常微分方程)dsolve(常微分方程,待解函数,选项)dsolve({常微分方程,初值},待解函数,选项)dsolve({常微分方程组,初值},{待解函数},选项)其中选项设置解得求解方法和解的表示方式。
求解方法有type=formal_series(形式幂级数解)、type=formal_solution(形式解)、type=numeric(数值解)、type=series(级数解)、method=fourier(通过Fourier变换求解)、method=laplace(通过Laplace变换求解)等。
解的表示方式有explicit(显式)、implicit(隐式)、parametric(参数式)。
当方程比较复杂时,要想得到显式解通常十分困难,结果也会相当复杂。
这时,方程的隐式解更为有用,一般也要简单得多。
dsolve为标准库函数。
2)求解一阶线性常微分方程的命令linearsol.在Maple中求解一阶线性方程既可以用dsolve函数求解,也可以用Detools函数包中的linearsol函数求解。
linearsol是专门求解线性微分方程的命令,使用格式为: linearsol(线性方程,待解函数)linearsol的返回值为集合形式的解。
3)偏微分方程求解命令pdsolve.pdsolve(偏微分方程,待解变量,选项)pdsolve(偏微分方程,初值或边界条件,选项)pdsolve为标准库函数,可直接使用。
如果求解成功,将得到几种可能结果:方程的通解;拟通解(包含有任意函数,但不足以构造通解);一些常微分方程的集合;2、方法1)一阶常微分方程的解法a 分离变量法 I 直接分离变量法。
如()()dyf xg y dx=,方程右端是两个分别只含x 或y 的函数因式乘积,其通解为()()dyf x dx Cg y =+⎰⎰。
II 换元法之后再用分离变量法。
对于以y x 为中间变量的函数,如()dy y g dx x =,令u=yx,则原方程变为()du g u udx x-=,再用分离变量法可得()du dx C g u u x =+-⎰⎰。
b 常数变易法I 对于线性非齐次方程来说,线性非齐次方程的通解=它所对应的齐次方程的通解+非齐次方程的一个特解。
如y'+P(x)y=f(x),若f(x)≡0,y'+P(x)y=0为一阶线性齐次方程,其通解为()P x dxy Ce -⎰=,令()()P x dx y C x e -⎰=代入非齐次方程,求出C(x),再的特解。
II 对于伯努利方程(非线性一阶)来说,先将其化为线性。
如'()()(0,1)n y P x y f x y n +=≠,两端除以n y ,得1'()()n n y y P x y f x --+=,令z=1n y -,则原方程可化为1()()()1dz P x z f x n dx+=-。
2)二阶线性常微分方程的解法a 二阶线性齐次方程,y''+p(x)y'+q(x)y=0 若1()y x 与2()y x 是方程的解,且12()()y x y x ≠常数(即线性无关),则1122()()()y x c y x c y x =+是通解,考虑常系数,即p.q 都是常数,y''+py'+qy=0。
其特征方程为20k pk q ++=。
解为1k =,2k =I 24p q ->0,两个不等实根,且21k xk x e e≠常数时,12k x k x y e e =+。
II 24p q -<0,一对共轭复根,12,k i k i αβαβ=+=-,1210.5()k x k x y e e =+,1220.5()k x k x y e e =-,12/y y ≠常数,12(cos()sin())x y e C x C x αββ=+。
III 24p q -=0,两个相等实根,12k k k ==,12,kx kx y e y xe ==,12/y y ≠常数,12()kx y C C e =+。
b 二阶常系数线性非齐次微分方程,y''+py'+qy=r(x).非齐次方程的通解=它所对应的齐次方程的通解+非齐次方程的一个特解。
利用常数变异法,令其特解为*1122()()()()()y x C x y x C x y x =+,则'''''*11112222()()()()()()()()()y x C x y x C x y x C x y x C x y x =+++,令''1122()()()()C x y x C x y x +=0……①,并求出"*()y x ,将*()y x '"**(),()y x y x 并将它们都带入到原方程,得''''1122()()()()C x y x C x y x +=r(x)……② 联立①,②式得''12(),()C x C x 。
以上得出了特解,再将其与通解组合可得原方程的解。
c 欧拉方程(变系数),212"'()x y a xy a y f x ++=。
令tx e =,则2222211,()dy dy dt dy d y dy d ydx dt dx x dt dx x dt dt=⋅=⋅=--,代入得 2112(1)()t d y dya a y f e dt dt+-+=,可以求解。
3、作图1)常微分方程数值解作图命令odeplot要作出常微分方程数值解的图像,要使用odeplot 函数。
odeplot 在函数抱plots 中,可通过with(plots)或plots[odeplot]调出。
odeplot(数值解,被绘函数,参数范围,选项)2)偏微分方程作图命令PDEplotPDEplot(偏微分方程,初值,参数范围,选项)PDEplot 位于PDEtools 函数包中,使用前必须先调出PDEtools 函数包。
三、各种方程的求解第一部分:一阶常微分方程 1、可分离变量方程例1:sin()'()sin()x y x y => eq:=diff(y(x),x)=sin(x)/sin(y(x));:= eq = ∂∂x ()y x ()sin x ()sin ()y x> DEtools[odeadvisor](eq);[]_separable> dsolve(eq);= ()y x - π()arccos - + ()cos x _C1> dsolve(eq,implicit);= - + + ()cos x ()cos ()y x _C10> dsolve({eq,y(0)=1});= ()y x ()arccos - + ()cos x 1()cos 1> dsolve({eq,y(0)=1},numeric,range=-2..2);proc () ... end proc rkf45_x > plots[odeplot](%);2、齐次方程例2:tan()dy y y dx x x=+ > eq:=D(y)(x)=y(x)/x+tan(y(x)/x);:= eq =()()D y x + ()y x x ⎛⎝ ⎫⎭⎪⎪tan ()y x x > DEtools[odeadvisor](eq);[],[],_homogeneous class A _dAlembert > dsolve(eq);= ()y x ()arcsin x _C1x> dsolve({eq,y(1)=1});= ()y x ()arcsin x ()sin 1x> dsolve({eq,y(1)=3});= ()y x ()arcsin x ()sin 3x> dsolve({eq,y(1)=3},numeric,range=1..6);proc () ... end proc rkf45_x > plots[odeplot](%);3、线性方程sin()3:dy x ydx x-=例 > eq:=D(y)(x)=(sin(x)-y(x))/x; := eq =()()D y x - ()sin x ()y x x> DEtools[odeadvisor](eq);[]_linear> dsolve(eq);=()y x - + ()cos x _C1x> DEtools[linearsol](eq);{} =()y x - + ()cos x _C1x> dsolve({eq,y(1)=2},numeric,range=-5..5);proc () ... end proc rkf45_x > plots[odeplot](%);4、Bernoulli 方程1246dyx y xy dx-=-例:> eq:=D(y)(x)=6*y(x)/x-x*y(x)^2;>:= eq = ()()D y x - 6()y x xx ()y x 2> DEtools[odeadvisor](eq);[],,[],_homogeneous class G _rational _Bernoulli > dsolve(eq);= ()y x 8x 6+ x 88_C1> plots[odeplot](dsolve({eq,y(1)=1},numeric,range=-5..-1));第二部分:二阶线性常微分方程 1、二阶常系数线性齐次方程例5:y"+2y'+y=0> eq:=diff(y(x),x$2)+2*diff(y(x),x)+y(x)=0;:= eq = + + ⎛⎝ ⎫⎭⎪⎪∂∂2x 2()y x 2⎛⎝ ⎫⎭⎪⎪∂∂x ()y x ()y x 0 > dsolve(eq);= ()y x + _C1e()-x _C2e()-x x> DEtools[constcoeffsols](eq);[],e()-x e()-x x> plots[odeplot](dsolve({eq,y(0)=0,D(y)(0)=1},numeric,range=-2..2));2、二阶常系数线性非齐次方程例6:2"'23y y x +=-> eq:=diff(y(x),x$2)+diff(y(x),x)=2*x^2-3;:= eq = + ⎛⎝ ⎫⎭⎪⎪∂∂2x 2()y x ⎛⎝ ⎫⎭⎪⎪∂∂x ()y x - 2x 23 > dsolve(eq,y(x));= ()y x - - + + 23x 32x 2e ()-x _C1x _C2> plots[odeplot](dsolve({eq,y(0)=0,D(y)(0)=1},numeric,range=-3..3));3、Euler 方程(变系数)例7:2x y"+5xy'+13y=0> eq:=x^2*diff(y(x),x$2)+5*x*diff(y(x),x)+13*y(x)=0;:= eq = + + x 2⎛⎝ ⎫⎭⎪⎪∂∂2x 2()y x 5x ⎛⎝ ⎫⎭⎪⎪∂∂x ()y x 13()y x 0 > DEtools[odeadvisor](eq);[][],_Emden _Fowler> dsolve(eq);=()y x + _C1()sin 3()ln x x 2_C2()cos 3()ln x x2> plots[odeplot](dsolve({eq,y(1)=0,D(y)(1)=1},numeric,range=1..5));第三部分:偏微分方程 1、波动方程例8:xx tt u u =.> pde:=diff(u(x,t),x$2)=diff(u(x,t),t$2);:= pde = ∂∂2x 2()u ,x t ∂∂2t2()u ,x t> pdsolve(pde);= ()u ,x t + ()_F1 + t x ()_F2 - t x这里给出了通解,其中_F1,_F2是任意两个具有二阶连续导数的一元函数。