分子遗传学-病毒
分子病毒学 3病毒受体

(二)受体和配体在共同进化过程中的相互影响
与受体发生完全结合的大分子通常被称为配体(ligand)。 由于病毒可以和特定的受体结合,因此,亦可以把病毒―― 受体间的关系看作是配体与受体的关系。 从一些配体与受体对的共进化关系来推测病毒与受体关系的 发生和发展过程。 蛋白质与蛋白质的相互作用所导致的氨基酸分子变异,本 身就是进化过程中的一个主要作用因素。提出这样一个问题, 即病毒与宿主细胞之间的关系是否是一个由于相互之间在一 定时期内作用和接触而导致的接触表面相关氨基酸置换,最 终形成相互适应和吻合的作用部位,亦就是受体和病毒的特 异结合位点。
病毒进化的基本特征
1、新病毒不断产生,而且基本上是从另一种宿主的 病毒演化而来。 2、新病毒产生后,在新的宿主以较快的速度进行变 异分化。 例如:
犬细小病毒是新病毒,猫的细小病毒是老病毒,两者差异不大, 但是犬细小病毒进化速度较快。 对流感病毒而言,人的流感病毒是新病毒,禽流感病毒是老病 毒;人流感病毒进化较快。 对慢病毒而言,人免疫缺陷病毒是新病毒,猴免疫缺陷病毒是 老病毒,人的免疫缺陷病毒进化比猴的免疫缺陷病毒快。
3、新病毒稳定后,病毒的毒力大多处在中等水平。
如: 兔黏液病病毒在澳大利亚释放之后的10几年的跟踪研究,发 现强毒株逐步演变为以中等毒力为主的病毒。 副粘病毒引起的禽NDV在我国开始流行时,毒力很强,这 些年来逐渐产生了一些弱毒株,但整体上既不是以强毒为主, 也不是以弱毒为主,而是以中等毒力为主。
结合后病毒的基因组是如何进入细胞?
多数有包膜病毒往往一经接触后就与宿主细胞的多个受体立 即发生不可逆的结合,通过毒粒包膜与细胞膜融合进入胞浆, 在这个融合过程或多或少会有一部分病毒的核衣壳要进入到胞 浆。无包膜病毒则不同,只有当受体移行至毒粒,才能发生不 可逆性的结合,而且发现核衣壳在这个过程中并不进入胞浆。 有包膜病毒与无包膜病毒在不可逆结合上存在明显差异,可 能原因:有包膜病毒受体是糖蛋白,在细胞膜表面的分布十分 丰富,而无包膜病毒的受体虽然也可能是糖蛋白,但在细胞膜 表面的分布不十分丰富。对于那些较大的,结构较复杂的病毒, 如Reo病毒,痘病毒等也是通过受体介导的内吞作用使完整的病 毒进入到细胞内。而对大多数病毒而言,单纯的吞噬作用仅仅 是病毒与宿主细胞间一种简单的结合,这种简单的结合并不能 造成感染的发生。可能是一种特殊的形式吞噬作用,而决定能 否进入细胞,病毒的特异性受体起到关键性作用 。
分子遗传学第一章

大连水产学院 分子遗传学第一章
是遗传学
24
3.基因突变方面 3.基因突变方面
1927年穆勒和1928年斯塔德勒就用X 1927年穆勒和1928年斯塔德勒就用X射线等诱发了果蝇 年穆勒和1928年斯塔德勒就用 和玉米的基因突变, 和玉米的基因突变,但是在此后一段时间中对基因突 变机制的研究进展很慢, 变机制的研究进展很慢,直到以微生物为材料广泛开 突变机制研究和提出DNA DNA分子双螺旋模型以后才取 展,突变机制研究和提出DNA分子双螺旋模型以后才取 得显著成果。例如碱基置换理论便是在T4 碱基置换理论便是在T4噬菌体的诱 得显著成果。例如碱基置换理论便是在T4噬菌体的诱 变研究中提出的,它的根据便是DNA DNA复制中的碱基配对 变研究中提出的,它的根据便是DNA复制中的碱基配对 原理。 原理。
大连水产学院
分子遗传学第一章
9
2.遗传学研究的对象: 2.遗传学研究的对象: 遗传学研究的对象
以微生物(细菌、真菌、病毒)、 以微生物(细菌、真菌、病毒)、 植物和动物以及人类为对象,研究其 植物和动物以及人类为对象,研究其 遗传变异规律。 遗传变异规律
分子遗传学名词解释

2014分子遗传学复习一、名词解释1、结构基因(Structural gene):可被转录形成mRNA,并进而翻译成多肽链,构成各种结构蛋白质,催化各种生化反应的酶和激素等。
2、调节基因(Regulatory gene):指某些可调节控制结构基因表达的基因,合成阻遏蛋白和转录激活因子。
其突变可影响一个或多个结构基因的功能,或导致一个或多个蛋白质(或酶)量的改变。
3、基因组(genome):基因组(应该)是整套染色体所包含的DNA分子以及DNA 分子所携带的全部遗传指令。
或单倍体细胞核、细胞器或病毒粒子所含的全部DNA或RNA。
4、C值悖理(C-v a l u e p a r a d o x):生物基因组的大小同生物在进化上所处的地位及复杂性之间无严格的对应关系,这种现象称为C值悖理(C——value paradox)。
N值悖理(N-v a l u e p a r a d o x):物种的基因数目和生物进化程度或生物复杂性的不对应性,这被称之为N(number of genes)值悖理(N value paradox)或G(number of genes)值悖理。
5、基因家族(gene family):由同一个祖先基因经过重复(duplication)和变异进化而形成结构和功能相似的一组基因,组成了一个基因家族。
6、孤独基因(orphon):成簇的多基因家族的偶尔分散的成员称为孤独基因(orphon) 。
7、假基因(pseudogene): 多基因家族经常包含结构保守的基因,它们是通过积累突变产生,来满足不同的功能需要。
在一些例子中,突变使基因功能完全丧失,这样的无功能的基因拷贝称为假基因,经常用希腊字母表示8、①卫星DNA(Satellite DNA):是高等真核生物基因组重复程度最高的成分,由非常短的串联多次重复DNA序列组成。
②小卫星DNA(Minisatellite DNA) :一般位于端粒处,由几百个核苷酸对的单元重复组成。
细菌和病毒的遗传学分析

用不同的Hfr菌株进行中断杂交实验所作出的大肠杆菌基因连锁图,其基因向F-细胞转移的顺序大不相同。
重组作图
01
当转移时间间隔在两分钟之内, 如已知lac与ade紧密连锁,距离约为1分钟,中断杂交作图就不可靠,须用传统的重组作图(recombination mapping)
01
不用亲本类型 两对基因间的交换频率,必须在形成部分二倍体的条件下,计算重组率。 部分二倍体如果不发生重组,无法鉴别。 接合重组不产生相反的重组类型
低频重组与高频重组
高频重组(High frequence recombination, Hfr)
F因子整合到了细菌染色体上,与F-细胞接合后将供体染色体的一部分或全部传递给F-受体,当供体和受体的等位基因带有不同的遗传标记时,可观察到它们之间发生重组,频率可达到10-2以上,称为高频重组品系(菌株)
杂合DNA复制后,形成一个亲代类型的DNA和一个重组类型的DNA并导致转化细胞的形成与表达。
转化的进程
4 共转化与遗传图谱绘制
共转化:供体的一条DNA片段上的两个基因同时转换的现象。 利用共同转化绘制细菌连锁遗传图谱的基本原理: 相邻基因发生共同转化的概率与两者的距离间成正向关系,基因间距离越近,发生共同转化的频率越高,反之越低。 因此可能通过测定两基因共同转化的频率来指示基因间的相对距离。
数理与生物工程学院
单击添加副标题
遗 传 学
单击添加副标题
第七章细菌和病毒的遗传学分析
目录
1
2
二 细菌的接合与染色体作图
1.接合现象的发现
细菌的接合首先是莱德伯格( Lederberg )和塔特姆( Tatum )在1946大肠杆菌杂交试验中发现的。
第十章 DNA、RNA的生物合成

400 40 20 109 90 140 有 有 有 有 有 无 有 有 有 聚合核苷酸数/分钟/分子(37℃) 1000 50 15000 主要功能 修复等 修复作用 复制
────────────────────────
表13-2 真核细胞中DNA聚合酶的性质 ───────────────────── DNA聚合酶 性质 -------------------------------------------------------
α
β
γ
δ
ε
───────────────────── 分布 细胞核 细胞核 线粒体 细胞核 细胞核 分子量(kd) >250 36-38 160-300 170 256 3’ →5’外切酶活性 无 无 有 有 有 5’ →3’聚合作用 有 有 有 有 有 主要功能 复制 损伤修复 复制 复制 复制,损伤修复
3、DNA的损伤修ranscription)
概念
以RNA为模板,dNTP为原料,反转录酶 催化,按碱基配对规律合成DNA的过程。 反转录酶, 又称为依赖RNA的DNA聚合酶 (RNA-dependent DNA polymerase, RDDP)
DNA 转录 RNA RNA(病毒)
2.半保留复制的实验证据:
1958年Meselson和Stahl用同位素15N标记大 肠杆菌DNA,首先证明了DNA的半保留复制。
DNA的复制的方式-----DNA半保留复制
1958, Messelson and Stahl 实验证实
含15N-DNA的细菌
普通DNA
培养于普 通培养液
第一代 细菌的DNA双链 (蓝线的代表含15N)
作用:防止重新形成双 链和防止单链模板 被核酸酶水解,维持DNA单链状态和完整性
现代分子生物学 第三版 课后习题及答案(整理版)

朱玉贤-现代分子生物学第三版课后习题及答案(整理版)现代分子生物学课后习题及答案(共10章)第一章绪论1.你对现代分子生物学的含义和包括的研究范围是怎么理解的?答:分子生物学是从分子水平研究生命本质的一门新兴边缘学科,它以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为研究对象,是当前生命科学中发展最快并正在与其它学科广泛交叉与渗透的重要前沿领域。
狭义:偏重于核酸的分子生物学,主要研究基因或DNA的复制、转录、表达和调节控制等过程,其中也涉及与这些过程有关的蛋白质和酶的结构与功能的研究。
分子生物学的发展为人类认识生命现象带来了前所未有的机会,也为人类利用和改造生物创造了极为广阔的前景。
所谓在分子水平上研究生命的本质主要是指对遗传、生殖、生长和发育等生命基本特征的分子机理的阐明,从而为利用和改造生物奠定理论基础和提供新的手段。
这里的分子水平指的是那些携带遗传信息的核酸和在遗传信息传递及细胞内、细胞间通讯过程中发挥着重要作用的蛋白质等生物大分子。
这些生物大分子均具有较大的分子量,由简单的小分子核苷酸或氨基酸排列组合以蕴藏各种信息,并且具有复杂的空间结构以形成精确的相互作用系统,由此构成生物的多样化和生物个体精确的生长发育和代谢调节控制系统。
阐明这些复杂的结构及结构与功能的关系是分子生物学的主要任务。
2.分子生物学研究内容有哪些方面?答:分子生物学主要包含以下三部分研究内容:A.核酸的分子生物学,核酸的分子生物学研究核酸的结构及其功能。
由于核酸的主要作用是携带和传递遗传信息,因此分子遗传学(moleculargenetics)是其主要组成部分。
由于50年代以来的迅速发展,该领域已形成了比较完整的理论体系和研究技术,是目前分子生物学内容最丰富的一个领域。
研究内容包括核酸/基因组的结构、遗传信息的复制、转录与翻译,核酸存储的信息修复与突变,基因表达调控和基因工程技术的发展和应用等。
遗传信息传递的中心法则(centraldogma)是其理论体系的核心。
病毒学总结
病毒学总结绪论一、病毒的定义病毒是一种无分裂、无生长、无蛋白质合成的成套“机器”,但依靠寄主合成必需组分以组装成颗粒状的亚显微的胞内绝对寄主生物。
病毒实际上就是有一个保护型的外壳包裹的一段RNA 或DNA,利用进化的力量,这些简单的生物体可以在所感染的细胞内以寄生形式复制,同时,也能在细胞外保持极强的生命力。
二、病毒的特点1.无细胞结构,仅含一种类型的核酸--DNA或RNA作为遗传信息的载体,至今尚未发现二者兼有的病毒。
在RNA病毒,全部遗传信息都在RNA上编码,为十分独特的生物学现象。
2.大部分病毒没有酶或酶系统极不完全,不含催化能量代谢的酶,不含有功能性核糖体或其他细胞器,不能进行独立的代谢功能。
3.严格的活细胞内寄生,不能生长也不进行二均分裂,不能在无生命的培养基中增殖,必须依赖宿主细胞进行自身的核酸复制,形成子代。
4.个体极小,能通过细菌滤器,在电子显微镜下才可看见。
5.在寄主细胞内的病毒对各种化学药剂和抗菌素不敏感。
三、病毒性质的两重性(一)病毒生命形式的两重性1.病毒存在的两重性:细胞内形式和细胞外形式2.病毒的结晶性与非结晶性:3.病毒的颗粒形似与基因形式(二)病毒结构和功能的两重性1.标准病毒(standard virus)与缺陷病毒(defective virus particle) 或缺陷干扰颗粒(defective interfering particle)2.假病毒(pseudovirus)与真病毒3.杂种病毒与纯种病毒(三)病毒病理学的两重性1.病毒的致病性与非致病性2.病毒感染的急性与慢性四、病毒存在必须解决的3个问题1.如何在感染一个细胞后进行自身增值;2.如何从一个个体向另一个个体传播;3.如何逃避宿主的防御性攻击。
五、病毒学研究的主要目的:1、有效预防和控制病毒性疾病的发生和流行;2、通过对病毒的研究,更多地了解生命本质的一些基本问题;3、利用病毒为人类造福六、病毒学发展的动力一、病毒是一类重要的传染病病原。
分子遗传学复习题(09)
分子遗传学复习题一、名词解释1.nucleosome,chromosome,genome2.exon,intron3.mRNA,rRNA,tRNA4.cDNA,B-DNA5.PCR6.RFLP,RAPD7.卫星DNA(satellite DNA),Z型DNA(Z-DNA)8.S-D序列(S-D sequence);RNA剪接;RNA编辑9.CA T框(CA T box)10.转座子(transposon)操纵子(operon)11.半保留复制12.冈崎片段13.转录:14.逆转录。
15.翻译16.中心法则17.密码子18.复制叉19.前导链20.RNA的复制21.密码的简并性22.同义密码子23.逆转录酶24.模板链(template strand)25.非模板链(nontemplate strand)26.基因组学27.核基因组28.基因簇29.假基因30. 核酸分子杂交(uncleic acid hybridization)二、判断题1.DNA不仅决定遗传性状,而且还直接表现遗传性状。
2.原核生物DNA的合成是单点起始,真核生物为多点起始。
3.构成密码子和反密码子的碱基都只是A、U、C、G。
4.以一条亲代DNA(3’→5’)为模板时,子代链合成方向5’→3’,以另一条亲代DNA 链5’→3’)为模板时,子代链合成方向3’→5’。
5.在DNA生物合成中,半保留复制与半不连续复制是指相同概念。
6.密码子在mRNA上的阅读方向为5’→3’。
7.目前发现的逆转录酶大部分来自于病毒粒子。
8.每—种氨基酸都有两种以上密码子。
9.RNA的生物合成不需要引物。
10.大肠杆菌的mRNA在翻译蛋白质之前不需要加工。
11.一种tRNA只能识别一种密码子。
12.冈崎片段的合成需要RNA引物。
13.转录时,RNA聚合酶的核心酶沿模板DNA向其5’端移动。
14.以单链DNA为遗传载体的病毒,DNA合成时一般要经过双链的中间阶段。
分子遗传学
1.分子遗传学:是研究遗传信息大分子的结构和功能的科学。
它依据物理、化学的原理来解释生命遗传现象,并在分子水平上研究遗传机制及遗传物质对代谢过程的调控。
2.分子遗传学研究对象:从基因到表型的一切细胞内与遗变异有关的分子事件。
不仅仅包括中心法则中从DNA到蛋白质的过程。
分子遗传学研究内容:遗传信息大分子在生命系统中的储存、复制、表达及调控过程。
分子遗传学研究目标:明确遗传信息大分子对生物表型形成的作用机制。
第二章基因1.从遗传学史的角度看,基因概念大致分以下几个阶段:泛基因(或前基因)→孟德尔(遗传因子)→摩尔根(基因):基因是功能单位(决定性状),基因是突变单位(基因是突变的最小结构),交换单位(交换的最小结构)三位一体的组合。
→顺反子:在一个等位基因内部发生两个以上位点的突变,如两个突变位点位于同一染色体上,为顺式结构,生物个体表现为野生型;突变位点分别位于两个同源染色体上,为反式结构,生物个体表现为突变型。
即其顺式和反式结构的表型效应是不同的。
一个具有顺反效应的DNA片段就是一个顺反子,代表一个基因。
(或者具有顺反效应的DNA片段就是一个基因)(基因内部这些不同位点之间还可以发生交换和重组:一个基因不是一个突变单位,也不是一个重组单位)→操纵子:基因是一个转录单位,是一个以不同来源的外显子为构件的嵌合体,处于沉默的DNA介质(内含子)中→现代基因2.鉴定基因的5个标准1)基因具有开放性阅读框ORF。
2)基因往往具有一定的序列特征。
3)基因序列具有一定的保守特性。
4)基因能够进行转录。
5)通过基因失活产生的功能改变鉴定基因。
(能排除假基因的干扰)3.蛋白质基因:能够自我复制的蛋白质病毒因子。
朊病毒:一类不含核酸而仅由蛋白质构成的可自我复制并具有感染性的因子。
4.基因组印记(genomic imprinting):由于一些可遗传的修饰作用(如DNA、组蛋白甲基化作用)控制着亲本中某个单一的等位印记基因活性,从而导致个体在发育上的功能差异,使个体具有不同的性状特征。
分子遗传学
分子遗传学分子遗传学复习重点名词解释:RNA编辑:mRNA因核苷酸的插入、缺失或替换而改变了源自DNA模板的遗传信息,翻译出不同于基因编码的氨基酸序列,称为RNA编辑(RNA editing)C值及C值悖论:生物体的单倍体基因组所含DNA的总量称为C 值。
生物基因组的大小同生物在进化上所处地位的高低及复杂性之间无严格的对应关系,这种现象通常称为C值悖理假基因:核苷酸序列与相应正常功能基因基本相同,但没有编码蛋白质能力的基因或不产生有功能产物的基因RNA干涉(RNA interference,RNAi)是正常生物体内一些小的双链RNA,可有效地阻断靶基因表达的现象。
当向细胞中导入与内源性mRNA同源的双链RNA (double stranded RNA,dsRNA)小分子时,可导致该mRNA降解,从而高效、特异的阻断体内特定基因的表达,导致基因沉默。
转座子:是存在于染色体DNA上可自主复制和转位的基本单位。
程序性细胞死亡(PCD):多细胞生物体的一些细胞当不再为生物体所需或是已受到损伤时,会激活受遗传控制的自杀机构而自我毁灭。
抗原:一类能诱导机体发生免疫应答并能与相应的应答产物(如抗体)发生特异性免疫反应的大分子物质。
又称免疫原半抗原:缺乏免疫原性而有免疫反应性的物质。
抗体:在抗原物质的刺激下,由浆细胞产生的一类能与相应抗原在体内外发生特异性结合的免疫球蛋白DNA甲基化:在DNA甲基转移酶的催化下,利用S-腺苷蛋氨酸提供的甲基,将胞嘧啶第5位碳原子甲基化,从而使胞嘧啶转化为5甲基胞嘧啶。
遗传图谱:又称遗传连锁图,是指基因或DNA标记在染色体上的相对位置与遗传距离。
物理图谱:是指各遗传标记之间或DNA序列两点之间,以物理距离来表示其在DNA分子上的位置而构成的位置图,以实际的碱基对(bp)或千碱基对(Kb)或百万碱基对(Mb)长度来度量其物理距离。
Kazak序列:许多真核生物mRNA的5'端起始密码子附近有一段短的保守序列,可促进核糖体小亚基识别起始密码子,该序列为(GCC)RCCA TGG.miRNA:即小RNA,长度为22nt左右,5'端为磷酸基团,3'端为羟基。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流感病毒
D.复杂的病毒结构--- 弹状病毒, 狂犬病病毒
ss(-) RNA, Ø = 80 nm, length = 80 nm
D. 病毒的化学成分
• 核酸: 1-30%, 分为RNA或DNA, 分子量在 3.5kb-280kb 之间,携带基因数量在3—100个之间. • 蛋白质: 5-80%, 部分病毒仅有一种结构蛋白(capsid), 存 在于病毒颗粒表面(如多数植物病毒),而另一部分则具有 两种或更多种类的结构蛋白(capsid,glycoprotein等), 构 成病毒粒子的不同结构或功能区域。 • 脂类: 0-20%, 存在于包膜病毒, 来源于寄主细胞 • 碳水化合物: 0-3%, 多结合形成包膜病毒的糖蛋白 • 水: ≤50%, 以结合态存在于病毒粒子中
M.H.V. van Regenmortel, et. al. (2000).
分类依据
• • • • 形态学 ---大小, 形状, 有无包膜 理化性质---分子量, 热稳定性, 离子稳定性 基因组---RNA, DNA , 分段(segmented )等 大分子成分和复制类型
• The DNA virus The ssDNA virus The dsDNA virus • The RNA virus The dsRNA virus The negative-stranded ssRNA virus The positive-stranded ssRNA virus • The DNA & RNA reverse transcribing virus
The
DNA & RNA reverse transcribing virus
1. ds DNA Virus
多为动物病毒和噬菌体。研究较多的如 SV40、 腺病毒、λ噬菌体和T4 噬菌体等。它们均采用与寄主 相同的半保留方式进行复制, 但复制的场所及具体过 程有所不同。
疱疹病毒
腺病毒
T4 噬菌体
复 制 类 型
1. 真核寄主病毒
• • 仅限于寄主细胞核内进行复制 , 对细胞因子的依赖程度较高 ( 无 DdRp)。如乳多空病毒科(C)、疱疹病毒科(L)、腺病毒(L)。 在细胞质内进行复制 , 自身含有转录及复制的绝大部分因子 , 对 于细胞因子的依赖程度较低。如痘病毒(L)等。
2.原核寄主病毒 ( λ 噬菌体)
在溶原侵染和溶菌侵染中存在着不同的DNA复制方式。
复 制 特 点
ds DNA病毒具有与细胞ds DNA相似的基因组, 基本上采用细胞基因相同的机制进行复制(半保留复制) 和表达。
2. ssDNA Virus
基因组一般较小(3.0-6.0kb), 多数对于 寄主细胞的依赖程度极高, 如细小病毒科、 微小噬菌体科(φX174)、联体病毒科。复制在 细胞核内进行, 通过合成一条负链做为模板
第 二 节
病毒的形态结构与分类
What does a virus look like?
A. 螺旋体---(杆状, TMV)
亚基
(Subunit)
Capsid (外壳)
(nucleocapsid)
Virion
螺旋体---(丝状, fd, M13 phage)
ssDNA (circlar)
B. 二十面体 Icosahedron (等轴体, Isometric)
株受侵染的球根可以换到数头公牛、猪或者绵羊,几吨
谷物,成千磅干酪,甚至一个磨房。一个年青的姑娘以 拥有一只杂色花作为她的嫁妆而感到无比的幸福。
对病毒的早期认识---利用疫苗对病毒病的防治
牛痘接种防治天花---古代接种术(1796)
巴斯德(Louis Pasteur, 1822-1895)
发明了狂犬病疫苗(1885)
第 八 章
病 毒
李 大 伟
(中国农业大学农业生物技术国家重点实验室)
• 病毒的定义 • 病毒的形态结构与分类 •病毒基因组的复制与表达
主要参考书籍
1. Alan J. Cann, Principles of Molecular Virology(1, 2, 3 ed.), Academic Press.
3. How are viruses classified?
The International Committee on Taxonomy of Viruses
Virus Taxonomy, VIIth report of the ICTV.
The Seventh Report of the International Committee on Taxonomy of Viruses.
Martinus Beijerinick (1851-1931)
证明在经过可吸附细菌的琼脂扩 散后, 这种侵染物仍可导致烟草花叶 提出了“Virus”和“Vaccination”之词 病。他将此侵染物称为“侵染性活 液”, 并也采用了“Virus”一词。
对于病毒本质的认识
Wendell Meredith Stanley (1904-1971)
• An axis of two-fold rotational symmetry through the centre of each edge.
PhiX174 phage
FMDV
Cucmber mosaic virus
Lamda phage/ T7 phage (head)
C. 包膜病毒
疱疹病毒
• • •
单链环状RNA分子, 无外壳蛋白, 核苷酸长度为246-375nt, 富含G+C (53-60%) 环状分子高度碱基配对, 形成双股螺旋结构, 外形呈杆状
在寄主植物中可自我复制
2. 朊病毒 (Prions)
一类仅含有蛋白质的侵染性病原物, 导致动物或人类中枢神经系统的慢性 病变, 并可以“遗传”。如:疯牛病 (mad cow )、羊骚痒病 、人G-S综合 症 、老年痴呆(C-J病) 、人振颤病(海绵状脑硬化)等。
疯牛病是由一种Prion侵染引起的,它也可以感染人而引起神经系统疾病。在正 常机体中,Prion是正常神经活动所需要的蛋白质,而致病Prion与正常Prion的一 级结构完全相同,只是空间结构(折叠状态)不同。
病毒的重要特性
严格的寄生性
离开寄主细胞便不能进行繁殖并会失活。必须有寄主的遗传信息、能量
进行正链合成。
细小病毒(Parvovirus)
无包膜,基因组约5kb, 线状, 含有一定比例的正意链 (positive),但大部分区域为负意链(negative)。复制过程 中基因组5’和3’末端的回文序列(约100-200 base)可形成 “发卡”/“Y”型结构。
rep cap
Terminal palindrome
What is a virus?
• 一类亚显微细胞内寄生物
• 颗粒由预先合成的组份装配而成, 不能够生 长或分裂 • 含有蛋白质、核酸,在某些病毒中含有脂类
• 不具备能量代谢或蛋白质合成所必需的酶系 统和核糖体,需依赖寄主方能进行复制
---A. J. Cann, 2001, Principle of Molecular Virology(3rd Ed.)
遗症,这可能是病毒感染
的第一个史载记录
Smallpox (天花)
Rabies (狂犬病)
Endemic in China by 1000BC Endemic in Europe by AD 16-17
关于植物病毒病害的记载
• 荷兰郁金香杂色病(1576) • 欧洲马铃薯退化病(1775)
Dubos(1958)曾描述了当时流行的“郁金香热”: 一
1. 多样性
• • • 基本形式的多样性 复制、表达中间形式的多样性 内部结构的多样性(寄主依赖性)
2. 最小化趋势
• • • 基因(ORF)重叠 同一序列的多重功能 单链RNA
3. 高度变异性
• • • 基因突变 基因重组/重配 选择压力
The DNA virus The dsDNA virus The ssDNA virus The RNA virus The dsRNA virus The positive -stranded ssRNA virus The negative -stranded ssRNA virus
2. 阎隆飞 张玉麟,1997,分子生物学,中国农业大学出版社.
第一节
病毒的定义
Viruses are probably as old as life on earth.
脊髓灰质炎病毒(Poliovirus) 与 小儿麻痹症(Paralytic Poliomyelitis)
公元前14世纪古埃及长老 石刻象显示了小儿麻痹后
Phillip A. Sharp (1944 ---), 1977年发现腺病毒基因组中存在基因剪切现象 (gene splicing),1993年获诺贝尔奖。
Fred Sanger(1918-) 1977年建立了DNA序列分析方法, 并对ΦX174 噬菌体的单链DNA序列进行了测定。因此获得 诺贝尔奖。
Gallo & Montagnier 1983年分离到一种与爱滋病(AIDS, Acquired Immunodeficiency Syndrome)有关的逆转录病 毒。
R. Beachy 1986年利用烟草花叶病毒外壳蛋白基因转化植物, 获得抗TMV侵染的基因工程植株。这一研究为抗 病毒动植物基因工程奠定了基础。(Chen)
Stanley B Prusiner(1942-) 发现朊病毒(Prions),1997年获诺贝尔奖。
病毒与其它生物的比较
与病毒类似的亚病毒(subvirus)
1. 类病毒 (Viroids)
为目前已知最小的独立侵染核酸分子 , 由 Diener 在 1971 年首次发现 (PSTVd), 主要存在于植物寄主中。