曲线要素坐标计算
曲线计算公式

一、曲线要素计算已知:JDZH 、JDX 、JDY 、R 、L S1、L S2、L H 、T 、A 1、A 2(L H =L S1+L S2+圆曲线长)1、求ZH 点(或ZY 点)坐标及方位角⎪⎩⎪⎨⎧-=-=-=11sin cos AT JDY ZHY A T JDX ZHX TJDZH ZHZH 2、求HZ 点(或YZ 点)坐标及方位角⎪⎩⎪⎨⎧+=+=+-=22sin cos AT JDY HZY A T JDX HZX L T JDZH HZZH H3、求解切线长T 、外距E 、曲线长L(1)圆曲线⎪⎩⎪⎨⎧=-==180/)1)2/cos(/1()2/tan(απααR L R E R T (2)缓圆曲线 )2/(2/)2/cos(/)(2180/)21()2/tan()(020R l l l Rl l R p R E l R L qp R T s s s HsH H ===⎪⎩⎪⎨⎧-+=+⨯-=+⨯+=ββαπβα时当其中 二、直线上各桩号坐标及方位角计算 已知:ZH 、X 、Y 、A ⎪⎩⎪⎨⎧+=+==-=A L Y DY A L X DX A T ZH DZH L sin cos 三、第一缓和曲线上各桩号点坐标及方位角计算 已知:ZHZH 、ZHX 、ZHY 、A 1、R 、L S1、i (Z+1Y-1) ⎪⎩⎪⎨⎧⨯-+=⨯++=⨯⨯-==-=-=1111121132125cos sin sin cos /180)2/()6/()40/(Ay i A x ZHY DY A y i A x ZHX DX Rl l i A T Rl L y l R L L x ZHZH DZH L s s s π四、圆曲线上各桩号点坐标及方位角计算已知:ZHZH 、ZHX 、ZHY 、A 1、R 、L S1、i (Z+1Y-1)⎪⎩⎪⎨⎧⨯-+=⨯++=⨯+⨯-=⎪⎩⎪⎨⎧=-==++-=-++=--=1111121231110211231111cos sin sin cos /180)/2/(24/240/2/2/24/)]/2/cos(1[240/2/)/2/sin(Ay i A x ZHY DY A y i A x ZHX DX R L R l i A T R l p R l l q R l R l R L R l R y R l l R L R l R x ls ZHZH DZH L s s s s s s s s s s πβ其中五、第二缓和曲线上个桩号坐标及方位角计算 已知:HZZH 、HZX 、HZY 、A2、R 、L S2、i (Z+1Y-1) ⎪⎩⎪⎨⎧⨯--=⨯+-=⨯⨯+==-=-=2222222232225cos sin sin cos /180)2/()6/()40/(Ay i A x HZY DY A y i A x HZX DX Rl l i A T Rl L y l R L L x DZHHZZH L s s s π六、边桩坐标求解 已知:DZH 、X 、Y 、T 、BZJL (Z+Y-)、DLJJ 、N (距中桩距离,左正右负)⎪⎩⎪⎨⎧-=-=+=T N Y BDY T N X BDX T T sin cos α七、纵断面高程计算(1) 直线段上高程计算 已知:直线上任一点桩号(ZH )、高程(H )、纵坡(i ))(*ZH DZH i H DH -+=(2) 竖曲线上高程计算已知:竖曲线起点桩号(ZH )、起点高程(H )、竖曲线半径R 、起点坡度(i )、k (凸曲线+1、凹曲线-1) )2/(2R l k il H DH ZHDZH l ⨯-+=-=注:JDZH 、JDX 、JDY :交点桩号、交点X 、Y 坐标R 、L S1、L S2:半径、缓和曲线1、缓和曲线2LH :缓和曲线1长 +圆曲线长+ 缓和曲线2长 A1、A2:方位角1、方位角2 T :在曲线要素中代表切线长;在坐标计算中代表被求解点的坐标方位角。
缓和曲线圆曲线计算公式

缓和曲线、竖曲线、圆曲线、匝道(计算公式)一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反xZ,yZ为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反xZ,yZ为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度l2——第二缓和曲线长度l0——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R2——曲线终点处的半径P1——曲线起点处的曲率P2——曲线终点处的曲率α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i1(上坡为“+”,下坡为“-”)②第二坡度:i2(上坡为“+”,下坡为“-”)③变坡点桩号:SZ④变坡点高程:HZ⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程:五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点(过渡段终点)的距离:x 求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K0③曲线终点桩号:K1④曲线起点坐标:x0,y0⑤曲线起点切线方位角:α0⑥曲线起点处曲率:P0(左转为“-”,右转为“+”)⑦曲线终点处曲率:P1(左转为“-”,右转为“+”) 求:①线路匝道上点的坐标:xy②待求点的切线方位角:αT计算过程:注:sgn(x)函数是取符号函数,当x0时sgn(x)=1,当x=0时sgn(x)=0。
曲线计算公式

[转帖]时寒冰:中国到底损失了多少亿?一位董事长给年轻人讲述的30条人生道理高速公路的一些线路坐标、高程计算公式(缓和曲线、竖曲线、圆曲线、匝道)2009-12-19 20:57:14| 分类:默认分类| 标签:|举报|字号大中小订阅一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:x Z,y Z计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反x Z,y Z为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:x Z,y Z计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反x Z,y Z为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度l2——第二缓和曲线长度l0——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R2——曲线终点处的半径P1——曲线起点处的曲率P2——曲线终点处的曲率α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i1(上坡为“+”,下坡为“-”)②第二坡度:i2(上坡为“+”,下坡为“-”)③变坡点桩号:S Z④变坡点高程:H Z⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程:五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点(过渡段终点)的距离:x求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K0③曲线终点桩号:K1④曲线起点坐标:x0,y0⑤曲线起点切线方位角:α0⑥曲线起点处曲率:P0(左转为“-”,右转为“+”)⑦曲线终点处曲率:P1(左转为“-”,右转为“+”)求:①线路匝道上点的坐标:x,y②待求点的切线方位角:αT计算过程:注:sgn(x)函数是取符号函数,当x<0时sgn(x)=-1,当x>0时sgn(x)=1,当x=0时sgn(x)=0。
圆曲线坐标计算(坐标正算法)

2、计算方法 根据交点里程和圆曲线要素计算主点里程。
公路习惯推算方法:
曲线测设是指每隔一定距离测设一个曲线点以在地面上标志曲线平面位置。
现阶段曲线测设主要采用全站仪或GPS进行,而这两种方法所需测设资料是曲线点的坐标,故实施测设前必须计算曲线点的坐标。
四、单圆曲线测设资料计算
1、基本要求 中桩间距:即相邻两曲线点间的距离,一般为 20 米,地形复杂时为 10 米。施工时可按规范或标书要求进行。 桩号:即曲线点的里程,必须是中桩间距的整倍数。 例如:ZY点里程为18+197.36,中桩间距为20m,则第一点里程为________________________________。 第二点里程为______________________________。 依此类推。
18+200
18+220
2、曲线点坐标计算
已知条件:起点、终点及各交点的坐标。
JD1
起点
终点
ZY2
YZ2
ZY1
YZ1
QZ2
JD2
S1-2
T1
T2
X
Y
O
QZ2
1)计算ZY、YZ点坐标
JD1
起点
终点
ZY2
YZ2
ZY1
YZ1
QZ2
JD2
S1-2
T1
T2
X
Y
O
QZ2
通用公式:
JD1
起点
终点
ZY2
YZ2
ZY1
YZ1
QZ2
JD2
S1-2
T1
T2
X
Y
O
QZ2
ZY- i
ZY- JD
高速公路线路(缓和曲线、竖曲线、圆曲线、匝道)坐标计算公式

高速公正路路(缓和曲线、竖曲线、圆曲线、匝道)坐标计算公式未知2021-12-27 21:40:34 本站高速公路的一些线路坐标、高程计算公式(缓和曲线、竖曲线、圆曲线、匝道)一、缓和曲线上的点坐标计算:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:x Z,y Z计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,那么:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反x Z,y Z为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:x Z,y Z计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,那么:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反x Z,y Z为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度〔或缓曲上任意点到缓曲起点的长度〕l1——第一缓和曲线长度l2——第二缓和曲线长度l0——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R2——曲线终点处的半径P1——曲线起点处的曲率P2——曲线终点处的曲率α——曲线转角值四、竖曲线上高程计算:①第一坡度:i1(上坡为“+〞,下坡为“-〞)②第二坡度:i2(上坡为“+〞,下坡为“-〞)③变坡点桩号:S Z④变坡点高程:H Z⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程:五、超高缓和过渡段的横坡计算:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点〔过渡段终点〕的间隔:x求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算:①待求点桩号:K②曲线起点桩号:K0③曲线终点桩号:K1④曲线起点坐标:x0,y0⑤曲线起点切线方位角:α0⑥曲线起点处曲率:P0(左转为“-〞,右转为“+〞)⑦曲线终点处曲率:P1(左转为“-〞,右转为“+〞) 求:①线路匝道上点的坐标:x,y②待求点的切线方位角:αT计算过程:注:sgn(x)函数是取符号函数,当x<0时sgn(x)=-1,当x>0时sgn(x)=1,当x=0时sgn(x)=0。
曲线坐标计算

圆曲线起点和终点坐标,圆曲线半径。
求这段曲线上任意点的坐标.通过起终点坐标算出弦长S和起点到终点的坐标方位角A,R为已知,即:S=2Rsin(θ/2)Sin(θ/2)=S/2/Rθ=2*arcsin(S/2/R)θ——圆曲线对应的圆心角由于圆心和两端点成一个等腰三角形,所以另三角形两个内角也可算出来:β=(180-θ)/2由坐标正算公式可算得圆心坐标,和圆心到起点的坐标方位角,即:X0=N0+Rcos(A+β)Y0=E0+Rsin(A+β)A0= A+β+180根据弧长公式l=R*θ(θ——长度为l的弧长所对应的圆心角,以弧度为单位)可以算得该圆曲线上距起点任意弧长所对应的圆心角偏转值:θ’=180*l/π/R故圆曲线上任意一点的坐标即可再次使用坐标正算公式得出:X=X0+Rcos(A0+θ’)Y=Y0+Rsin(A0+θ’)以上算例只需用到坐标正反算知识,其他知识都是基于初中几何水平的解算,所以只要多动一下脑子,办法是很多的,读者也可以算出JD 坐标和前直线方位角用手头上已有的程序解算。
一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反xZ,yZ为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反xZ,yZ为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度l2——第二缓和曲线长度l0——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R2——曲线终点处的半径P1——曲线起点处的曲率P2——曲线终点处的曲率α——曲线转角值。
(完整版)平曲线要素计算

一、路线转角、交点间距的计算(一)在地形图上量出路线起终点及各路线交点的坐标:QD 23810,27180、JD1 23996,26977 、JD 224684,26591、 JD3248480,25885、JD4 25350,25204 、ZD2606225783,(二)计算公式及方法设起点坐标为 QD X0,Y0,第 i 个交点坐标为 JD i X i ,Y i , i1,2,3,4, 则坐标增量 DX X i X i 1, DY Y i Y i 1交点间距 D(DX )22 DY象限角arctanDYDX方向角 A 是由象限角计算的:象限DX DY A象限DX DY A Ⅰ++AⅢ--A180o Ⅱ-+ A 180oⅣ+-A360o转角i A i Ai 11.QD与 JD1之间:坐标增量 DX X1X 0 =2396623810=186 0DY Y1Y026977271802030交点间距 D(DX )2DY 218622032275.33m象限角arctan DY arctan20347.502 oDX186方向角 A0360o360o47.502o312.498o 2.JD1与 JD 2之间:坐标增量 DX X 2X1=2468423966=688 0DY Y2Y126591269773860交点间距 D(DX )2268823862DY788.89 m象限角arctanDYarctan386 29.294 oDX688方向角 A 1 360o360o 29.294o 330.706o 转角 1 =A 1 A 0 330.706o 312.498o 18.208o3. JD 2 与JD 3之间:坐标增量 DXX 3 X 2 =24840 24684=156 0DYY 3 Y 2 25885 26591706 0交点间距 D(DX )221562 706 2DY723.03m象限角arctanDYarctan706 77.54oDX156方向角 A 2 360o360o 77.54o 282.46o转角 2 =A 2 A 1 282.46o 330.706o 48.246 o4. JD 3与 JD 4 之间:坐标增量 DXX 4 X 3 =25350 24840=510 0DY Y 4 Y 3 25204 25885681 0交点间距 D(DX )225102681 2DY850.8m象限角arctan DYarctan 51053.171oDX681方向角 A 3 360o360o 53.171o306.829o 转角 3 =A 3 A 2 306.829 282.4624.369o5. JD 4 与 ZD 之间:坐标增量 DXX X 4 =26062 25350=712 0DYYY 4 2578325204579 0交点间距 D (DX )2 27122 5792 917.706mDY象限角arctanDYarctan57939.118 oDX712方向角 A 039.118o转角 4 =A 4 A 3 39.118o 312.498o 92.289o二、各平曲线要素的计算( 一) JD 1曲线要素计算取R 800m ,设计速度为 60km/ h ,JD1桩号为K0+275.33,转角1.缓和曲线长度 L S,则:L SV 30.0366030.0369.72(m)R800L SV60350(m) 33.63.6L S R~ R800~ 80088.89 ~ 800(m) 99取整数,采用缓和曲线长120m(《公路工程技术标准》规定:V 最小缓和曲线长度为50m ).2.圆曲线内移值 RL2S L4S120212040.75(m)R2688 (R)324 8002688 (800) 324R3.总切线长T hL S L3S120120359.989(m)先求 q240R2224080022所以 T h (R R) tan q(80018.20859.989 188.31(m)0.75) tan224.曲线总长度 L hL S=0.0752RL h ( 2 )R 2L S?R+L S 374.22(m)1801805.五个基本桩号JD 1K0+274.33)T h188.31ZH 1K 0+087.0218.208o60 km h 时,)L SHY1)( L h 2L S )YH1)L SHZ 11L h)2QZ1120.00K0+207.02134.22 K0+341.24120.00 K0+461.24187.11 K0+274.13E h ( R R)sec R (8000.75sec 18.208800 10.97(m)22超距 D2T L h 2 188.31374.22 2.4(m)。
坐标、高程计算公式

高速公路的一些线路坐标、高程计算公式(缓和曲线、竖曲线、圆曲线、匝道)一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反xZ,yZ为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反xZ,yZ为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度l2——第二缓和曲线长度l0——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R2——曲线终点处的半径P1——曲线起点处的曲率P2——曲线终点处的曲率α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i1(上坡为“+”,下坡为“-”)②第二坡度:i2(上坡为“+”,下坡为“-”)③变坡点桩号:SZ④变坡点高程:HZ⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程:五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点(过渡段终点)的距离:x 求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K0③曲线终点桩号:K1④曲线起点坐标:x0,y0⑤曲线起点切线方位角:α0⑥曲线起点处曲率:P0(左转为“-”,右转为“+”)⑦曲线终点处曲率:P1(左转为“-”,右转为“+”)求:①线路匝道上点的坐标:x,y②待求点的切线方位角:αT计算过程:注:sgn(x)函数是取符号函数,当x<0时sgn(x)=-1,当x>0时sgn(x)=1,当x=0时sgn(x)=0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中线坐标
N(X)
E(Y)
切线方位角
距离
左边桩坐标 右夹角 N(X)
E(Y)
距离
右边桩坐标 右夹角 N(X)
E(Y)
1 397375.16 3240232.143 500684.553 84°54′12.″
4.35
3240236.476 500684.167
397398.8 3240234.232 500708.101 84°56′23.″
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号中Leabharlann 坐标切线方位角左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
4.95
3240239.163 500707.664
397406.4 3240234.903 500715.671 84°56′23.″
2.78
3240237.672 500715.426
397431.88 3240237.150 500741.052 84°56′23.″
1.8
3240235.357 500741.211
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
397447.1 3240238.492 500756.213 84°56′23.″
4.5
3240234.010 500756.610
17 10 14 8 12 6 4 2
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标
桩号
中线坐标
切线方位角
左边桩坐标
右边桩坐标