微积分发展史

合集下载

微积分发展简史

微积分发展简史

微积分发展简史一、微积分的创立微积分中的极限、穷竭思想可以追溯到两千五百年前的古希腊文明,著名的毕达哥拉斯学派,经过了漫长时期的酝酿,到了17世纪,在工业革命的刺激下,终于通过牛顿(Newton)和莱布尼兹(Leibniz)的首创脱颖而出了。

大约从15世纪初开始的文艺复兴时期起,工业、农业、航海事业与上古贸易的大规模发展,刺激着自然科学蓬勃发展,到了17世纪开始进入综合突破的阶段,而所有这些所面临的数学困难,最后汇总成四个核心问题,并最终导致微积分的产生。

这四个问题是:1.运动中速度、加速度与距离之间的虎丘问题,尤其是非匀速运动,使瞬时变化率的研究成为必要;2.曲线求切线的问题,例如要确定透镜曲面上的任一点的法线等;3.有确定炮弹最大射程,到求行星轨道的近日点与远日点等问题提出的求函数的极大值、极小值问题;4.当然还有千百年来人们一直在研究如何计算长度、面积、体积与重心等问题。

第一、二、三问题导致微分的概念,第四个问题导致积分的概念。

微分与积分在17世纪之前还是比较朦胧的概念,而且是独立发展的。

开普勒(Kepler)、伽利略(Galileo)、费马(Fermat)、笛卡尔(Descartes)、卡瓦列里(Cavalieri)等学者都做出了杰出贡献。

1669,巴罗(Barrow,牛顿的老师)发表《几何讲义》,首次以几何的面貌,用语言表达了“求切线”和“求面积”是两个互逆的命题。

这个比较接近于微积分基本定理。

牛顿和莱布尼兹生长在微积分诞生前的水到渠成的年代,这时巨人已经形成,牛顿和莱布尼兹之所以能完成微积分的创立大业,正事由于它们占到了前辈巨人们的肩膀上,才能居高临下,才能高瞻远瞩,终于或得了真理。

可以这样说:微积分的产生是量变(先驱们的大量工作的积累)到质变(牛顿和莱布尼兹指出微分与积分是对矛盾)的过程,是当时历史条件(资本主义萌芽时期)下的必然产物。

微积分基本定理的建立标志着微积分的诞生。

牛顿自1664年起开始研究微积分,钻研了伽利略、开普勒、瓦利斯(Wallis),尤其是笛卡尔的著作。

微积分发展简史

微积分发展简史

微积分发展简史一、微积分的创立微积分中的极限、穷竭思想可以追溯到两千五百年前的古希腊文明,著名的毕达哥拉斯学派,经过了漫长时期的酝酿,到了17世纪,在工业革命的刺激下,终于通过牛顿(Newton)和莱布尼兹(Leibniz)的首创脱颖而出了。

大约从15世纪初开始的文艺复兴时期起,工业、农业、航海事业与上古贸易的大规模发展,刺激着自然科学蓬勃发展,到了17世纪开始进入综合突破的阶段,而所有这些所面临的数学困难,最后汇总成四个核心问题,并最终导致微积分的产生。

这四个问题是:1. 运动中速度、加速度与距离之间的虎丘问题,尤其是非匀速运动,使瞬时变化率的研究成为必要;2. 曲线求切线的问题,例如要确定透镜曲面上的任一点的法线等;3. 有确定炮弹最大射程,到求行星轨道的近日点与远日点等问题提出的求函数的极大值、极小值问题;4. 当然还有千百年来人们一直在研究如何计算长度、面积、体积与重心等问题。

第一、二、三问题导致微分的概念,第四个问题导致积分的概念。

微分与积分在17世纪之前还是比较朦胧的概念,而且是独立发展的。

开普勒(Kepler )、伽利略(Galileo )、费马(Fermat)、笛卡尔(Descartes )、卡瓦列里(Cavalieri )等学者都做出了杰出贡献。

1669,巴罗(Barrow,牛顿的老师)发表《几何讲义》,首次以几何的面貌,用语言表达了“求切线”和“求面积”是两个互逆的命题。

这个比较接近于微积分基本定理。

牛顿和莱布尼兹生长在微积分诞生前的水到渠成的年代,这时巨人已经形成,牛顿和莱布尼兹之所以能完成微积分的创立大业,正事由于它们占到了前辈巨人们的肩膀上,才能居高临下,才能高瞻远瞩,终于或得了真理。

可以这样说:微积分的产生是量变(先驱们的大量工作的积累)至V质变(牛顿和莱布尼兹指出微分与积分是对矛盾)的过程,是当时历史条件(资本主义萌芽时期)下的必然产物。

微积分基本定理的建立标志着微积分的诞生。

微积分学的发展史

微积分学的发展史

微积分学的发展史微积分学是数学的一个重要分支,它研究变量在某一变化过程中的变化规律,广泛应用于物理学、工程学、经济学等领域。

本文将回顾微积分学的发展历程,从其历史起源到现代应用,以便更好地理解这一重要学科。

微积分学起源于17世纪,当时科学家们开始研究物体的运动规律,例如物体的速度、加速度等。

这些研究需要数学工具来分析变化过程,于是微积分学应运而生。

微积分的最初发展由牛顿和莱布尼兹两大巨头分别独立给出,他们从不同的角度解决了微积分的基本问题。

牛顿是一位著名的物理学家,他在研究力学的过程中创立了微积分学。

他将物体的运动规律表示为数学方程,然后通过求解这些方程来获得物体的运动轨迹和性质。

这种做法为微积分学提供了重要的物理背景和实践应用,推动了微积分学的发展。

莱布尼兹是一位杰出的数学家,他在研究代数和几何的过程中独立发展出了微积分学。

他将数学中的无限小量、极限等概念引入微积分学,为微积分学提供了更为严格和系统的数学基础。

莱布尼兹的贡献为微积分学在数学领域的发展和应用打下了坚实的基础。

笛卡尔是一位杰出的哲学家和数学家,他在研究几何学的过程中提出了笛卡尔引理,为微积分学提供了重要的哲学基础。

该引理表明,几何图形可以由其元素之间的关系来确定,这种思想为微积分学中极限、导数等概念的形成提供了重要的启示。

欧拉是一位杰出的数学家和物理学家,他在研究力学和流体力学的过程中提出了欧拉公式,为微积分学在物理学领域的应用提供了重要的工具。

该公式可以用以描述物体在受力作用下的运动规律,为微积分学在物理学中的应用提供了重要的实例。

现代微积分学已经发展成为一门极其重要的学科,它在物理学、工程学、经济学等领域都有广泛的应用。

例如,在物理学中,微积分可以描述物体的运动规律、电磁场、引力场等;在工程学中,微积分可以用于优化设计、控制工程、计算机图形学等;在经济学中,微积分可以用于预测市场趋势、金融风险管理、人口模型等。

随着科学技术的发展,微积分学的应用前景将更加广阔。

微积分产生的背景

微积分产生的背景

微积分的创立者是牛顿和莱布尼兹严格微积分的奠基者是柯西和威尔斯特拉斯关于微积分的故事,曾经一度迷惑着我,今天有幸弄清其中原委,以消心中疑云。

微积分的萌芽可以追溯到古代的希腊、中国和印度,酝酿于17世纪的欧洲。

1.牛顿和莱布尼兹创立了微积分1.1 牛顿的“流数术”牛顿(I.Newton,1642-1727)1642年生于英格兰伍尔索普村的一个农民家庭。

1661年牛顿进入剑桥大学三一学院,受教于巴罗。

笛卡儿的《几何学》和沃利斯的《无穷算术》,这两部著作引导牛顿走上了创立微积分之路。

牛顿于1664年秋开始研究微积分问题,在家乡躲避瘟疫期间取得了突破性进展。

1666年牛顿将其前两年的研究成果整理成一篇总结性论文—《流数简论》,这也是历史上第一篇系统的微积分文献。

在简论中,牛顿以运动学为背景提出了微积分的基本问题,发明了“正流数术”(微分);从确定面积的变化率入手通过反微分计算面积,又建立了“反流数术”;并将面积计算与求切线问题的互逆关系作为一般规律明确地揭示出来,将其作为微积分普遍算法的基础论述了“微积分基本定理”。

这样,牛顿就以正、反流数术亦即微分和积分,将自古以来求解无穷小问题的各种方法和特殊技巧有机地统一起来。

正是在这种意义下,牛顿创立了微积分。

牛顿对于发表自己的科学著作持非常谨慎的态度。

1687年,牛顿出版了他的力学巨著《自然哲学的数学原理》,这部著作中包含他的微积分学说,也是牛顿微积分学说的最早的公开表述,因此该巨著成为数学史上划时代的著作。

而他的微积分论文直到18世纪初才在朋友的再三催促下相继发表。

1.2 莱布尼茨的微积分工作莱布尼茨(W.Leibniz,1646-1716)出生于德国莱比锡一个教授家庭,青少年时期受到良好的教育。

1672年至1676年,莱布尼茨作为梅因茨选帝侯的大使在巴黎工作。

这四年成为莱布尼茨科学生涯的最宝贵时间,微积分的创立等许多重大的成就都是在这一时期完成或奠定了基础。

微积分的发展历史

微积分的发展历史

微积分的发展历史1. 古希腊时期:微积分的起源可以追溯到古希腊时期,早在公元前5世纪,数学家祖克里斯特斯(Zeno of Elea)就提出了诸如阿基里斯赛跑等著名的悖论,引发了对无穷小和无穷大的思考。

2. 阿基米德和群测强微积分:在古希腊和古罗马时期,一些数学家如阿基米德和群测强(Archimedes)开始探索几何学和代数学的基本概念,在解决实际问题的过程中也涉及到了微积分的雏形。

3.牛顿和莱布尼兹的发现:17世纪,英国科学家牛顿和德国数学家莱布尼兹几乎同时独立发现了微积分的基本原理。

牛顿将微积分用于机械学和物理学的研究,而莱布尼兹则用它来解决代数和几何方程。

这两位伟大的数学家将微积分作为一门独立的学科加以发展并系统化。

4. 微积分的形式化建立:18世纪,欧拉(Leonhard Euler)将微积分的概念进一步抽象化和形式化,构建了函数和级数的理论,为微积分的应用奠定了坚实的基础。

5. 国际象棋问题的解决:19世纪初,法国数学家拉格朗日(Joseph-Louis Lagrange)研究国际象棋中的一个问题,首次利用微积分的方法进行了解决。

这个问题不仅使微积分在数学界引起了重视,也增强了人们对微积分的研究兴趣。

6. 分析学的发展:19世纪,数学分析学迎来了一个又一个的里程碑。

来自法国的布尔巴基(Augustin-Louis Cauchy)和庞加莱(Henri Poincaré)等人对极限、连续性和导数等概念进行了严格的定义和证明,进一步完善了微积分的理论。

7.微积分的应用:20世纪初期,微积分得到了广泛应用,特别是在物理学、工程学和经济学等领域。

爱因斯坦的相对论理论、量子力学的发展以及现代金融学等都离不开微积分的支持。

8.持续发展和改进:自20世纪起,微积分一直在不断发展和改进。

函数论、复分析及它们与微积分的关系等新理论的出现,使微积分的应用更加广泛,对更加复杂的问题提供了更加深入的分析。

微积分发展简史

微积分发展简史

费马在推导求面积的公式时,发现当 n 为 无穷大时,包含的 1/n 和 1/n2 项可以忽略不计。 卡瓦列里将上面讨论的面积看成无限多个他称 之为不可分量(牛顿称之为终结不可分量)的 总和。这个终结不可分量到底是什么?当时没 有人能将它说清楚。牛顿后来甚至重申他已经 放弃了终结不可分量,而卡瓦列里只是说,把 一块面积分割为越来越小的小矩形时,最终就 会得到终结不可分量,面积就是由这些终结不 可分量组成的。
终结不可分量后来发展为无穷小量。
这里的问题是,当把非均匀变化的问题 看成均匀变化时,能表示为两个量的积的形 式,则此时处理非均匀变化问题,可以采 用 ……???
用什么方法?我们以后再慢慢讲。 它是积分学的问题。
牛顿与莱布尼茨
实际上在牛顿与莱布尼茨作出他们的冲刺之 前,微积分的大量知识已经积累起来了。甚至在巴 罗的一本书里就能看到求切线的方法、两个函数的 积和商的微分定理、x 的幂的微分、求曲线的长度、 定积分中的变量代换、隐函数的微分定理等等。
费马研究的一个问题
假设一个小球正向地面落去,我们想知道下落后 第 4 秒时小球的速度(瞬时速度)。
如果我们考虑用小球下落中时间间隔来代替时 刻,用它在这一段时间间隔内下降的距离除以所用时 间,就得到这一间隔中小球的平均速度。我们可以计 算从第四秒起,间隔为 1/2 秒,1/4 秒,1/8 秒,…… 内的平均速度。显然,时间间隔越短,计算出来的平 均速度就越接近第四秒时的速度。这就是说,我们有 了一个方案:首先计算不同时间间隔内的平均速度, 然后研究当时间间隔越来越小时,它们会趋近于哪一 个数。这个数就是要求的小球在第四秒时第瞬时速 度。
费马推导的问题所在
费马一直没能证明他所做的这些,也 没有把这项工作非常深入地进行下去,但 他坚信最终可以得到一个合理的几何证明。 尽管如此,事实上我们必须承认他是微积 分学的创始人之一。

微积分的发展史

微积分的发展史

微积分的发展史微积分的发展史微积分是数学中的一个重要分支,发挥着重要的作用,它具有重要的实用价值,是现代数学中一门重要的学科。

微积分在古代有着很长的历史,从古至今,在发展的过程中,受到了许多著名的数学家的不懈努力,其演变虽然有一定的规律,但是发展也呈现出复杂的趋势,下面来看看微积分的发展历史。

一:古代的微积分古代微积分的发源可以追溯到公元前三世纪古希腊哲学家斐波那契和欧几里德的古典时代,他们最早提出了微积分的相关概念,比如斐波那契提出的“变化率”的思想,欧几里德提出的“误差积分”的思想,他们发明出来的数学模型也是微积分发展的基础。

二:新罗马时代的微积分新罗马时期的微积分研究已经开始流行,公元七世纪达·索马里(d’Alembert)等科学家在此期间正式提出“积分”的概念,但他们只是把微积分引入到数学体系中,并没有真正深入的研究。

三:十七世纪的微积分在十七世纪,英国数学家派克完成了微积分的重大突破,他把斐波那契和欧几里德的相关概念作为微积分的基础,将微积分作为一个独立的学科,开始全面系统地研究微积分,由此开创了微积分的新观念,彻底改变了古代的微积分的思维模式,他的成果也在欧洲开始流行。

四:十八世纪的微积分到了十八世纪,派克的微积分在欧洲开始广泛受到关注和应用,微积分的研究开始更加深入和系统化,出现了许多在微积分领域有重大贡献的著名数学家,比如拉格朗日,瓦西里和弗拉基米尔,他们的成就使微积分的研究得到进一步的发展。

五:十九世纪的微积分到了十九世纪,微积分的研究开始发生重大变化,出现了许多在微积分领域有重大贡献的著名数学家,比如高斯,尤金和庞加莱,他们的发现把微积分推向了新的高度。

同时也有一些新的应用,使微积分的研究发生了重大变化,这个时期也是微积分发展史上的一个重要时期。

六:二十世纪的微积分到了二十世纪,微积分的研究取得了重大的进展,出现了许多在微积分领域有重大贡献的著名数学家,比如黎曼,爱因斯坦和明斯基,他们的成就使微积分的研究取得了突破性的进展,使微积分得到了全面的发展,成为现代数学中重要的学科之一。

微积分的发展史范文

微积分的发展史范文

微积分的发展史范文微积分是现代数学中的一个重要分支,涉及对函数的导数和积分等概念的研究。

微积分的发展经历了几个重要的阶段,从古希腊数学的一些零散的想法,到17世纪初牛顿和莱布尼茨的独立发现,再到19世纪的完善和推广,微积分已经成为现代科学和工程中的基础理论。

早在公元前4世纪,古希腊数学家欧几里得提出了一种用极限概念来研究曲线斜率的方法。

在此之后,亚历山大的阿基米德在第三世纪前后也使用了一些近似方法来研究圆周率和测量圆的面积。

然而,在古希腊时期,微积分的概念还没有被系统地发展出来。

微积分真正的发展始于17世纪初,当时牛顿和莱布尼茨几乎同时独立地发现了微积分的基本原理和方法。

牛顿将微积分应用于天文学和物理学,而莱布尼茨则将其应用于几何学和计算问题。

通过牛顿和莱布尼茨的努力,微积分的基本概念如导数和积分被建立起来,并形成了一套完整的理论体系。

在18世纪,微积分的研究得到了进一步的推广和完善。

欧拉是18世纪最重要的数学家之一,他对微积分进行了深入的研究。

欧拉发展了一些重要的概念和技巧,例如级数、复变函数和微分方程等,为微积分的应用和推进做出了巨大贡献。

此外,拉格朗日和拉普拉斯等数学家也对微积分进行了深入的研究,并为微积分的发展提供了许多重要的思想和方法。

到了19世纪,微积分的研究进入了一个全新的阶段。

拉格朗日的求导法则和莱布尼茨的积分法则等基本概念和技巧被进一步推广和完善。

庞加莱、魏尔斯特拉斯和威尔逊等数学家对微积分理论进行了深入研究,提出了许多重要的定理和方法。

特别是庞加莱在微分方程理论方面的贡献,使微积分得到了进一步的应用和发展。

20世纪是微积分研究的蓬勃发展阶段。

在这个时期,微积分被广泛应用于物理学、工程学、经济学和计算机科学等领域。

随着计算机的普及和计算能力的提高,微积分的数值方法和近似计算技术得到了极大的发展。

微分方程的数值解法、积分的数值计算、函数逼近和插值等都在这个时期得到了广泛的应用。

总体而言,微积分的发展历程可以概括为:古希腊数学的零散想法,17世纪牛顿和莱布尼茨的独立发现,18世纪的推广和完善,19世纪的深入研究,以及20世纪的应用和发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

近代数学本质上可以说是变量数学。

文艺复兴以来资本主义生产力的发展,对科学技术提出了全新的要求:机械的普遍使用引起了对机械运动的研究;世界贸易的高涨促使航海事业的空前发达,而测定船舶位置问题要求准确地研究天体运行的规律;武器的改进刺激了弹道问题的探讨,等等,总之,到了16世纪,对运动与变化的研究已变成自然科学的中心问题。

这就迫切地需要一种新的数学工具,从而导致了变量数学亦即近代数学的诞生。

变量数学的第一个里程碑是解析几何的发明。

解析几何的基本思想是在平面上引进所谓“坐标”的概念,并借助这种坐标在平面上的点和有序实数对(),x y 之间建立一一对应的关系。

每一对实数(),x y 都对应于平面上的一个点;反之,每一个点都对应于它的坐标(),x y 。

以这种方式可以将一个代数方程(,)0f x y =与平面上一条曲线对应起来,于是几何问题便可归结为代数问题,并反过来通过代数问题的研究发现新的几何结果。

借助坐标来确定点的位置的思想古代曾经出现过,古希腊的阿波罗尼奥斯关于圆锥曲线性质的推导,阿拉伯人通过圆锥曲线交点求解三次方程的研究,都蕴涵着这种思想。

解析几何最重要的前驱是法国数学家奥雷斯姆(N 。

Oresme ,1323—1382),他在《论形态幅度》这部著作中提出的形态幅度原理(或称图线原理),甚至已接触到函数的图象表示,在这里,奥雷斯姆借用了“经度”、“纬度”这两个地理学术语来描述他的图线,相当于横坐标与纵坐标。

不过他的图线概念是模糊的,至多是一种图表,还未形成清晰的坐标与函数图象的概念。

解析几何的真正发明还要归功于法国另外两位数学家笛卡儿(R 。

Descartes ,1596—1650)与费马(P 。

de Fermat ,1601—1665)。

他们工作的出发点不同,但却殊途同归。

费马工作的出发点是竭力恢复失传的阿波罗尼奥斯的著作《论平面轨迹》,他为此而写了一本题为《论平面和立体的轨迹引论》(1629)的书。

书中清晰地阐述了费马的解析几何原理,指出:“只要在最后的方程中出现两个未知量,我们就有一条轨迹,这两个量之一的末端描绘出一条直线或曲线。

直线只有一种,曲线的种类则是无限的,有圆、抛物线、椭圆等等”。

费马在书中还提出并使用了坐标的概念,不仅使用了斜坐标系,也使用直角坐标系,他所称的未知量A 、E 实际就是“变量”,也就是我们今天所称的横坐标与纵坐标。

书中费马解析地定义了以下的曲线:
直线方程:()d a x by -=;
圆:222
b x y -=;
椭圆:222b x ky -=;
抛物线:22,x dy y dx ==;
双曲线:2222;xy k x b ky =+=;
费马后来还定义了新曲线:
,m n n m x y a y ax ==和n r av =。

费马没有说明他的解析几何思想是如何形成的。

我们可以认为,他与笛卡儿的创造都是文艺复兴以来欧洲代数学振兴所带来的必然结果。

解析几何是代数与几何相结合的产物,它将变量引进了数学,使运动与变化的定量表述成为可能,从而为微积分的创立搭起了舞台。

微积分的思想萌芽,特别是积分学,部分可以追溯到古代。

我们已经知道,面积和体积的计算自古以来一直是数学家们感兴趣的课题,在古代希腊、中国和印度数学家们的著述中,不乏用无穷小过程计算特殊形状的面积、体积和曲线长的例子。

如阿基米德、刘徽和祖冲之父子等人的方法,他们的工作,确实是人们建立一般积分学的漫长努力的先驱。

与积分学相比而言,微分学的起源则要晚得多。

刺激微分学发展的主要科学问题是求曲线的切线、求瞬时变化率以及求函数的极大极小值等问题。

古希腊学者曾进行过作曲线切线的尝试,如阿基米德《论螺线》中给出过确定螺线在给定点处的切线的方法;阿波罗尼奥斯《圆锥曲线论》中讨论过圆锥曲线的切线,等等。

但所有这些都是基于静态的观点,把切线看作是与曲线只在一点接触且不穿过曲线的“切触线”而与动态变化无干。

古代与中世纪中国学者在天文历法研究中曾涉及到天体运动的不均匀性及有关的极大、极小值问题,如郭守敬《授时历》中求“月离迟疾”(月亮运行的最快点和最慢点)、求月亮白赤道交点与黄赤道交点距离的极值(郭守敬甚至称之为“极数”)等问题,但东方学者以惯用的数值手段(“招差术”,即有限差分计算)来处理,从而回避了连续变化率。

总之,在17世纪以前,真正意义上的微分学研究的例子可以说是很罕见的。

近代微积分的酝酿,主要是在17世纪上半叶这半个世纪。

为了理解这一酝酿的背景,我们首先来略微回顾一下这一时期自然科学的一般形势和天文、力学等领域发生的重大事件。

首先是1608年,荷兰眼镜制造商里帕席发明了望远镜,不久伽利略将他制成的第一架天文望远镜对准星空而作出了令世人目不暇接、惊奇不已的天文发现。

望远镜的发明不仅引起了天文学的新高涨,而且推动了光学的研究。

1619年,开普勒公布了他的最后一条行星运动定律。

开普勒行星运动三大定律要意是:
(1)行星运动的轨道是椭圆,太阳位于该椭圆的一个焦点;
(2)由太阳到行星的矢径在相等的时间内扫过的面积相等;
(3)行星绕太阳公转周期的平方,与其椭圆轨道的半长轴的立方成正比。

开普勒主要是通过观测归纳出这三条定律。

从数学上推证开普勒的经验定律,成为当时自然科学的中心课题之一。

1638年,伽利略(GALILEO Galilei ,1564—1642)《关于两门新科学的对话》出版。

伽利略建立了自由落体定律、动量定律等,为动力学奠定了基础;他认识到弹道的抛物线性质,并断言炮弹的最大射程应在发射角为45
时达到,等等。

伽利略本人竭力倡导自然科学的数学化,他的著作激起了人们对他所确立的动力学概念与定律作精确的数学表述的巨大热情。

凡此一切,标志着自文艺复兴以来在资本主义生产力刺激下蓬勃发展的自然科学开始迈入综合与突破的阶段,而这种综合与突破所面临的数学困难,使微分学的基本问题空前地成为人们关注的焦点:确定非均匀运动物体的速度与加速度使瞬时变化率问题的研究成为当务
之急;望远镜的光程设计需要确定透镜曲面上任一点的法线,这又使求任意曲线的切线问题变得不可回避;确定炮弹的最大射程及寻求行星轨道的近日点与远日点等涉及的函数极大值、极小值问题也亟待解决。

与此同时,行星沿轨道运动的路程、行星矢径扫过的面积以及物体重心与引力的计算等又使积分学的基本问题—面积、体积、曲线长、重心和引力计算的兴趣被重新激发起来。

在17世纪上半叶,几乎所有的科学大师都致力于寻求解决这些难题的新的数学工具,特别是描述运动与变化的无限小算法,并且在相当短的时期内,取得了迅速的进展。

解析几何的两位创始人笛卡儿和费马,都是将坐标方法引进微分学问题研究的先锋。

笛卡儿在《几何学》中提出了求切线的所谓“圆法”,本质上是一种代数方法。

笛卡儿圆法记载于他1637年发表的《几何学》中。

就在同一年,费马在一份手稿中提出了求极大值与极小值的代数的方法。

按费马的方法,设函数()f x 在点a 处取极值,费马用a e +代替原来的未知量a ,并使()f a e +与()f a “逼近”(adequatio ),即
()()f a e f a + ,
消去公共项后,用e 除两边,再令e 消失,即
()()0e f a e f a e =+-⎡⎤=⎢⎥⎣⎦, 由此方程求得的a 就是()f x 的极值点。

例如。

费马用他的方法来确定怎样把长度为b 的一个线段划分为两个线段x 和b x -,使得它们的乘积()2
x b x bx x -=-最大(也就是作一个周长为2b 的长方形,使其面积最大)。

首先用x e +代替x ,然后写出
()()2
2b x e x e bx x +-+- ,
即2222bx be x xe e bx x +---- ,消去相同项得 220be xe e -- ,
两边除以e ,得
20b x e -- ,
令0e =,得20b x -=,即有
2
b x =。

费马的方法几乎相当于现今微分学中所用的方法,只是以符号e (他写作E )代替了增量x ∆。

记载费马求极大值与极小值方法的这份手稿,实际上是他写给梅森(M 。

Mersenne )的一封信,梅森是当时欧洲科学界领头人物伽利略、费马、笛卡儿、帕斯卡等人之间保持书信交往的中心。

他将费马这封信转给了笛卡儿,从而引起了关于切线问题的热烈争论,因为费马求极大极小值的方法也可以用来求曲线的切线,他在致梅森的信中就收入了怎样用他的方
法来求抛物线2y x 在给定点的切线的例子。

费马在信中指出他求函数极大值、极小值的方法还“可以推广应用于一些优美的问题”,并说他已经获得了求平面与立体图形的重心等一些其他结果,“关于这些结果,如果时间允许,我将在另外的场合来论述。

”。

相关文档
最新文档