神经网络控制多种结构
智能化技术电气工程及其自动化的应用探析

智能化技术电气工程及其自动化的应用探析摘要:在近些年中,社会各行各业的快速发展,社会用电量也在不断上升,导致电网的规模不断扩大,使得电力系统的维护工作难度越来越大。
为了提升电网各方面工作的效率,加强智能化技术的应用能够有效缓解当前电气工程中出现的各种问题,为电力系统的智能化以及自动化发展奠定良好的基础。
关键词:电气工程及其自动化;智能化技术;应用引言电力行业的迅猛发展,电力行业有关产业也取得了极大进展,电气工程也随之受到了一定影响。
早期阶段电气自动控制中存在一定问题和不足,而智能化技术的有效应用,能够在弥补早期技术缺陷和不足的同时促进电气工程的健康持续稳定发展。
对于智能化技术,其是将人工智能技术和计算机技术所进行的相互结合,在电气工程自动化中发展相对缓慢。
1智能化技术相关概述1.1智能化技术推动了无人化产业的发展当前,智能化技术在电气工程行业中广泛应用,有效地减少了人力的使用,尤其是设备操作人员数量显著下降,从侧面角度强化了设备的稳定性。
例如,引入智能化技术后,电气工程设备可在网络技术的支持下进行远程控制,如此一来,操作人员只需要进行简单的屏幕控制即可,最大程度上提高了设备的响应速度。
另外,由于智能化技术可远程遥控,所以操作人员的安全性得到了保障,尤其是5G技术的结合,进一步提高了设备的工作效率,完成了无人化产业的发展,这是未来电气行业发展的必然趋势。
1.2智能制造具有更高的生产效率和更高的控制精度这对改善电气工程的调节和控制效果具有重要意义。
电气工程中智能化技术的信息处理和分析,大多采用CPU实现,总体运算速度很高。
1.3智能化技术应用效果显著,可以直观地反映在数据中智能化技术可以将电气工程中的数据直接转化为文字,让电气工程中的数据信息更加直观,更加具体。
1.4智能化技术的控制系统也更加完善,调整起来也更加容易智能化技术处理各类数据的一致性较强,从而提高了系统的自控能力。
1.5促进电气工程的现代化智能化技术的应用可以促进电气工程产品研发及系统升级。
先进控制技术

6.1.1 模糊控制的数学基础 6.1.2 模糊控制原理 6.1.3 模糊控制器设计
6.1.1 模糊控制的数学基础
1. 模糊集合 有许多概念,如大、小、冷、热等,都没有明确的内涵 和外延,只能用模糊集合来描述;叫做模糊集合。
3.自学习模糊控制策略和智能化系统的实现。
4.常规模糊控制系统稳态性能的改善。
5.把已经取得的研究成果应用到工程过程中,尽快把其转化 为生产力。因此,需加快实施简单实用的模糊集成芯片和模糊 控制装置,以及通用模糊控制系统的开发与应用。
6.2 神经网络控制技术
神经网络控制是一种基本上不依赖于精确数学模型的先 进控制方法,比较适用于那些具有不确定性或高度非线性的 控制对象,并具有较强的适应和学习功能。
人的手动控制策略是通过操作者的学习、试验及长期经验积 累而形成的,它通过人的自然语言来叙述,例如,用自定性的、 不精确的及模糊的条件语句来表达:若炉温偏高,则减少燃料: 若蓄水塔水位偏低,则加大进水流量;若燃烧废气中含氧量偏 向,则减小助燃风量等。
由于自然语言具有模糊性,所以,这种语言控制也被称为模 糊语言控制,简称模糊控制。
6.1.4 模糊控制的特点
模糊控制理论主要优点如下: 不需要精确数学模型 容易学习 使用方便 适应性强 控制程序简短 速度快 开发方便 可靠性高 性能优良
6.1.5 模糊控制的应用
近年来,模糊控制得到了广泛的应用。下面简单介绍一些模糊 控制的应用领域:
1)航天航空:模糊控制现在已应用于各种导航系统中。 2)工业过程控制:工业过程控制的需要是控制性术发展的主要 动力。 3)家用电器: 全自动洗衣机、电饭煲、空调等。 4)汽车和交通运输:防抱死刹车系统,基于模糊控制的无级变 速器,模糊发动机控制和自动驾驶控制系统等。 5)其控制场合: 电梯控制器、工业机器人、核反应控制、医疗仪器等。除控制 应用以外,还应用于图像识别、计算机图像处理、金融和其他专 家系统中。
神经网络基本知识

神经网络基本知识一、内容简述神经网络是机器学习的一个重要分支,是一种模拟生物神经网络结构和功能的计算模型。
它以其强大的学习能力和自适应能力广泛应用于多个领域,如图像识别、语音识别、自然语言处理等。
《神经网络基本知识》这篇文章将带领读者了解神经网络的基本概念、原理和应用。
1. 神经网络概述神经网络是一种模拟生物神经系统结构和功能的计算模型。
它由大量神经元相互连接构成,通过学习和调整神经元之间的连接权重来进行数据处理和模式识别。
神经网络的概念自上世纪五十年代提出以来,经历了漫长的发展历程,逐渐从简单的线性模型演变为复杂的多层非线性结构。
神经网络在人工智能领域发挥着核心作用,广泛应用于计算机视觉、语音识别、自然语言处理等领域。
神经网络的基本构成单元是神经元,每个神经元接收来自其他神经元的输入信号,通过特定的计算方式产生输出信号,并传递给其他神经元。
不同神经元之间的连接强度称为权重,通过训练过程不断调整和优化。
神经网络的训练过程主要是通过反向传播算法来实现的,通过计算输出层误差并反向传播到输入层,不断调整权重以减小误差。
神经网络具有强大的自适应能力和学习能力,能够处理复杂的模式识别和预测任务。
与传统的计算机程序相比,神经网络通过学习大量数据中的规律和特征,自动提取高级特征表示,避免了手动设计和选择特征的繁琐过程。
随着深度学习和大数据技术的不断发展,神经网络的应用前景将更加广阔。
神经网络是一种模拟生物神经系统功能的计算模型,通过学习和调整神经元之间的连接权重来进行数据处理和模式识别。
它在人工智能领域的应用已经取得了巨大的成功,并将在未来继续发挥重要作用。
2. 神经网络的历史背景与发展神经网络的历史可以追溯到上个世纪。
最初的神经网络概念起源于仿生学,模拟生物神经网络的结构和功能。
早期的神经网络研究主要集中在模式识别和机器学习的应用上。
随着计算机科学的快速发展,神经网络逐渐成为一个独立的研究领域。
在20世纪80年代和90年代,随着反向传播算法和卷积神经网络的提出,神经网络的性能得到了显著提升。
人工智能控制技术课件:神经网络控制

例如,在听觉系统中,神经细胞和纤维是按照其最敏感的频率分
布而排列的。为此,柯赫仑(Kohonen)认为,神经网络在接受外
界输入时,将会分成不同的区域,不同的区域对不同的模式具有
不同的响应特征,即不同的神经元以最佳方式响应不同性质的信
号激励,从而形成一种拓扑意义上的有序图。这种有序图也称之
,
,
⋯
,
)
若 输 入 向 量 X= ( 1
, 权 值 向 量
2
W=(1 , 2 , ⋯ , ) ,定义网络神经元期望输出 与
实际输出 的偏差E为:
E= −
PERCEPTRON学习规则
感知器采用符号函数作为转移函数,当实际输出符合期
望时,不对权值进行调整,否则按照下式对其权值进行
单神经元网络
对生物神经元的结构和功能进行抽象和
模拟,从数学角度抽象模拟得到单神经
元模型,其中 是神经元的输入信号,
表示一个神经元同时接收多个外部刺激;
是每个输入所对应的权重,它对应
于每个输入特征,表示其重要程度;
是神经元的内部状态; 是外部输入信
号; 是一个阈值(Threshold)或称为
第三代神经网络:
2006年,辛顿(Geofrey Hinton)提出了一种深层网络模型——深度
置信网络(Deep Belief Networks,DBN),令神经网络进入了深度
学习大发展的时期。深度学习是机器学习研究中的新领域,采用无
监督训练方法达到模仿人脑的机制来处理文本、图像等数据的目的。
控制方式,通过神经元及其相互连接的权值,逼近系统
神经环路的形成及其在神经功能中的作用

神经环路的形成及其在神经功能中的作用神经环路是由多个神经元相互连接形成的神经网络,可用于调节和控制人体的各种生理和行为多种反应。
当某些刺激通过感觉神经元到达大脑时,就会促发反应,以使身体做出合适的动作或心理反应。
本文将探讨神经环路的形成和其在神经功能中的作用。
一、神经环路的形成神经环路是由兴奋性神经元和抑制性神经元构成的。
这些神经元通过突触连接在一起,形成神经网络。
在具体实现过程中,神经元之间的连接需要细胞黏附蛋白和神经元特异性受体的配合,这些分子相互作用,使神经元能够形成连接并适应某些特定刺激。
长期的神经形态塑造是通过突触形成和消失来实现的。
神经元在形成突触连接时,需要分泌一系列蛋白质,在适当的环境下构建神经突触,并逐渐形成连接。
而如果在突触形成时出现问题,神经元连接很可能无法形成,这可能导致神经网络功能的改变或缺失。
二、神经环路在神经功能中的作用神经环路在神经功能中起着关键的作用,通过调节神经元之间的相互关系,神经环路可以实现生物体对外部环境的适应和反应。
1. 感官环路感官环路是人体中的一个重要神经环路之一。
这一环路包括人体各种感官器官和神经系统中的传输通路,主要负责人体对外部环境刺激的感知、识别和处理。
当人体接收到外界的刺激时,感官细胞通过神经环路的传递,将信息转化为神经信号,最后到达大脑皮层进行加工和处理,最终产生需要的反应。
2. 运动环路运动环路主要是指控制人体运动的神经环路。
这一环路包括中枢神经系统和运动神经元等组成,它通过传递神经信号控制人体的肌肉运动功能。
因此,想要进行身体某部分的运动,就需要通过神经环路来实现。
3. 记忆环路记忆环路是人体中的重要神经环路之一,支持记忆功能的形成和储存。
人脑中有两种类型的记忆:短时记忆和长时记忆。
短时记忆由前额叶皮质支持,长时记忆则需要通过多次反复的“记忆训练”才能巩固和加深记忆。
当人体获得新的信息时,神经环路中的神经元会激活,将信息分配到几个不同的模块。
神经网络分类

神经网络分类
神经网络分类
1、BP神经网络
BP(BackPropagation)神经网络是一种神经网络学习算法。
其由输
入层、中间层、输出层组成的阶层型神经网络,中间层可扩展为多层。
相邻
层之间各神经元进行全连接,而每层各神经元之间无连接,网络按有教师示
教的方式进行学习,当一对学习模式提供给网络后,各神经元获得网络的输
入响应产生连接权值(Weight)。
然后按减小希望输出与实际输出误差的方向,从输出层经各中间层逐层修正各连接权,回到输入层。
此过程反复交替进行,直至网络的全局误差趋向给定的极小值,即完成学习的过程。
2、RBF(径向基)神经网络
径向基函数(RBF-RadialBasisFunction)神经网络是由J.Moody和
C.Darken在80年代末提出的一种神经网络,它是具有单隐层的三层前馈网络。
由于它模拟了人脑中局部调整、相互覆盖接收域(或称感受野-ReceptiveField)的神经网络结构,因此,RBF网络是一种局部逼近网络,它
能够以任意精度逼近任意连续函数,特别适合于解决分类问题。
神经网络控制

从而使神经网络控制器逐渐在控制作用中占据主
导地位,最终取消反馈控制器的作用;
✓
一旦系统出现干扰,反馈控制器重新起作用。
✓
可确保控制系统的稳定性和鲁棒性,有效提高系
统的精度和自适应能力。
神经网络
控制器
期望输出
()
−1
()
+
-
()
传统控
网络实现;可进行离线辨识,也可进行在线辨识。
+
-
逆向建模
一般而言,建立逆模型对神经网络控制意义重大。
直接逆建模简化结构图:
可用于离线辨识,也可
用于在线辨识。
对 象
+
神经网络
逆模型
缺点:不是目标导向的,系统输入也不可能预先定义。
实际常采用正-逆建模结构。
正-逆建模
神经网络
逆模型
对 象
第3章 神经网络控制
第2部分 控制基础
3.5 神经网络控制基础
3.5.1 神经网络控制的优越性
神经网络可以处理那些难以用模型或规则描述的过
程或系统。
神经网络采用并行分布式信息处理,具有很强的容
错性。
神经网络是本质非线性系统,可实现任意非线性映
射。
神经网络具有很强的信息综合能力,能同时处理大
期望输出
()
稳定的参
考模型
参考模
型输入
()
+
()
()
+
-
神经网络
控制器
()
对象
()
了解神经网络的不同类型及其优势

了解神经网络的不同类型及其优势神经网络是一种模拟人脑神经系统的计算模型,它通过各个神经元之间的连接以及连接权值的调整来实现信息的处理和学习。
随着人工智能领域的发展,神经网络在图像识别、自然语言处理、推荐系统等应用中发挥着重要的作用。
本文将介绍神经网络的不同类型及其优势。
一、前馈神经网络(Feedforward Neural Network)前馈神经网络是最基本的神经网络类型之一,它的信息流只能沿着前向的路径传递,不允许回路出现。
前馈神经网络通常由输入层、隐含层(可能存在多个)、输出层组成。
其中,输入层接收外部输入的数据,隐含层进行信息的处理和转换,输出层输出网络的结果。
前馈神经网络的优势在于其简单性和易于理解。
通过调整连接权值和选择合适的激活函数,前馈神经网络可以实现各种复杂的非线性映射关系,从而适用于多种任务。
二、循环神经网络(Recurrent Neural Network)循环神经网络是一种具有循环连接的神经网络类型,它可以根据以前的计算结果进行自我反馈。
相比于前馈神经网络,循环神经网络具有记忆功能,适用于处理序列数据,比如语音识别、语言模型等。
循环神经网络的优势在于其能够捕捉序列数据中的时间依赖关系。
通过循环连接,网络可以利用之前的状态信息来影响当前的输出,从而实现对历史信息的记忆和利用。
三、卷积神经网络(Convolutional Neural Network)卷积神经网络是一种专门用于处理网格结构数据的神经网络类型,如图像、视频等。
其核心思想是利用卷积层和池化层来提取图像中的特征,最终通过全连接层进行分类或回归任务。
卷积神经网络的优势在于其能够自动学习图像中的特征。
通过卷积操作,网络可以提取图像的局部特征,并通过池化操作减少参数量,使网络具有更好的计算效率和推广能力。
四、生成对抗网络(Generative Adversarial Network)生成对抗网络是由生成器和判别器两个部分组成的,它们通过对抗的方式相互协调来提高网络的性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
内模
控制器 u 对象
D(z)
P(z)
y
内部模型 yˆ
e1
Pˆ ( z )
神经内模控制
7
神经网络控制的多种结构
PID神经网络单变量控制
PID神经网络控制器NNC与单变量对象一起作为广义网络 ,不需辨识复杂 的非线性被控对象,可对其实现有效的控制。
PID神经网络单变量控制结构
8
神经网络控制的多种结构
- PID 控制器
r
u
对象
y
e NNC
学习算法
e2
-
NNI
yˆ
学习算法
-
e1
神经 PID 控制框图
4
神经网络控制的多种结构
神经直接模型参考自适应控制
构造一个参考模型,使其输出为期望输出,控制的目的是使y跟踪yM。
参考模型
yM
r
ur
-y
NNC
对象
-
神经直接模型参考自适应控制
5
神经网络控制的多种结构
依据被控对象的当前状态与再励反馈信号,给出评价信号,对当前的控制 进行评价,确定下步的控制。
评价网络 P(x)
rˆe (k)
控制
u(k)
网络
re (k)
对象
x(k )
动作—评价学习神经控制
12
神经网络控制的多种结构
神经预测控制
预测控制是一种基于模型的控制, 特点:预测模型、滚动优化和反馈校正。 神经预测控制由神经网络实现预测模型NNP。
CMAC 直接逆运动控制
10
神经网络控制的多种结构
CMAC前馈控制
由CMAC实现前馈控制,由常规控制器实现闭环反馈控制,整个控制 结构是前馈反馈控制。
NNC---CMAC
存储器
网络训练
xd
网络回想 un
设定值 xi
发生器
_
常规 控制器
+
uc u
对象
x
CMAC 前馈控制
11
神经网络控制的多种结构
动作—评价学习神经控制
神经间接模型参考自适应控制
构造一个参考模型,使其输出为期望输出,控制的目的,是使y跟踪yM。
对象特性非线性、不确定、不确知时采用。
参考模型
yM
e2
r
u
-y
NNC
对象
-
e1
-
NNI
yˆ
神经间接模型参考自适应控制 6
神经网络控制的多种结构
神经内模控制
具有结构简单、性能良好的优点。
滤波器
re
g
_ F(z)
r
u
y
对象
非线性优化器
-
-
NNP
滤波器Βιβλιοθήκη 神经预测控制13结束
神经网络控制
多种结构
神经网络控制的多种结构
神经直接自校正控制
神经控制器 NNC 与对象串联,实现 P 的逆模型P1 ,且能在线调整。
输出 y 跟踪输入 r 的精度,取决于逆模型的精度。 不足:开环控制结构,不能有效的抑制扰动。
r
u
y
NNC(Pˆ 1)
对象
)
-
NNiI ( Pˆ 1 )
神经直接自校正控制
PID神经网络多变量控制
PID神经网络控制器NNC与多变量对象一起作为广义网络 ,不需辨识复杂 的非线性被控对象,可对其实现有效的控制。
9
神经网络控制的多种结构
CMAC直接逆运动控制
CMAC用于逆运动控制例——机械手控制问题。
x
ˆ
xˆ
ˆ f 1(x)
末端位置 理想轨迹
CMAC
机械手
末端位置 实际轨迹
2
神经网络控制的多种结构
神经间接自校正控制
由神经辨识器NNI在线估计对象参数,用调节器(或控制器)实现参数的 自动整定相结合的自适应控制。
控制器设计
NNI
r
u
y
自校正控制器
对象
神经自校正控制框图
3
神经网络控制的多种结构
神经PID控制
由辨识器NNI在线辨识对象,对控制器NNC的权系进行实时调整,使系统 具有自适应性,从而达到控制目的。